
Physics 143b: Honors Waves, Optics, and Thermo 
Spring Quarter 2021 

Problem Set #8 
Due: 11:59 pm, Thursday, May 27. Please submit to Canvas.  

        
 

1. Ideal gas (10 points each) 
The laws we learned about the ideal gas are 𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁 and internal energy of the gas 𝑈𝑈 =
𝛾𝛾𝑁𝑁𝑁𝑁𝑁𝑁, where 𝛾𝛾 = 3/2 for atomic gas and ≈ 5/2  for molecular gas. We may investigate other 
properties about the ideal gas. 
a) Heat capacity: 

Given the isochoric specific heat 𝑐𝑐𝑉𝑉 = 1
𝑀𝑀
𝜕𝜕𝑇𝑇𝑄𝑄|𝑉𝑉  we derived in Lecture 15-1, show that we 

can write the internal energy of the gas as 
 

 𝑈𝑈 = 𝑐𝑐𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁, 
where 𝑁𝑁 is the atomic/molecular mass.  

 
b) Compressibility: 

In the derivation of sound speed few weeks ago, we introduce the compressibility as the 
fractional reduction of the volume per unit pressure applied to the system: 
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We are now in good position to derive it. Show that the isothermal and isentropic 
compressibility of an ideal gas are 𝛽𝛽𝑇𝑇 = − 1
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Here isothermal means the temperature is kept constant, while isentropic means the 
process is adiabatic and reversible. Which 𝛽𝛽 should we use to estimate the speed of sound 
𝑣𝑣 = 1/�𝑛𝑛𝛽𝛽? It turns out isentropic compressibility 𝛽𝛽𝑆𝑆 gives a better estimation. Give your 
argument why it is more reasonable to use  𝛽𝛽𝑆𝑆 than 𝛽𝛽𝑇𝑇? 
 
(Hint: when sound wave shakes the molecules, will there be heat flowing between 
molecules? If yes, temperature could be a constant, if not, the process is adiabatic.) 
 

c) Thermal expansion:  
Thermal expansion determines the fractional change of the system when the temperature 
increases by 1 unit. There are again two possible processes: isobaric thermal expansion 
coefficient 𝛼𝛼𝑉𝑉 = 1
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 and isochoric coefficient 𝛼𝛼𝑝𝑝 = 1
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. Show that both lead to the 

same result as 𝛼𝛼𝑉𝑉 = 𝛼𝛼𝜕𝜕 = 1
𝑇𝑇

.  
How much does the mean molecular distance in an ideal gas increases fractionally when 
temperature increases from 300K to 301K? 
 
 

 



2. From ideal gas law to entropy (10 points each) 
Consider a system with energy 𝑈𝑈 can exchange energy with the environment in two ways Δ𝑈𝑈 =
Δ𝑄𝑄 − 𝑃𝑃Δ𝑃𝑃 including heat exchange Δ𝑄𝑄 = 𝑁𝑁Δ𝑆𝑆 and mechanical work exchange −𝑃𝑃Δ𝑃𝑃.   
a) An adiabatic process is the process that forbids heat exchange Δ𝑄𝑄 = 0. Assuming the 

system is described by the ideal gas law 𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑈𝑈 = 𝛾𝛾𝑁𝑁𝑁𝑁𝑁𝑁, show that an adiabatic 
process is described by 𝑃𝑃𝑃𝑃(𝛾𝛾+1)/𝛾𝛾 = 𝐶𝐶 and argue that the constant 𝐶𝐶 is related to the 
entropy 𝑆𝑆.  
 

b) To understand the relationship between adiabatic process and entropy, we first try to 
determine entropy of an ideal gas. Use 𝑑𝑑𝑈𝑈 = 𝑁𝑁𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑃𝑃 and show that the entropy 
difference between the system in state 1 with pressure 𝑃𝑃1, volume 𝑃𝑃1 and in state 2 with 
pressure 𝑃𝑃2, volume 𝑃𝑃2 is given by  
 

𝑆𝑆2 − 𝑆𝑆1 = 𝑐𝑐𝑣𝑣𝑁𝑁𝑁𝑁 ln
𝑃𝑃2𝑃𝑃2

(𝛾𝛾+1)/𝛾𝛾
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Hint: Recast the equation as a differential equation 𝑑𝑑𝑆𝑆 = 𝑑𝑑𝑑𝑑
𝑇𝑇
− 𝜕𝜕𝑑𝑑𝑉𝑉

𝑇𝑇
. Then use the ideal gas 

law to replace 𝑈𝑈 in terms of 𝑃𝑃 and 𝑃𝑃, and then integrate the differential equation.  
 

c) Show that this result is compatible with the Sackur-Tetrode equation for γ=3/2. 
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Hint: This derivation yields Planck constant ℎ. One may only imagine that Mr. Dr. Sackur 
could have determined the value of h few decades before Max Planck.  
 

d) Determine the explicit form of the constant 𝐶𝐶 in terms of the entropy 𝑆𝑆. 
 
