
 
Physics 238: Atomic Physics 

Fall Quarter 2021 
Problem Set #6 

Due: 12:00 pm, Thursday, December 2. Please submit in class.  
 

1. Low energy excitations of a Bose-Einstein condensate  
A Bose-Einstein condensate (BEC) can be described by the Gross-Pitaevskii equation under 
mean-field approximation, 

𝑖𝑖ℏ𝜕𝜕𝑡𝑡𝜓𝜓(𝑥𝑥, 𝑡𝑡) = �
𝑝𝑝2

2𝑚𝑚
+ 𝑉𝑉(𝑥𝑥) + 𝑔𝑔|𝜓𝜓(𝑥𝑥, 𝑡𝑡)|2�𝜓𝜓(𝑥𝑥, 𝑡𝑡) 

For a time-independent wavefunction with chemical potential 𝜇𝜇 we have  

�
𝑝𝑝2

2𝑚𝑚
+ 𝑉𝑉(𝑥𝑥) + 𝑔𝑔|𝜓𝜓(𝑥𝑥, 𝑡𝑡)|2�𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝜇𝜇𝜇𝜇(𝑥𝑥, 𝑡𝑡) 

 
Here 𝑝𝑝 = −𝑖𝑖ℏ𝜕𝜕𝑥𝑥 and we consider the condensate is confined in a large box 𝑉𝑉(𝑥𝑥) = 0 with a 
uniform density 𝑛𝑛. The ground state wavefunction is thus 𝜓𝜓0(𝑥𝑥, 𝑡𝑡) = 𝑛𝑛

1
2𝑒𝑒−𝑖𝑖𝜇𝜇0𝑡𝑡/ℏ, and the 

chemical potential is 𝜇𝜇0 = 𝑔𝑔𝑔𝑔,  
 

A. Here we consider low energy excited states of the system, assuming the BEC is weakly 
perturbed. The wavefunction can be expanded as 𝜓𝜓 = 𝜓𝜓0 + 𝜖𝜖𝜓𝜓1, where 𝜖𝜖 ≪ 1. Up to 
first order in 𝜖𝜖, show that 𝜓𝜓1 satisfies  

𝑖𝑖ℏ𝜕𝜕𝑡𝑡𝜓𝜓1 = �𝑝𝑝
2

2𝑚𝑚
+ 2𝑔𝑔𝑔𝑔�𝜓𝜓1 + 𝑔𝑔𝜓𝜓02𝜓𝜓1∗, 

which represents 2 coupled linear differential equations for 𝜓𝜓1 and 𝜓𝜓1∗. 
B. Apply the ansatz 𝜓𝜓1 = 𝑒𝑒−𝑖𝑖𝜇𝜇0𝑡𝑡/ℏ[𝑢𝑢𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔) + 𝑣𝑣𝑒𝑒−𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔)], where 𝑢𝑢 and 𝑣𝑣 are constant 

amplitudes of the plane waves, and show that they satisfy 
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C. For solutions with non-zero amplitudes 𝜇𝜇, 𝑣𝑣 ≠ 0 show that the frequency and wave 

number are linked by the following dispersion 𝜔𝜔(𝑘𝑘) 
 

𝜔𝜔 = 1
ℏ
�ℏ2𝑘𝑘2

2𝑚𝑚
(ℏ

2𝑘𝑘2

2𝑚𝑚
+ 2𝜇𝜇0)  

 Thus the sound speed for long wavelength excitation 𝑘𝑘 → 0, is 𝑣𝑣 = lim𝑘𝑘→0
𝜔𝜔
𝑘𝑘

= �𝜇𝜇0
𝑚𝑚

. 

 
 
 
 



 
2. Low energy excitations of a Bose-Einstein condensate (second quantization) 
In the second quantization form, we can write the energy of a bosonic system as 

