
 
Physics 238: Atomic Physics 

Fall Quarter 2021 
Problem Set #2 

Due: 12:20 pm, Thursday, October 19. Please submit in class.  
 

1. Zeeman shifts  
Here we continue our model in Problem 1 in 
Homework #1 to understand atomic structure. In the 
presence of magnetic field, the ground states of an 
alkali atom with one valence electron s=1/2 and 
nuclear spin i further split into magnetic level, which 

can be labeled as |𝐹𝐹,𝑚𝑚𝐹𝐹; 𝑠𝑠 = 1
2

, 𝑖𝑖 >, where 𝐹𝐹 = 𝑖𝑖 ±
𝑠𝑠 is the total angular momentum quantum number, 
and  𝑚𝑚𝐹𝐹 = −𝐹𝐹,−(𝐹𝐹 − 1) …𝐹𝐹 − 1,𝐹𝐹 is the magnetic 
quantum number. As an example, the figure shows 
the splitting of a ground state cesium atoms with s=1/2, i=7/2. 
 To model the Zeeman effect, we include the magnetic dipolar interaction as 

𝐻𝐻 = 𝐴𝐴 𝒔𝒔 ⋅ 𝒊𝒊 − 𝝁𝝁 ⋅ 𝑩𝑩, 
where the term 𝒔𝒔 ⋅ 𝒊𝒊  is diagonal in the basis of 𝐹𝐹 = 𝑖𝑖 ± 𝑠𝑠, and Zeeman splitting comes 
predominately from the magnetic moment of the valence electron 𝝁𝝁 ≈ 𝑔𝑔𝑔𝑔𝐵𝐵

ℏ
𝒔𝒔 interacting with the 

magnetic field B. Here 𝑔𝑔 ≈ 2 is the electron g-factor, 𝜇𝜇𝐵𝐵 is the Bohr magneton, 𝒔𝒔 = ℏ𝝈𝝈 is electron 
angular momentum, and 𝝈𝝈 is the Pauli matrix. As an example, 𝑠𝑠𝑧𝑧|𝑚𝑚𝑠𝑠 >= ℏ𝜎𝜎𝑧𝑧|𝑚𝑚𝑠𝑠 >= ℏ𝑚𝑚𝑠𝑠|𝑚𝑚𝑠𝑠 >  

and 𝑚𝑚𝑠𝑠 = ± 1
2
. 

Assuming a weak magnetic field along the quantization axis (z-axis), we may expand the Zeeman 

shifts of the sublevels |𝐹𝐹,𝑚𝑚𝐹𝐹; 𝑠𝑠 = 1
2

, 𝑖𝑖 > to leading order as  

 
   𝐸𝐸(𝐵𝐵) ≡< 𝐻𝐻 >= 𝐸𝐸𝐹𝐹 + 𝑔𝑔𝐹𝐹𝜇𝜇𝐵𝐵𝑚𝑚𝐹𝐹𝐵𝐵 + 𝑂𝑂(𝐵𝐵2). 

Show that effective g-factor 𝑔𝑔𝐹𝐹 = 1
𝑖𝑖+1/2

 and − 1
𝑖𝑖+1/2

 for F=i+s and i-s, respectively. This result yields 

an important physical picture that 𝑚𝑚𝐹𝐹
𝑖𝑖+1/2

 can be viewed as the projection of the election spin in the 

magnetic field direction, namely,  <𝝁𝝁 ⋅ 𝑩𝑩 >∝ 𝑔𝑔𝐹𝐹𝜇𝜇𝐵𝐵𝑚𝑚𝐹𝐹𝐵𝐵. Compare your result with the figure for 
i=7/2. 

 

 

 

 



2. Improved Ramsey interferometry 
Given the rotating wave approximation we may write the wavefunction in the rotating frame as 
 

𝑖𝑖𝜕𝜕𝑡𝑡𝜙𝜙(𝑡𝑡) =
1
2 �
Ωx𝜎𝜎𝑥𝑥 + Ωy𝜎𝜎𝑦𝑦 − Δ𝜎𝜎𝑧𝑧�𝜙𝜙(𝑡𝑡), 

where Ωx and Ωy are the Rabi frequency of the cosine and sine components of the driving field, Δ =
ω−ω0 is the frequency detuning of the laser ω relative to the atoms ω0.  

Consider the following improved pulse sequence:  

• Start with atoms in the ground state 𝜙𝜙(0) ≡ �
𝜙𝜙𝑒𝑒(0)
𝜙𝜙𝑔𝑔(0)� = �0

1�. 

