Physics 238: Atomic Physics

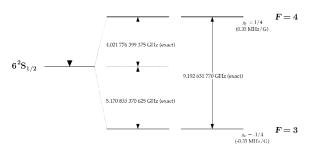
Fall Quarter 2021

Problem Set #1

Due: 12:20 pm, Tuesday, October 12. Please submit in class.

1. Structure of atomic ground state

The electronic ground state of cesium is labelled as $6^2S_{1/2}$, where "6" is the principal quantum number of the sole valence electron, ½ is the electron's spin s=1/2, and the super script 2 shows the spin degree of freedom of the electron.



The nuclear spin of a cesium atom is i=7/2, and this means the total angular momentum is F=s+i with angular quantum number F=3 and 4. The splitting between the two states $\Delta E=h\times 9192631770$ Hz, see figure, adopted from Cs D Line data, is the primary frequency standard. The hyperfine splitting comes from the spin-spin interactions between the electron and the nucleus:

$$H = A \mathbf{s} \cdot \mathbf{i}$$

Show that the splitting is given by $\Delta E \equiv E_4 - E_3 = \left(i + \frac{1}{2}\right) A \hbar^2$.

(Hint: You may expand $F^2=s^2+2s\cdot i+i^2$ and note that the eigenvalue of an angular momentum L satisfies $L^2|l>=l(l+1)\hbar^2|l>$. Evaluate the energy of the two hyperfine states |F=s+i> and |F=s-i>.)

2. Magnetic dipole transition

In this problem we study the time evolution of a spin-1/2 atom in the presence of a static field in the z-direction and an AC field in the radial direction $B = (B_1 \cos \omega t, B_1 \sin \omega t, B_0)$.

(1) Show that the Hamiltonian $H = -\mu \cdot B$ can be written in the matrix form as

$$H = \frac{\hbar}{2} \begin{pmatrix} \omega_0 & \Omega e^{-i\omega t} \\ \Omega e^{i\omega t} & -\omega_0 \end{pmatrix}$$

where $\mu=-\frac{g}{2}\mu_B\sigma$ is the magnetic moment, $g\approx 2$ is the electron g-factor, μ_B is the Bohr magneton and the angular momentum is given by the Pauli matrix $\sigma=(\sigma_x,\sigma_y,\sigma_z)$. Determine the values of the Larmor frequency ω_0 and Rabi frequency Ω in terms of the magnetic field, g and μ_B .

(2) Here we introduce the spin wavefunction as $|\psi>=\begin{pmatrix}\psi_e\\\psi_g\end{pmatrix}$ and the evolution of the wavefunction is given by the Schroedinger's equation $i\hbar\partial_t|\psi(t)>=H|\psi(t)>$. The general solution is $|\psi(t)>\equiv U(t)|\psi(0)>$, where the evolution operator is given by

$$U(t) = e^{-iHt/\hbar} = M \begin{bmatrix} e^{i\lambda_+ t} & 0 \\ 0 & e^{i\lambda_- t} \end{bmatrix} M^{-1}.$$

Show that λ_{\pm} and M are given by the eigenvalues and eigenvetors of the Hamiltonian H. Derive the explicite forms of λ_{+} and M.

Hint: $\lambda_{\pm}=\pm\frac{\Omega_R}{2}, \Omega_R=\sqrt{\Delta^2+\Omega^2}$ is the generalized Rabi frequency and M=RT, where $R=\begin{pmatrix} e^{-\frac{i\omega t}{2}} & 0 \\ 0 & e^{\frac{i\omega t}{2}} \end{pmatrix}$ transforms the system to the rotating frame and $T=\frac{1}{\sqrt{2\Omega_R}}\begin{pmatrix} \sqrt{\Omega_R+\Delta} & \sqrt{\Omega_R-\Delta} \\ -\Omega/\sqrt{\Omega_R+\Delta} & \Omega/\sqrt{\Omega_R-\Delta} \end{pmatrix}$ transforms the system to the eigenstate basis.

(3) Given the initial condition $|\psi(0)>=\binom{0}{1}$, show that the probability to find the particle in the excited state is given by the Rabi's formula:

$$|\psi_e(t)|^2 = \frac{\Omega^2}{\Omega_R^2} \sin^2 \frac{\Omega_R t}{2}.$$

3. Radiative pulses in atom interferometry

Evolution operator U(t) is used extensively to easily compute the quantum state after a sequence of pulses. Here we will explore applications in metrology and quantum information processing. Use the result of 2 and compute the following

- (1) A θ -pulse is defined by a near resonant radiation $\omega \approx \omega_0$ with a pulse duration of $t = \frac{\theta}{\Omega}$. The associated evolution operator is given by U_{θ} . Determine the matrix form of $U_{\pi/2}$ and U_{π} in the basis of ground and excited states.
- (2) Determine the free evolution operator U(t) when the radiation is turned off $(B_1 = 0)$ for a duration of time t $(B_0 = const.$ throughout the whole process).
- (3) With the above operators, we can compute Ramsey spectroscopy following the following steps. A: initialize atoms in the ground state $|\psi(0)>=\binom{0}{1}$
 - B: Apply a $\,\pi$ -2 pulse. The wavefunction becomes $U_{\pi/2}|\psi(0)>$
 - C: Allow system to freely evolve for time t. The wavefunction becomes $U(t)U_{\pi/2}|\psi(0)>$.
 - D: Apply a second π -2 pulse.

What is the probability of the atoms in the excited state after the above steps.