\qquad

1. Impedance: resistors, capacitors, and inductors
(A) Device 1 delivers a signal to Device 2. Calculate the output impedance and input impedance as a function of the angular frequency w.
(Hint: you may assume the actual output voltage and current are V and I . Thus output impedance is $Z_{\text {out }}=|d V / d I|$, expressed in terms of r and C. Input impedance is $Z_{\text {in }}$ $=|d V / d| \mid$ expressed in terms of R and R^{\prime}.)

Solution:
$I=\frac{V_{1}-V}{r}-\frac{V}{Z_{c}} \Rightarrow d I=-\left(\frac{1}{r}+\frac{1}{Z_{c}}\right) d V \Rightarrow Z_{\text {out }}=\left|\frac{d V}{d I}\right|=\left|\frac{r Z_{c}}{r+Z_{c}}\right|=\frac{r}{\sqrt{1+\omega^{2} r^{2} C^{2}}}$
$V=I\left(R+R^{\prime}\right) \Rightarrow Z_{\text {in }}=\left|\frac{d V}{d I}\right|=R+R^{\prime}$
(B) Bandbloch: Design an RLC circuit between Device 1 and Device 2 such that only signal at a desired angular frequency w_{0} will be completed blocked.

Solution: $\quad V_{\text {out }}=\frac{Z_{2}}{Z_{1}+Z_{2}} V_{\text {in }}$. The simplest way to satisfy the required condition is $Z_{1}=\mathrm{R}$

And $Z_{2}\left(\omega_{0}\right)=i w_{0} L+\frac{1}{i \omega_{0} C}=0$. Thus we can choose $L C=\frac{1}{\omega_{0}^{2}}$.

2. Transistors and amplifier

(A) Darlington pair:

The above Darlington pair is made of 2 identical diodes with current amplification of $I_{C}=$ βI_{B} and $\beta=60$ is the amplification factor. Given a small base current $I_{B}=1 \mu \mathrm{~A}$, determine the currents flowing through the collector terminals of each transistor I_{C} and $I_{C^{\prime}}$.

Solution: $\beta \mu \mathrm{A}, \beta(\beta+1) \mu \mathrm{A}$
(B) Transistor amplifier

You wish to amplify an AC signal $\mathrm{V}_{\text {in }}$ by a factor of 10 . How would you choose R1, R2, R3 and R4 to accomplish this task.

Solution: R2/R3=10, $1.6>11 R 3 /(R 1+R 3)>0.6$.
(c) What is the maximum range of the input voltage $\mathrm{V}_{\text {in }}$ that the amplifier circuit works?

Solution: $\mathrm{V}_{\text {out }}$ can reach maximum of 11 V (transistor fully off) and minimum of 1 V (transistor fully on) with an amplification of 10 . Thus V _in can swing no more than 1 V and thus $-0.5 \mathrm{~V}<V_{\text {in }}<0.5 \mathrm{~V}$. (This happens when the R1 and R3 properly bias the input to ($0.6+1.6$)/2 = 1.1 V.)

3. Operational amplifiers

(A) Calculate the gain $G=V_{\text {out }} / V_{\text {in }}$ of the following circuit, and explain its function.

Solution: Difference amplifier Vout $=(\mathrm{V} 2-\mathrm{V} 1)(\mathrm{R} / \mathrm{r})$.
(B) Design an Op-amp circuit to process two signals V1 and V2 such that $V_{\text {out }}(t)=d V_{1}(t) / d t+2 V_{2}(t)$.

Solution: We can write the desired formula as $V_{\text {out }}=2\left(V_{2}-\frac{1}{2} \frac{d V_{1}}{d t}\right)$, which in frequency space is $V_{\text {out }}=2\left(V_{2}-\frac{i \omega}{2} V_{1}\right)$. Thus we can combine a differentiator on V 1 with a gain of $G=\frac{i \omega}{2}$ together with a difference amplifier as shown in (A) with a gain of $\mathrm{R} / \mathrm{r}=2$.

4. Feedback and car driving

You are driving on the highway at a constant speed, and your car drifts sideways from the center of the lane with an excursion x. Your goal is to keep the car centered or $x=0$. To reach this goal, you turn the steering wheel by θ.

For small excursion x, the transverse motion of the car can be described by
$\frac{d^{2} x}{d t^{2}}=\alpha \theta+f(t)$,
where $f(t)$ is the random external force pushing the car sideways due to imperfect road condition, α is the steering sensitivity.
(A) Write the equation in the frequency domain.
(Hint: Use Fourier transform $y(t)=\int y(\omega) e^{-i \omega t} d \omega$, where $y(t)$ is the function in time domain, and $y(\omega)$ is the function in the frequency domain.)

Solution: $-\omega^{2} x(\omega)=\alpha \theta(\omega)+f(\omega)$
(B) If the external force is a white noise $f(w)=f_{0}=$ constant. Show that your car is very easily influenced by low frequency components of the external force if you do not control the steering wheel $\theta=0$.

Solution: We have $(\omega)=-\frac{f_{0}}{\omega^{2}-G}$. When $\mathrm{G}=0, \mathrm{x}$ diverges at $\mathrm{DC} \omega=0$.
(C) One way to control your car is to turn the steering wheel in the opposite direction of the excursion $\theta=-G x$, with a constant positive gain $G>0$. Such approach offers negative feedback, but shows that it still leads to diverging instability.

Solution: Given $\mathrm{G}=$ constant, x diverges at $\omega=\sqrt{G}$,
(D) Come up with a feedback strategy $\theta(\omega)=G(\omega) x(\omega)$ with a simple gain function $G(\omega)$ such that you can keep the car more stable at all frequencies $\omega \geq 0$.
(Hint: a car is considered more stable if the excursion x does not diverge at any frequency, and is smaller than that of an unsteered car at all frequencies.)

Solution: One simplest solution is to employ an integration gain $G=\frac{1}{i \omega C}$, which gives $x=-\frac{f_{0}}{\omega^{2}+\frac{i}{\omega C}}$. The oscillation amplitude $|x|=\frac{f_{0}^{2} \omega C}{\sqrt{1+C^{2} \omega^{6}}}$ does not diverge at any frequency.