• Apply the first π
2
−pulse with only the Ωx component 

• Free evolution for time 𝜏𝜏 
• Apply the second π

2
−pulse with only the Ωy component 

• Measure the population in the excited state 𝑃𝑃𝑒𝑒 ≡ |𝜙𝜙𝑒𝑒(𝜏𝜏)|2 
(1) Show that the excited population after the sequence is 𝑃𝑃𝑒𝑒 = 1

2
(1 − sinΔ𝜏𝜏). 

(Hint: you may use the results from Homework #1 Problem 2 or the Bloch vector. Both should 
give you the same answer, but the latter is a lot easier and intuitive.) 

(2) The result 𝑃𝑃𝑒𝑒 = 1
2

(1 − sinΔ𝜏𝜏) shows that when the laser frequency only slightly deviates from 
the atomic transition 𝜔𝜔0, the excited state population can sense the deviation with the highest 

sensitivity as 𝑑𝑑𝑃𝑃𝑒𝑒
𝑑𝑑Δ

≈ − τ
2
.  Explain this result using the Bloch vector picture.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Optical Bloch equation 

The simpliest way to incorporate spontaneous emission of atoms in the excited state is baesd on the 

density matrix, which in the rotating frame can be written as 𝜌𝜌 = |𝜙𝜙 >< 𝜙𝜙| = �
𝜌𝜌22 𝜌𝜌12
𝜌𝜌21 𝜌𝜌11�. Using 

𝜙𝜙 ≡ �
𝜙𝜙𝑒𝑒
𝜙𝜙𝑔𝑔
�, we get 𝜌𝜌22 = 𝑃𝑃𝑒𝑒 = |𝜙𝜙𝑒𝑒|2, 𝜌𝜌11 = �𝜙𝜙𝑔𝑔�

2
, and 𝜌𝜌12 = 𝜌𝜌21∗ = 𝜙𝜙𝑒𝑒∗𝜙𝜙𝑔𝑔. Particle conservation 

gives 𝜌𝜌11 + 𝜌𝜌22 = 1. 

(1) Use the Hamiltonian 𝑖𝑖𝜕𝜕𝑡𝑡𝜙𝜙(𝑡𝑡) = 1
2
�Ωx𝜎𝜎𝑥𝑥 + Ωy𝜎𝜎𝑦𝑦 − Δ𝜎𝜎𝑧𝑧�𝜙𝜙(𝑡𝑡) and prove the following equation 

of motion for the density matrix 

𝜌𝜌22′ (𝑡𝑡) = −𝜌𝜌12′ (𝑡𝑡) =
𝑖𝑖Ω
2

(𝜌𝜌21 − 𝜌𝜌12) − Γ𝜌𝜌22 

𝜌𝜌12′ (𝑡𝑡) = 𝜌𝜌21′∗ (𝑡𝑡) = −
𝑖𝑖Δ
2
𝜌𝜌12 +

𝑖𝑖Ω
2

(𝜌𝜌22 − 𝜌𝜌11)−
Γ
2
𝜌𝜌12 

Where the terms in RED are artifically introduced to capture the decay of excited state with a 
rate constant Γ. Find an argument why the decay constant for 𝜌𝜌12 is Γ/2. 

(2) Starting with an atom in the ground state 𝜙𝜙𝑔𝑔(0) = 1, plot the solution of 𝜌𝜌22(𝑡𝑡) based on the 

above equation with zero detuning Δ = 0 and laser intensity parameter 𝐼𝐼
𝐼𝐼𝑠𝑠

= 2Ω2

Γ2
= 2, where 𝐼𝐼𝑠𝑠 

is called the saturation intensity. 
(Remark: 𝐼𝐼𝑠𝑠 is a very useful parameter to characterize the strength of radiation by an atom. For 
instance, 𝐼𝐼𝑠𝑠 = 1.12 mW/cm2 for the first electronic excited state of Cs atom.) 
 

(3) Show that the excited population 𝜌𝜌22 in the above example approaches the following general 
result frequently used in quantum optics laboratory 
 

𝜌𝜌22 = 1
2

𝑝𝑝
1+𝑝𝑝

 , 

and the saturation parameter characterize how much an atom is saturated by light, defined as  

𝑝𝑝 =
𝐼𝐼/𝐼𝐼𝑠𝑠

1 + 𝐼𝐼/𝐼𝐼𝑠𝑠 + 4Δ2/Γ2
. 

(Hint: You do not have to derive the general formula, just show that the evolution in (2) does 
approach the value predicted by the formula.) 

 


