

Sound propagation

Sound waves

$$i\hbar\partial_t\psi = \left(\frac{\hbar^2k^2}{2m} + g|\psi|^2\right)\psi$$

Ground state
$$i\hbar\partial_t\psi_0=\left(\frac{\hbar^2k^2}{2m}+g|\psi_0|^2\right)\psi_0=\mu_0\psi_0$$

Perturbation $\psi=\psi_0+\epsilon\psi_1$ with $\epsilon<<1$ linearize the equation

Substitution gives
$$-i\hbar\partial_t\psi_1=\left(\frac{\hbar^2k^2}{2m}+2g|\psi_0|^2\right)\psi_1+g\psi_0^2\psi_1^*$$

Ansatz:
$$\psi_1 = ue^{i(kx - \omega t)} + ve^{-i(kx - \omega t)}$$

We get
$$\left(\frac{\hbar^2 k^2}{2m} + 2gn_0 - \hbar\omega\right)u - gn_0v = 0$$

$$\left(\frac{\hbar^2 k^2}{2m} + 2gn_0 + \hbar\omega\right)v - gn_0u = 0$$

Solution exists when
$$\begin{vmatrix} \frac{\hbar^2 k^2}{2m} + 2gn_0 - \hbar\omega & -gn_0 \\ -gn_0 & \frac{\hbar^2 k^2}{2m} + 2gn_0 - \hbar\omega \end{vmatrix} = 0$$

Bogoliubov dispersion
$$E = \sqrt{\frac{p^2}{2m}} \left(\frac{p^2}{2m} + g n_0 \right)$$

Superfluidity

Bose fireworks

Collective emission of matter-wave jets from driven Bose-Einstein condensates, Nature 551 (2017)