HW6 solution Chang Chin

$$
\begin{aligned}
& \text { la. } T \propto \sqrt{x^{2}+a^{2}}+\sqrt{(d-x)^{2}+b^{2}}\left(n_{2} / n_{1}\right) \\
& \partial x T=0 \Rightarrow \frac{x}{\sqrt{x^{2}+a^{2}}}-\frac{d-x}{\sqrt{(d-x)^{2}+b^{2}}} \frac{n_{2}}{n_{1}}=0 \Rightarrow n_{1} \sin \alpha=n_{2} \sin \beta
\end{aligned}
$$

b. Light would not know all possible paths to follow one with the shortest path It does take any path with transverse time at local minimum.

$$
\begin{aligned}
& \text { aa. } \nabla \times(\nabla \times E)=-\partial_{+} \nabla \times B=-\mu \epsilon \partial_{+}^{2} E-\mu \sigma \partial_{t} E=\nabla(\nabla \cdot E)-\nabla^{2} E \\
& \Rightarrow \mu \epsilon \partial_{+}^{2} E+\mu \sigma \partial_{+} E=\nabla^{2} E-\frac{1}{\epsilon} \nabla \rho \\
& \nabla \times(\nabla \times B)=\mu \in \partial_{+} \nabla \times E+\mu \nabla \times j=-\mu \in \partial_{+}^{2} B+\mu \sigma \nabla \times E=\nabla(\nabla \cdot B)-\nabla^{2} B \\
& \Rightarrow \mu \epsilon \partial_{+}^{2} B+\mu \sigma \partial_{+} B=\nabla^{2} B \\
& \text { b. } \partial_{+}^{2} E+\frac{\sigma}{\epsilon} \partial_{+} E=\frac{1}{\mu \epsilon} \nabla^{2} E \text {. Ansate } E=e^{i(k z-\omega t)} \Rightarrow k^{2}=\mu \in \omega^{2}+i \omega \mu \sigma \\
& \text { Assume } k=k+i / z_{0} \Rightarrow k^{2}=k^{2}-z_{0}^{-2}+2 i k / z_{0} \\
& \begin{array}{l}
\Rightarrow k / z_{0}=\omega \mu \sigma / 2, k^{2}-z_{0}^{-2}=\omega^{2} \mu \epsilon \\
\Rightarrow z_{0}=2 k / \omega \mu \sigma \Rightarrow k^{4}-\omega^{2} \mu \in k^{2}-\omega^{2} \sigma^{2} \mu^{2} / 4=0
\end{array} \\
& \Rightarrow k^{2}=\frac{1}{2}\left(\omega^{2} \mu \in \pm \sqrt{\omega^{4} \mu^{2} \epsilon^{2}+\omega^{2} \sigma^{2} \mu^{2}}\right) \text { choose neal wot. } \\
& \Rightarrow v_{p}=\frac{\omega}{k}=\frac{1}{\sqrt{\mu \epsilon}} \frac{1}{2}\left(1+\sqrt{1+\sigma^{2} / \omega^{2} \epsilon^{2}}\right)^{-1 / 2} \\
& z_{0}=d / v_{p} \mu \sigma .
\end{aligned}
$$

c. $\sigma \gg n / \epsilon$. Approximate the above result:

$$
\begin{aligned}
& v_{p}=\frac{1}{\sqrt{\mu \epsilon}} \sqrt{\frac{2 \omega \epsilon}{\sigma}} \Rightarrow \omega=k \frac{1}{\sqrt{\mu \epsilon}} \sqrt{\frac{2 \omega \epsilon}{\sigma}}=k \sqrt{\frac{2 \omega}{\mu \sigma}} \\
& \Rightarrow \omega=k^{2} 2 / \mu \sigma, d \omega / d k=2 \sqrt{\frac{2 \omega}{\mu \sigma}}=2 v_{p} \\
& v_{p} \approx c \sqrt{\frac{2 \omega \epsilon}{\sigma}}=0.07 c \quad z_{0}=2 \times 10^{-9}=2 \mathrm{~nm}
\end{aligned}
$$

3. A and polarizer would net allow Z_{x} to transmit $\Rightarrow N_{0} \operatorname{light}$ goes though. b After Is one $\Rightarrow \vec{E}=E_{x}(1,0)$

After and one $\Rightarrow \vec{E}=E_{x} \cos \theta(\cos \theta, \sin \theta)$
After 3 rd one $\Rightarrow \vec{E}=E_{x} \cos \theta(0, \sin \theta)=Z_{x}(0, \sin \theta \cos \theta)$
C. Above shows that for $E_{\text {in }}=\left(E_{x}, 0\right)$, $Z_{\text {ont }}=Z_{x} \cos \theta(\cos \theta, \sin \theta)$ If incident beam is $Z_{\text {in }}=\left(0, Z_{y}\right)$, similar calculation gives

$$
Z_{\text {ont }}=Z_{y} \sin \theta(\cos \theta, \sin \theta)
$$

Thus from superposition principle. $Z_{\text {in }}=\left(Z_{x}, Z_{y}\right)$ gives $Z_{\text {ont }}=$

$$
\binom{z_{x} \cos ^{2} \theta+z_{y} \sin \theta \cos \theta}{z_{x} \cos \theta \sin \theta+z_{y} \sin ^{2} \theta}=\left(\begin{array}{ll}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right)\binom{z_{x}}{z_{y}}
$$

