
 
Physics 143b: Honors Waves, Optics, and Thermo 

Spring Quarter 2021 
Problem Set #4 

Due: 11:59 pm, Thursday, April 29. Please submit to Canvas.  
 
 

1. Dirac’s Delta function δ(x) (10 points each)  
We may define the Dirac’s Delta function based on the following procedure 

• 𝑓𝑓(𝑥𝑥) is any function that has an integrated area of ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1. 
• Dirac’s delta function is defined as 𝛿𝛿(𝑥𝑥) = lim

Δ→0
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(a) A common choice of f by physicists is the Gaussian function 𝑓𝑓(𝑥𝑥) = 1
√𝜋𝜋
𝑒𝑒−𝑥𝑥2. Apply the 

above definition and prove that 𝛿𝛿(𝑥𝑥) satisfies the following properties  
1. 𝛿𝛿(𝑥𝑥 ≠ 0) = 0 
2. 𝛿𝛿(𝑥𝑥 = 0) diverges 
3. ∫ 𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 
4. 𝑓𝑓(𝑥𝑥) = ∫ 𝑓𝑓(𝑢𝑢)𝛿𝛿(𝑥𝑥 − 𝑢𝑢)𝑑𝑑𝑑𝑑. 

 
(b) Calculate the following 

1. ∫ 𝑔𝑔(𝑥𝑥)𝛿𝛿(𝑎𝑎𝑎𝑎 + 𝑏𝑏)𝑑𝑑𝑑𝑑 
2. ∫ 𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
 𝑑𝑑𝑑𝑑,     𝑔𝑔(±∞) = 0 

 
2. Kicked oscillator and Green’s function (5 points each) 

Let’s consider a simple harmonic oscillator described by 𝑥𝑥′′ + 𝜔𝜔0
2𝑥𝑥 = 𝑓𝑓(𝑡𝑡). The oscillator is at 

rest in the beginning 𝑥𝑥(𝑡𝑡 = −∞) = 𝑥𝑥′(𝑡𝑡 = −∞) = 0. At 𝑡𝑡 = 𝑡𝑡0, you kick the oscillator by an 
impulse. Immediately after the kick we have 𝑥𝑥(𝑡𝑡0+) = 0 and 𝑥𝑥′(𝑡𝑡0+) = 𝑣𝑣0.  
(a) Show that the impulse can be written as 𝑓𝑓(𝑡𝑡) = 𝑣𝑣0𝛿𝛿(𝑡𝑡 − 𝑡𝑡0) and the solution is  

 

𝑥𝑥(𝑡𝑡) = �
0, 𝑡𝑡 < 𝑡𝑡0

𝑣𝑣0
𝜔𝜔0

sinω0(𝑡𝑡 − 𝑡𝑡0), 𝑡𝑡 ≥ 𝑡𝑡0
 

 
This is the so-called Green’s function of the differential equation.  

(b) Now we consider a general driving force 𝐹𝐹(𝑡𝑡), which, according to question 1 (a) 4., can be 
pictured as a summation of many kicks or delta functions, namely,  
 

𝐹𝐹(𝑡𝑡) = ∫ 𝐹𝐹(𝜏𝜏)𝛿𝛿(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑. 
 
From the superposition principle, the solution is also the summation of the responses to 
individual kicks. Show that the general solution of the oscillator, initially at rest and then 
driven by an arbitrary force 𝐹𝐹(𝑡𝑡), is given by  

𝑥𝑥(𝑡𝑡) = �
𝐹𝐹(𝜏𝜏)
𝜔𝜔0

𝑡𝑡

−∞
sin𝜔𝜔0(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑. 

 
 



3. Energy and energy flow in a wave (5 points each) 
Here we will investigate how waves transport energy in a medium (string, air, water…). Assume 
the wave (transverse or longitudinal) satisfies the following wave equation 
 

𝜌𝜌𝜕𝜕𝑡𝑡2𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇𝜕𝜕𝑥𝑥2𝜓𝜓(𝑥𝑥, 𝑡𝑡), 
 
where 𝜌𝜌 is the linear density of the medium and 𝑇𝑇 is the tension in the medium. A traveling 
wave is given by 𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴 cos𝑘𝑘(𝑥𝑥 − 𝑣𝑣𝑣𝑣), where 𝑣𝑣 = �𝑇𝑇/𝜌𝜌. 
 
(a) Consider a small section between 𝑥𝑥 and 𝑥𝑥 + Δ𝑥𝑥, show that the energy densities are given by  

kinetic energy density:  𝜌𝜌𝐾𝐾 = 1
2
𝜌𝜌(𝜕𝜕𝑡𝑡𝜓𝜓)2  

potential energy density:  𝜌𝜌𝑈𝑈 = 1
2
𝑇𝑇(𝜕𝜕𝑥𝑥𝜓𝜓)2.  

(Hint: Kinetic energy is given by 1
2
𝑚𝑚𝑉𝑉2 of the section. As for potential energy, think about 

how potential energy 𝑘𝑘𝑥𝑥
2

2
 is derived by stretching a spring. Here how much does the tension 

𝑇𝑇 extend the length of the section?) 
(b) Given the traveling wave 𝜓𝜓(𝑥𝑥, 𝑡𝑡), calculate the total energy densities 𝜌𝜌𝐾𝐾 and 𝜌𝜌𝑈𝑈. Show that 

the energy is propagating. At some point the total energy of the section becomes zero 
𝜌𝜌𝐸𝐸 = 𝜌𝜌𝐾𝐾 + 𝜌𝜌𝑈𝑈=0. Where does the energy go? 

(c) Show the energy transfer per unit time is given by the 
energy flux:   𝑗𝑗𝐸𝐸(𝑥𝑥, 𝑡𝑡) = −𝑇𝑇𝜕𝜕𝑥𝑥𝜓𝜓𝜕𝜕𝑡𝑡𝜓𝜓.  