 
 
 
 
 

3. Maxwell-Boltzmann distribution (10 points each) 
A great insight from Maxwell is that the velocity distribution of molecules in an ideal gas with 
mass 𝑁𝑁 and velocity �⃗�𝑣 = (𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧) is given by 𝑃𝑃(�⃗�𝑣) = 𝑝𝑝(𝑣𝑣𝑥𝑥)𝑝𝑝�𝑣𝑣𝑦𝑦�𝑝𝑝(𝑣𝑣𝑧𝑧), where 𝑝𝑝(𝑥𝑥) ∝
𝑒𝑒−𝑚𝑚𝑥𝑥2/2𝑘𝑘𝑇𝑇 is the Maxwell-Boltsmann distribution 
a) Given the probability conservation condition ∫ 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥∞

−∞ = 1 for a stochastic variable 𝑥𝑥, 
determine the explicit form of 𝑝𝑝(𝑥𝑥) and 𝑃𝑃(�⃗�𝑣).  

b) Show that the probability distribution of P(𝑣𝑣), where 𝑣𝑣 = |�⃗�𝑣| >0 is the absolute value of the 
molecular velocity, is given by 
 

p(𝑣𝑣) = � 𝑚𝑚
2𝜋𝜋𝑘𝑘𝑇𝑇

�
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4𝜋𝜋𝑣𝑣2𝑒𝑒−𝑚𝑚𝑣𝑣2/2𝑘𝑘𝑇𝑇, 
 
which is the most common form of Maxwell-Boltzmann distribution.  



Hint: A coordinate transform from Cartesian coordinate (𝑥𝑥,𝑦𝑦, 𝑧𝑧) to spherical coordinate 
should satisfy probability conservation. Assume the probability to find a particle in space 
within a small volume element 𝑑𝑑𝑣𝑣 is  𝑑𝑑𝑃𝑃 = 𝑃𝑃(𝑟𝑟)𝑑𝑑𝑣𝑣, the same probability should be found in 
a new coordinate system, namely, 
 

𝑑𝑑𝑃𝑃 = 𝑃𝑃(𝑟𝑟)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = 𝑃𝑃(𝑟𝑟)𝑟𝑟2 sin𝜃𝜃 𝑑𝑑𝑟𝑟𝑑𝑑𝜃𝜃𝑑𝑑𝑑𝑑 ≡ 𝑃𝑃(𝑟𝑟,𝜃𝜃,𝑑𝑑)𝑑𝑑𝑟𝑟𝑑𝑑𝜃𝜃𝑑𝑑𝑑𝑑. 
 

e) Determine the root-mean-square velocity 𝑣𝑣𝑟𝑟𝑚𝑚𝑟𝑟 = √< 𝑣𝑣2 > and show that 𝑣𝑣𝑟𝑟𝑚𝑚𝑟𝑟 = �3𝑘𝑘𝑇𝑇
𝑚𝑚

 is 

consistent with the equipartition theorem. Compare the velocity to the sound speed, can 
one possibly heat up the gas enough such that the rms molecular velocity is higher than the 
sound velocity 𝑣𝑣𝑝𝑝 = 1

�𝑛𝑛𝑛𝑛
? 

 
 
 
 
 
 
 
 

 
4. Refrigeration (10 points each) 

Refrigerator is a device that receives energy (electricity) from the Source of work (power plant) 
in order to extract energy from the Heat source (food in the fridge) at a lower temperature Tc 
and deliver the energy into the Heat sink (atmosphere) at a higher temperature TH. 
 

 
a) Compare the above process with an engine, we find that the above process is essentially a 

Carnot cycle running in reverse. Determine how much energy W is demanded in order to 
extract one Joule of energy from the cold source.  
 
Hint: Calculate Δ𝑊𝑊

Δ𝑄𝑄𝑐𝑐
 according to the definition in the diagram. You may just use the results 

we derived in Lecture 15-2 and assume the processes are now running backwards.  Show 
the result in terms of the temperatures 𝑁𝑁𝐻𝐻 and 𝑁𝑁𝐶𝐶. 

b) Your fridge keeps the food at around 40 F, while the ambient temperature is 72 F. How 
many Joules of electricity are needed to remove 1 Joule of energy from the food in the 
fridge? 



c) How far can we cool? One can now cool atoms to nano-Kelvins. Show that if we treat the 
atom as the heat source at 𝑁𝑁𝐶𝐶  and the lab as the heat sink, the amount of energy required to 
cool an atom from 𝑁𝑁𝐶𝐶 = 𝑁𝑁𝐻𝐻 = 300 𝐾𝐾 to 𝑁𝑁𝑐𝑐 = 10−9 using the reverse Carnot cycle would be  
 

𝑊𝑊 = 𝑐𝑐𝑣𝑣𝑁𝑁[𝑁𝑁𝐻𝐻 �1 − ln
𝑁𝑁𝐻𝐻
𝑁𝑁𝐶𝐶
� − 𝑁𝑁𝐶𝐶] 

 
d) Show that you need infinite amount of energy to cool an atom from any finite temperature 

to zero temperature. The divergence goes logarithmically in the limit of 𝑁𝑁𝑐𝑐 = 0 as 𝑊𝑊 =
𝑐𝑐𝑣𝑣𝑁𝑁𝑁𝑁𝐻𝐻 ln 𝑇𝑇𝐻𝐻

𝑇𝑇𝐶𝐶
.   

 
Hint: This result is a demonstration that zero temperature is not attainable. 


