p226 electronics

Types of digital standards:

TTL (transistor transistor logic):

74 series, standard up to 100MHz, 5V on, 0V off, (1Ghz available) CMOS (complementary metal oxide semiconductor):

low power, 100MHz, noise immune, 5/10/15V on, 0V off ECL (emitter coupled logic): 500MHz, -0.9V on, -1.75V off

Remake:

- 1. TTL sinks current of a fraction of 1mA at low position. Fanout of 10 or less!
- 2. CMOS needs no current $<< \mu A$
- 3. Edge sensitive logic should not be driven with slow signals. Switch bounce: Schmitt trigger, bistable positive feedback. See below.
- 4. Entry into digital circuits: comparator.
- 5. Is op amp the same as a comparator? Not quite.

Difference: speed, noise, saturation...

Can one use an op amp as a comparator? You can, but need to know...

Diff optimization: with and without saturation

Comparator: important to have a pull up resistor!! Because it typically comes with an open collector and grounded emitter output.

Why does it need pull-up resistor?

Comparators typically have an NPN output transistor with open collector and ground emitter. Below is one example.

Why are they designed this way??

Relaxation oscillator

Boolean Algebra
A and
$$B = AB$$
 Similar to a product
 $A \text{ or } B = A + B$ Similar to addition
Not $A = \overline{A}$, $\overline{A} = A$ inverse element: A
 $\overline{AB} = \overline{A} + \overline{B}$ NAND inverse element: V
 $\overline{AB} = \overline{A} + \overline{B}$ NAND commutativity: V
 $\overline{A+B} = \overline{AB}$ NOR
 D :stributive law $A(B+C) = AB + AC$
 $AA = A \quad \overline{AA} = O \quad A + I = I \quad AI = A$
 $AA = A \quad \overline{AA} = O \quad A + O = A \quad AO = O$.
 $exercise: \quad \overline{A+BC} + \overline{AB}$
 $= \quad \overline{A+BC} \quad \overline{AB} = (A+BC)(AB)$
 $= \quad AAB + BCAB \quad O = AB$

Questions: (1) It turns out NOT gete can be constructed
by NOR, be there is only one universel gete.

$$\overline{(A+A)} = \overline{A}$$
.
(1) Gen you construct a general gate when XYZW
one given as variables?
(1)) How many gates are needed to anomphish a
tack of length N>Z?
Find an element. ~O(1)
Binary search ~O(logN)
 $X>Y?$ ~O(N)
Bubble sort ~O(logN)
 $X>Y?$ ~O(N)
Bubble sort ~O(N)
Fracterization ~O(2^{N/2}) $\rightarrow N^3$ with OC.
Traveling selestran ~O(N^N)
Connection to Quantum computation
Universal quantum computation