
PHYS 143 – Problem Set 1

Instructor: Cheng Chin
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a. To solve the differential equation, assume x = eαt. Substituting this in the differential

equation will give us

x′′ + 4x′ + 3x = 0

α2 + 4α + 3 = 0

(α + 1)(α + 3) =⇒ α = −1, −3

=⇒ x(t) = Ae−3t + Be−t

(1)

Now imposing the initial conditions gives us

x(0) = A + B = 1

x′(0) = −3A − B = 1

=⇒ A = −1 B = 2

(2)

b. Similarly for the second part, starting with the ansatz x = eαt gives

x′′ + 2x′ + 5x = 0

α2 + 2α + 5 = 0

α = −1 ±
√

−4 = −1 ± 2i

x(t) = Ae−te2it + Be−te−2it

(3)

Imposing the initial conditions

x(0) = A + B = 0

x′(0) = A(−1 + 2i) − B(1 + 2i) = −1

A = i

4 B = −i

4
=⇒ x(t) = −1

2 e−t sin (2t)

(4)
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c. We now add a driving term to the previous equation. We already found the homoge-

neous solution in the previous part and now need to find the particular solution. For

that, let us follow the same method from class. We note that sin(t) = Im(eit). So we

can solve for eit and then take the imaginary part of that solution. Let xp = Im(Aeit)

so

A(−1 + 2i + 5)eit = eit

A = 2 − i

10
=⇒ xp = Im(x) = 1

5 sin t − 1
10 cos t

=⇒ x = Ae−te2it + Be−te−2it + 1
5 sin t − 1

10 cos t

(5)

We can impose the initial conditions on the full solution now

x(0) = A + B − 1
10 = − 1

10 =⇒ A + B = 0

x′(0) = 1
5 + A(−1 + 2i) + B(−1 − 2i) = 0 =⇒ 2i(A − B) = −1

5

(6)

So we finally get

x = 1
5 sin t − 1

10 cos t − 1
10e−t sin 2t (7)

d. Note that this is a first order differential equation. We will use the same steps as

before. Let us first find the homogeneous solution assuming x = eαt

x′
h + 2xh = 0

xh = Ae−2t
(8)

Now to find the particular solution, we note that cos (t) = Reeit. So let xp = Re(Beit)

B(i + 2)eit = eit =⇒ B = 2 − i

5
xp = Re(2 − i

5 eit) = 2
5 cos t + 1

5 sin t

(9)

Imposing the initial condition

x(0) = 2
5 + A = 1 =⇒ A = 3

5
(10)

So that gives

x = 2
5 cos t + 1

5 sin t + 3
5e−2t (11)
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e. We can simplify the expressions as follows:

z1 = i − 4
2i − 3 = (i − 4)(2i + 3)

(2i − 3)(2i + 3) = 14 + 5i

13

z2 = (1 + i)α =
√

2α
eiαπ/4

z3 = 1 + i

1 − i
− (1 + 2i)(1 + i) = (1 + i)2

(1 + i)(1 − i) − (1 + 2i)(1 + i) = 1 − 2i

z4 = (eiπ/2)i = e−π/2

(12)

f. Consider the function f(x, y)

f(x, y) = x3/2(x + 4y)1/2 − (x + y)2

= x2(1 + 4y

x
)1/2 − x2(1 + y

x
)2

= x2
(

(1 + 4y

x
)1/2 − (1 + y

x
)2
) (13)

Since, x >> y, we have t = y/x << 1 and we can Taylor expand the function(
(1 + 4t)1/2 − (1 + t)2

)
(1 + 4t)1/2 − (1 + t)2

= (1 + 2t − 2t2) − (1 + 2t + t2) + O(3)

= −3t2 + O(t3)

= −3
(

y

x

)2
+ O((y/x)3)

(14)

g. Let us write x − x0 ≡ ϵ. Then

f(x) = x − x0√
(x2 − x2

0)2 + 4γ2x2

= ϵ√
ϵ2(2x0 + ϵ)2 + 4γ2(x0 + ϵ)2

= ϵ

2x0γ
− ϵ2

2x2
0γ

+ O(ϵ3)

= x − x0
2x0γ

− (x − x0)2

2x2
0γ

+ O((x − x0)3)

(15)

h. Let us first determine the minima of the potential by finding the extrema of the

potential V ′(x) = 0

V ′ = 1
(x2 + 3) − (x − 1)2x

(x2 + 3)2 = 0

=⇒ x2 + 3 − 2x(x − 1) = 0

(x − 3)(x + 1) = 0

x = 3, x = −1

(16)
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We then see that V (3) = 1/6 and V (−1) = −1/2. So the minima is at x = −1. Let us

expand around this point.

V (x) = V (−1) + V ′(−1)(x + 1) + 1
2V ′′(−1)(x + 1)2 + · · ·

= −1
2 + 1

8(x + 1)2
(17)

2.

a. Given that the oscillator is damped, the equation to work with would be

x′′ + γx′ + ω2
0x = 0

x′′ + ω0x′ + ω2
0x = 0

(18)

Here in the second line, we used the fact that the oscillator is critically damped i.e.

γ ≈ ω0. We now know how to solve this equation- we will pick an ansatz x = eαt. So

we get

α2 + 2ω0α + ω2
0 = 0

α = −ω0

=⇒ x = Ae−ω0t

(19)

To see how the energy decays, we first calculate the energy as a function of time using

the solution above.