𝐻𝐻 = �𝜖𝜖𝑘𝑘𝑎𝑎𝑘𝑘+𝑎𝑎𝑘𝑘
𝑘𝑘

+
𝑔𝑔

2𝑉𝑉
� 𝑎𝑎𝑘𝑘1+ 𝑎𝑎𝑘𝑘2+ 𝑎𝑎𝑘𝑘3𝑎𝑎𝑘𝑘4

𝑘𝑘1+𝑘𝑘2=𝑘𝑘3+𝑘𝑘4

, 

where 𝑎𝑎𝑘𝑘+ and 𝑎𝑎𝑘𝑘 creates and annihilates a boson with momentum 𝑘𝑘 and they satisfy the 

bosonic commutation relation [𝑎𝑎𝑘𝑘, 𝑎𝑎𝑘𝑘′+ ] = 𝛿𝛿𝑘𝑘𝑘𝑘′  𝜖𝜖𝑘𝑘 = ℏ2𝑘𝑘2

2𝑚𝑚
 is the energy of a bare atom with 

momentum 𝑘𝑘 and 𝑔𝑔
𝑉𝑉

 is the interaction energy of a pair of atoms.  
The wavefunction of the system can be described as |𝜓𝜓 >= |𝑛𝑛1,𝑛𝑛2 … >, where 𝑛𝑛𝑖𝑖 is the 
population in the 𝑖𝑖 − th lowest single atom eigenstate.  

A. To gain some insight about the Hamiltonian, we assume there are only two momentum 
states 𝑘𝑘 = ±1 in the system  and there are only  exactly 2 atoms that can occupy these 
states. The wavefunction can be a linear superposition of |𝑛𝑛−1,𝑛𝑛1 >= |2,0 >, |1,1 > 
and|0,2>, where 𝑛𝑛±1 is the population in the 𝑘𝑘 = ±1 state. Express the Hamiltonian as 
a matrix in the basis of the 3 states.  

B. Now we consider the system where 𝑁𝑁0 atoms are in the lowest momentum state |𝜓𝜓0 >=
|𝑁𝑁0, 0,0, … >. Show that the energy of the system is < 𝐻𝐻 >= 𝑔𝑔

2𝑉𝑉
𝑁𝑁0(𝑁𝑁0 − 1) ≡ 𝐸𝐸0.  

C. Now we consider 𝑁𝑁0>>1 atoms in the zero momentum 𝑘𝑘 = 0 state and few atoms 𝑁𝑁𝑖𝑖 ≪
𝑁𝑁0  in the finite momentum states. Total particle number is 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖𝑖𝑖 . Approximating 
𝑁𝑁0 ± 1 ≈ 𝑁𝑁0, 𝑠𝑠how that we can approximate the system energy as 

𝐻𝐻 = 𝐸𝐸0 + �𝜖𝜖𝑘𝑘𝑎𝑎𝑘𝑘+𝑎𝑎𝑘𝑘
𝑘𝑘≠0

+
𝑔𝑔𝑁𝑁0
2𝑉𝑉

�(2𝑎𝑎𝑘𝑘+𝑎𝑎𝑘𝑘 + 𝑎𝑎𝑘𝑘+𝑎𝑎−𝑘𝑘+
𝑘𝑘≠0

+ 𝑎𝑎𝑘𝑘 𝑎𝑎−𝑘𝑘) 

Remark: This result can be compared to the perturbation in 1 A.  
D. The Hamiltonian mixes states with 𝑘𝑘 and −𝑘𝑘. Show that the following Bogoliubov 

transformation:  
𝑎𝑎𝑘𝑘 = 𝑢𝑢𝑘𝑘𝛼𝛼𝑘𝑘 + 𝑣𝑣𝑘𝑘𝛼𝛼−𝑘𝑘+  
𝑎𝑎𝑘𝑘+ = 𝑢𝑢𝑘𝑘𝛼𝛼𝑘𝑘+ + 𝑣𝑣𝑘𝑘𝛼𝛼−𝑘𝑘 

Show that with suitable choice of the coefficients 𝑢𝑢𝑘𝑘 and 𝑣𝑣𝑘𝑘 can diagonalize the 
Hamiltonian as  

 
𝐻𝐻 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. +∑ 𝜀𝜀𝑘𝑘𝛼𝛼𝑘𝑘+𝛼𝛼𝑘𝑘𝑘𝑘≠0 , 

 
where 𝛼𝛼𝑘𝑘+ and 𝛼𝛼𝑘𝑘 creates and annihilates a bosonic quasi-particle with momentum 𝑘𝑘. 
Since the Hamiltonian is diagonal in their population 𝛼𝛼𝑘𝑘+𝛼𝛼𝑘𝑘. These quasi-particles are 
effective long-lived free particles in the system, called phonons that carry sound waves 
and do not interact with each other.  
Remark: Compare your result to 1B and 1C. 


