Physics 238: Atomic Physics

Fall Quarter 2021
Problem Set #6
Due: 12:00 pm, Thursday, December 2. Please submit in class.

1. Low energy excitations of a Bose-Einstein condensate
A Bose-Einstein condensate (BEC) can be described by the Gross-Pitaevskii equation under

mean-field approximation,
2

ihd P (x, t) = (;—m +V(x) +gl(x, t)|2> b(x,t)

For a time-independent wavefunction with chemical potential 4 we have

p? _
<% +V(x) + gly(x, t)|2> Y(x,t) = wh(x, t)

Here p = —ihd, and we consider the condensate is confined in a large box V(x) = 0 with a

1.
uniform density n. The ground state wavefunction is thus Y, (x, t) = nze~*ot/" and the
chemical potential is yuy = gn,

A. Here we consider low energy excited states of the system, assuming the BEC is weakly
perturbed. The wavefunction can be expanded as Y = Y, + €y, where € < 1. Up to
first order in €, show that 1, satisfies

2
ihogp, = (Z-+ 2gn) vy + giys,
which represents 2 coupled linear differential equations for i, and ;.

B. Apply the ansatz i, = e~iHot/A[yeilkx=wt) 4 4,0=ilkx=0D)] \where u and v are constant
amplitudes of the plane waves, and show that they satisfy
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C. For solutions with non-zero amplitudes u, v # 0 show that the frequency and wave
number are linked by the following dispersion w (k)
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Thus the sound speed for long wavelength excitation k — 0, is v = limk_)o% = %



2. Low energy excitations of a Bose-Einstein condensate (second quantization)
In the second quantization form, we can write the energy of a bosonic system as

— + 9 + +
H = Z €xAy Ay + SV Z Qg1 Qg2 A3 Akcas
k k1+k2=k3+k4
where a; and ay, creates and annihilates a boson with momentum k and they satisfy the
. . . n2k? . .
bosonic commutation relation [ay, aj,] = 6xxs €x = o 1S the energy of a bare atom with

momentum k and % is the interaction energy of a pair of atoms.

The wavefunction of the system can be described as |y >= |n;, n, ... >, where n; is the
population in the i — th lowest single atom eigenstate.

A. To gain some insight about the Hamiltonian, we assume there are only two momentum
states k = +1 in the system and there are only exactly 2 atoms that can occupy these
states. The wavefunction can be a linear superposition of [n_;,n; >=12,0 >, |1,1 >
and|0,2>, where n is the population in the k = +1 state. Express the Hamiltonian as
a matrix in the basis of the 3 states.

B. Now we consider the system where N, atoms are in the lowest momentum state |}, >=
[Ny, 0,0, ... >. Show that the energy of the systemis < H >= 2%NO(N0 —1) = E,.

C. Now we consider Ny>>1 atoms in the zero momentum k = 0 state and few atoms N; <
N, in the finite momentum states. Total particle number is N = );; N;. Approximating
Ny, £ 1 = N, show that we can approximate the system energy as

N,
H=E,+ Z €xayay + %Z(Za;ak +afar, +a,a_y)
k#0 k#0
Remark: This result can be compared to the perturbation in 1 A.

D. The Hamiltonian mixes states with k and —k. Show that the following Bogoliubov
transformation:
ay = Uup@y + veat,
af = uap +vea_y
Show that with suitable choice of the coefficients u; and v, can diagonalize the
Hamiltonian as

_ +
H = const. + Y20 Ex A Ak,

where af and @, creates and annihilates a bosonic quasi-particle with momentum k.
Since the Hamiltonian is diagonal in their population a} a. These quasi-particles are
effective long-lived free particles in the system, called phonons that carry sound waves
and do not interact with each other.

Remark: Compare your result to 1B and 1C.



