
 
Physics 238: Atomic Physics 

Fall Quarter 2021 
Problem Set #1 

Due: 12:20 pm, Tuesday, October 12. Please submit in class.  
 

1. Structure of atomic ground state 
The electronic ground state of cesium is 
labelled as 62𝑆𝑆1/2 , where “6” is the 
principal quantum number of the sole 
valence electron, ½ is the electron’s spin 
s=1/2, and the super script 2 shows the spin 
degree of freedom of the electron.  

The nuclear spin of a cesium atom is i=7/2, and this means the total angular momentum is 𝑭𝑭 =
𝒔𝒔 + 𝒊𝒊 with angular quantum number 𝐹𝐹 = 3 and 4. The splitting between the two states Δ𝐸𝐸 =
ℎ ×9192631770 Hz,  see figure, adopted from Cs D Line data, is the primary frequency standard. The 
hyperfine splitting comes from the spin-spin interactions between the electron and the nucleus: 

 
𝐻𝐻 = 𝐴𝐴 𝒔𝒔 ⋅ 𝒊𝒊, 

 

Show that the splitting is given by Δ𝐸𝐸 ≡ 𝐸𝐸4 − 𝐸𝐸3 = �𝑖𝑖 + 1
2
�𝐴𝐴ℏ2. 

 
 
 
(Hint:  You may expand 𝑭𝑭𝟐𝟐 = 𝒔𝒔𝟐𝟐 + 𝟐𝟐𝟐𝟐 ⋅ 𝒊𝒊 + 𝒊𝒊𝟐𝟐 and note that the eigenvalue of an angular 
momentum 𝑳𝑳 satisfies 𝐿𝐿2|𝑙𝑙 >= 𝑙𝑙(𝑙𝑙 + 1)ℏ2|𝑙𝑙 >. Evaluate the energy of the two hyperfine states 
|𝐹𝐹 = 𝑠𝑠 + 𝑖𝑖 > and |𝐹𝐹 = 𝑠𝑠 − 𝑖𝑖 >.) 
 
 
 
 
 
 
 
 
 
 

 

 

https://steck.us/alkalidata/cesiumnumbers.1.6.pdf


2. Magnetic dipole transition  
In this problem we study the time evolution of a spin-1/2 atom in the presence of a static field in the 
z-direciton and an AC field in the radial direction 𝐵𝐵 = (𝐵𝐵1 cos𝜔𝜔𝑡𝑡 ,𝐵𝐵1 sin𝜔𝜔𝑡𝑡 ,𝐵𝐵0). 
(1) Show that the Hamiltonian 𝐻𝐻 = −𝝁𝝁 ⋅ 𝑩𝑩 can be written in the matrix form as 

𝐻𝐻 =
ℏ
2 �

𝜔𝜔0 Ω𝑒𝑒−𝑖𝑖𝜔𝜔𝜔𝜔

Ω𝑒𝑒𝑖𝑖𝜔𝜔𝜔𝜔 −𝜔𝜔0
�  

where 𝝁𝝁 = −𝑔𝑔
2
𝜇𝜇𝐵𝐵𝝈𝝈 is the magnetic moment, 𝑔𝑔 ≈ 2 is the electron g-factor,  𝜇𝜇𝐵𝐵 is the Bohr 

magneton and the angular momentum is given by the Pauli matrix 𝝈𝝈=(𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦,𝜎𝜎𝑧𝑧). Determine the 
values of the Larmor frequency 𝜔𝜔0 and Rabi frequency Ω in terms of the magnetic field, g and 𝜇𝜇𝐵𝐵. 

(2) Here we introduce the spin wavefunction as |𝜓𝜓 > = �
𝜓𝜓𝑒𝑒
𝜓𝜓𝑔𝑔
�  and the evolution of the 

wavefunction is given by the Schroedinger’s equation  𝑖𝑖ℏ𝜕𝜕𝑡𝑡|𝜓𝜓(𝑡𝑡) > = 𝐻𝐻|𝜓𝜓(𝑡𝑡) >. The general 
solution is |𝜓𝜓(𝑡𝑡) > ≡ 𝑈𝑈(𝑡𝑡)|𝜓𝜓(0) >, where the evolution operator is given by 
 

𝑈𝑈(𝑡𝑡) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ = 𝑀𝑀 �𝑒𝑒
𝑖𝑖λ+𝑡𝑡 0
0 𝑒𝑒𝑖𝑖𝜆𝜆−𝑡𝑡

�𝑀𝑀−1. 

 
Show that 𝜆𝜆± and 𝑀𝑀 are given by the eigenvalues and eigenvetors of the Hamiltonian 𝐻𝐻. Derive 
the explicite forms of 𝜆𝜆± and 𝑀𝑀. 
 
 

Hint:  𝜆𝜆± = ± Ω𝑅𝑅
2

, Ω𝑅𝑅 = √Δ2 + Ω2 is the generalized Rabi frequency and 𝑀𝑀 = 𝑅𝑅𝑅𝑅, where 𝑅𝑅 =

�𝑒𝑒
−𝑖𝑖𝜔𝜔𝑡𝑡2 0
0 𝑒𝑒

𝑖𝑖𝜔𝜔𝑡𝑡
2

� transforms the system to the rotating frame and  

𝑇𝑇 = 1
�2Ω𝑅𝑅

 �
�Ω𝑅𝑅 + Δ �Ω𝑅𝑅 − Δ

−Ω/�Ω𝑅𝑅 + Δ Ω/�Ω𝑅𝑅 − Δ
� transforms the system to the eigenstate basis. 

 

(3) Given the initial condition |𝜓𝜓(0) >= �0
1� , show that the probability to find the particle in the 

excited state is given by the Rabi’s formula: 

|𝜓𝜓𝑒𝑒(𝑡𝑡)|2 =
Ω2

Ω𝑅𝑅2
sin2

Ω𝑅𝑅𝑡𝑡
2

 . 

 
 
 
 
 
 
 
 



3. Radiative pulses in atom interferometry 
Evolution operator 𝑈𝑈(𝑡𝑡) is used extensively to easily compute the quantum state after a sequence 
of pulses. Here we will explore applications in metrology and quantum information processing. Use 
the result of 2 and compute the following 

(1) A 𝜃𝜃-pulse is defined by a near resonant radiation 𝜔𝜔 ≈ 𝜔𝜔0 with a pulse duration of 𝑡𝑡 = 𝜃𝜃
Ω

. The 

associated evolution operator is given by 𝑈𝑈𝜃𝜃 . Determine the matrix form of 𝑈𝑈𝜋𝜋/2 and 𝑈𝑈𝜋𝜋 in the 
basis of ground and excited states.  

(2) Determine the free evolution operator 𝑈𝑈(𝑡𝑡) when the radiation is turned off (𝐵𝐵1 = 0) for a 
duration of time t (𝐵𝐵0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  throughout the whole process).   

(3) With the above operators, we can compute Ramsey spectroscopy following the following steps.  

A: initialize atoms in the ground state |𝜓𝜓(0) >= �0
1� 

B: Apply a  π-2 pulse. The wavefunction becomes 𝑈𝑈𝜋𝜋/2|𝜓𝜓(0) > 
C: Allow system to freely evolve for time t. The wavefunction becomes 𝑈𝑈(𝑡𝑡)𝑈𝑈𝜋𝜋/2|𝜓𝜓(0) >. 
D: Apply a second π-2 pulse.  
What is the probability of the atoms in the excited state after the above steps.  