E(t) = 1
2mx′2 + 1

2mω2
0x2

= 1
2m

(
−Aω0e−ω0t

)2
+ 1

2mω0
(
Ae−ω0t

)2

= A2mω2
0e−2ω0t

(20)

We want to find the time when E(t)
E(0) = 1/e

E(t)
E(0) = 1

e

e−2ω0t = 1
e

t = 1
2ω0

(21)

Note that the other solution, x = te−ω0t will also give the same result. This is because

at late times, the fall off in time is exponential and that dominates.
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b. In the case γ >> 2ω0, the equation will be the more general equation

α2 + 2ω0α + ω2
0 = 0

α = 1
2

(
−γ ±

√
γ − 4ω2

0

)
= 1

2

−γ ± γ

√
1 − 4ω2

0
γ

 (22)

Given that γ >> ω0, we can taylor expand the solution above

α ≈ 1
2γ

(
−1 ± (1 − 2ω2

0
γ2 )

)

=⇒ α = −ω2
0

γ
, α = −γ

=⇒ x(t) = Ae−(ω2
0/γ)t + Be−γt

(23)

We can now impose the initial conditions to fix A and B

x(0) = A + B = 1

x′(0) = −ω2
0

γ
A − γB = 0

=⇒ A = 1, B = 0

(24)

So we see that only the slowly decaying term is left x = e−(ω2
0/γ)t. Given this, let us

calculate the potential energy and kinetic energy

V = 1
2mω2

0x2 = 1
2mω2

0e−2(ω2
0/γ)t ≡ V (0)e−2(ω2

0/γ)t

K = 1
2mx′2 = 1

2mω2
0e−2(ω2

0/γ)t ≡ K(0)e−2(ω2
0/γ)t

(25)

So we see that both energies decay exponentially with time with a rate µ = 2ω2
0

γ .

c. In air, the damping is very low and honey is the other extreme with very large damping.

So the damping force on the marble in honey will be large and it will barely move. On

the other hand, in air, the marble will experience very small drag force. Now for energy

decay, from class, we know that for an underdamped oscillator, x(t) ∼ e−γt cos (ωt + ϕ).

So the energy will decay as E ∝ e−γt. This loss is very small when γ is small. On the

other hand, for large damping, as we saw above E ∝ e−2ω2/γ which will again be small

in the case of large damping.

3.

1. Given that there is no damping and the oscillator is being driven externally, the

equation describing this is

x′′ + ω2
0x = f cos ωt (26)
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We want to find the steady state solution which refers to the particular solution. We

will use the same approach as in the first question. We note that cos ωt = Re(eiωt).

Let xp = Aeiωt. This will give us

A(−ω2 + ω2
0) = f

A = f

ω2
0 − ω2

(27)

We are told that the driving frequency is very close to the natural frequency ω0 i.e.

ω = (1 − ϵ)ω0 with 0 < ϵ << 1. So

ω2
0 − ω2 = (ω0 + ω)(ω0 − ω) ≈ 2ϵω2

0

=⇒ A = f

2ϵω2
0

and x = Re
(

f

2ϵω2
0

eiωt
)

= f

2ϵω2
0

cos ωt
(28)

So the energy will be

E = m

2 x′2 + m

2 ω2
0x2

= m

2
ω2f2

4ϵω4
0

sin2 ωt + m

2
ω2f2

4ϵω4
0

cos2 ωt

= mf2

8ϵω2
0

(29)

b. In this case, the oscillator has not reached steady state yet and so we will also need

the homogeneous solution. We will again start with the ansatz x = eαt

x′′ + ω2
0x = 0

α2 + ω2
0 = 0

=⇒ α = ±iω0

(30)

So we can write the homogeneous solution as xh = A cos ωt + B sin ωt and the full

solution will be

x = xh + xp = A cos ωt + B sin ωt + f

ω2
0 − ω2 cos ωt (31)

. Using the initial conditions, we get

x(0) = B + f

ω2
0 − ω2 = 0

x′(0) = Aω0 = 0

=⇒ A = 0 B = − f

ω2
0 − ω2

(32)
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And so

x = f

ω2
0 − ω2 (cos ωt − cos ω0t)

= 2f

ω2
0 − ω2 sin ω + ω0

2 t sin ω − ω0
2 t

≈ −f

2ϵω2
0

sin ω0t
ω0ϵt

2

= f

2ω0
t sin ω0t

(33)

where we used (28) and the fact that for small x, sin x ≈ x. So the energy will be

E(t) = m

2 x′2 + m

2 ω2
0x2

= mf2

8

(
t2 + 1

ω2
0

(sin ω0t)2 + t

ω0
sin 2ω0t

) (34)

We want to average this over one cycle. The average is defined as

< E(t) > = 1
T

∫ t+T/2

t−T/2
E(t)dt

= mf2t2

8 + mf2

8

(
3 + 2π2 − 3 cos 2ω0t

6ω2
0

) (35)

where T = 2π/ω0. We will have a quadratic growth in time with an oscillating piece

as well but at late times the quadratic part will dominate.

c. At late times, the quadratic in t part will dominate. So if we ignore the oscillating

piece, the time that it will take to get to Emax will be

1
8mf2t2 = mf2

8ω2
0ϵ2

t = 1
ω0ϵ

≈ 1
ωϵ

(36)
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