Determine the energy flux for the traveling wave. 
(Hint: The energy that flows to the section comes from the work done by its neighboring 
sections through the tension force from 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑦𝑦 ⋅ 𝑑𝑑𝑑𝑑, and use 𝜕𝜕𝑥𝑥𝜓𝜓 = 𝑇𝑇𝑦𝑦

𝑇𝑇𝑥𝑥
≈ 𝑇𝑇𝑦𝑦

𝑇𝑇
.) 

(d) Show that for a traveling wave given by 𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴 cos𝑘𝑘(𝑥𝑥 ± 𝑣𝑣𝑣𝑣), we have  
 

𝑗𝑗𝐸𝐸 = ±𝑣𝑣𝜌𝜌𝐸𝐸. 
 

Thus energy flux is the product of the energy density by the energy propagation velocity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Transmission and reflection of waves (10 points) 
Consider a wave moving toward an interface at 𝑥𝑥 = 0, described by the equation  
 

𝜕𝜕𝑡𝑡2𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥)2𝜕𝜕𝑥𝑥2𝜓𝜓(𝑥𝑥, 𝑡𝑡), 
 

where the wave propagation velocity changes across the interface  

𝑣𝑣 = �𝑣𝑣𝐿𝐿 , 𝑥𝑥 < 0
𝑣𝑣𝑅𝑅 , 𝑥𝑥 > 0. 

Now consider an incident wave coming from the right side toward the interface 
  

𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥 > 0, 𝑡𝑡) = 𝐴𝐴 cos𝑘𝑘(𝑥𝑥 + 𝑣𝑣𝑅𝑅𝑡𝑡). 
 

We may solve the equation with the following ansatz 
 

𝜓𝜓(𝑥𝑥) = �𝐴𝐴𝑒𝑒
𝑖𝑖𝑖𝑖(𝑥𝑥+𝑣𝑣𝑅𝑅𝑡𝑡) + 𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖(−𝑥𝑥+𝑣𝑣𝑅𝑅𝑡𝑡), 𝑥𝑥 > 0

𝐶𝐶𝑒𝑒𝑖𝑖𝑘𝑘∗(𝑥𝑥+𝑣𝑣𝐿𝐿𝑡𝑡), 𝑥𝑥 < 0.
 

 
where 𝐵𝐵 and 𝐶𝐶 are the reflection and transmission amplitudes. At the end of the day, the 
solution is the real part of the ansatz.  
(a) Determine 𝐵𝐵 and 𝐶𝐶 in terms of 𝐴𝐴 and 𝑘𝑘∗ using the boundary conditions. 
(b) Determine the total energy flux of the incident, reflected and transmitted waves 𝑗𝑗𝐴𝐴, 𝑗𝑗𝐵𝐵 and 

𝑗𝑗𝑐𝑐 and show that we have 𝑗𝑗𝐴𝐴 = 𝑗𝑗𝐵𝐵 + 𝑗𝑗𝐶𝐶 at the interface, promised by energy conservation.  
(Hint: you may assume the tension of the medium is 𝑇𝑇.) 

(c) By flipping the time arrow 𝑡𝑡 → −𝑡𝑡, the following should also be a solution 
 

𝜓𝜓(𝑥𝑥) = �𝐴𝐴𝑒𝑒
𝑖𝑖𝑖𝑖(𝑥𝑥−𝑣𝑣𝑅𝑅𝑡𝑡) + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖(𝑥𝑥+𝑣𝑣𝑅𝑅𝑡𝑡), 𝑥𝑥 > 0

𝐶𝐶𝑒𝑒𝑖𝑖𝑘𝑘∗(𝑥𝑥−𝑣𝑣𝐿𝐿𝑡𝑡), 𝑥𝑥 < 0.
 

 
However, here we have two waves with amplitudes B and C propagating toward the 
interface from both directions, but only one wave comes out?? Is such solution unphysical?  
Show that if you treat B and C as 2 independent incident waves, transmission of the B wave 
exactly cancels the reflection of the C wave, and thus no wave is propagating on left side 
𝑥𝑥 < 0 toward 𝑥𝑥 = −∞ . 
 

5. Decibel scale of the strength of sound (5 points each) 
Alexander Bell, the inventor of phone, introduced the unit of bel, which became decibel in 
acoustics: Zero decibel (0 dB) is defined as strength of the sound wave that produces 
±20 𝜇𝜇𝜇𝜇𝜇𝜇 in the air pressure (𝜇𝜇𝜇𝜇𝜇𝜇 = 10−6𝑃𝑃𝑃𝑃), which is also the typical limit of human hearing. 
Decibel is calculated in log scale such that every +20 dB corresponds to 10 times higher 
pressure. For instance, 20dB corresponds to 200 𝜇𝜇𝜇𝜇𝜇𝜇 and 40dB corresponds to 2 𝑚𝑚𝑚𝑚𝑚𝑚. Human 
heating is damaged above 100dB, corresponding to 2 Pa. 

 
(a) What is the assumed limit of human hearing? Calculate the intensity of a 1D acoustic wave 

at 0 dB. 
(Hint: Intensity is energy delivered per area per time in the unit of Watt/m2.) 

(b) Show that sound cannot be louder than 200dB.  
(c) How much is the maximum displacement 𝜓𝜓(𝑥𝑥) of air molecules away from equilibrium in 

the presence of acoustic waves at 0dB and 100dB at frequency = 100 Hz? 



 
Material Density (kg/m^3) Compressibility (1/GPa) 
Air 1.22 7200 
Water 1000 0.5 
Copper 8960 0.0073 

(GPa = 109 Pa.)             
 

 


