
PHYS 143 – Problem Set 2

Instructor: Cheng Chin

1.

a. To find the eigenvalues and eigenvectors, we need to solve the followingA −B

B A

 v⃗ = λv⃗ (1)

To get a non-trivial solution, we would want

=⇒ det

A − λ −B

B A − λ

 = (A − λ)2 + B2 = 0

λ = A ± iB

(2)

To find the eigenvectors, we solve the equation (M − λI)v⃗± = 0 assuming v⃗± =

c±

d±

.

So we have, A − (A ± iB) −B

B A − (A ± iB)

c±

d±

 =

0
0

 (3)

Solving these equations will give us

v⃗± =

±i

1

 (4)

b. Similarly for the second part, we are given
−1 1 −1
1 0 1

−1 1 −1

 v⃗ = λv⃗ (5)

Solving for the eigenvalues first i.e. det(M − λI) = 0, we need to solve the equation

2λ − 2λ2 − λ3 = 0

λ = 0, −1 ±
√

3
(6)
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Next, we want to solve for the eigenvectors corresponding to each of these eigenvalues.
Let us start with λ0 = 0

−1 1 −1
1 0 1

−1 1 −1

 v⃗ = 0 =⇒ v⃗ =


−1
0
1

 (7)

Similarly for the other two eigenvectors, we get
±

√
3 1 −1

1 1 ±
√

3 1
−1 1 ±

√
3

 v⃗ = 0 =⇒ v⃗± =


1

1 ±
√

3
1

 (8)

c. To get the equilibrium position, we need to minimize the potential first. We want

∂V

∂x
= 2x − y − 6 = 0

∂V

∂y
= 2y − x = 0

=⇒ x0 = 4, y0 = 2

(9)

Now using the hint, we introduce coordinates u = x−x0 = x−4 and v = y −y0 = y −2.
In these coordinates, the potential is

V (u, v) = (u + 4)2 + (v + 2)2 − (u + 4)(v + 2) − 6(u + 4)

= u2 + v2 − uv − 12
(10)

Now we can write the equation of motion as

mx⃗ = −∇Vm 0
0 m

u′′

v′′

 =

−∂uV

−∂vV

 =

−2 1
1 −2

u

v

 (11)

So we have a pair of coupled differential equations. Let us pick the ansatz x⃗ = eαtx⃗0,
so the equation will become an eigenvalue problem

Mx⃗0 = mα2x⃗0−2 1
1 −2

u0

v0

 =

mα2 0
0 mα2

u0

v0


=⇒

−2 − mα2 1
1 −2 − mα2

u0

v0

 = 0

(12)
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Diagonalizing the matrix gives us

mα2 = −3, −1

α = ±i
√

3 ± i
(13)

where we use the fact that m = 1. So we have then for α = ±i,

x⃗ = A⃗eit + B⃗e−it

= C⃗ cos t + D⃗ sin t
(14)

And similarly for λ = ±i
√

3. So the eigenfrequencies are ω = 1,
√

3.

d. Minimizing the potential V (x, y) = ex2+y2−xy, we get the equations

∂xV = (2x − y)V = 0

∂yV = (2y − x)V = 0

=⇒ x = 0, y = 0

(15)

Now the equation of motion will be

x⃗′′ =

x′′

y′′

 =

−∂xV

−∂yV

 = V

 2 −1
−1 2

x

y

 (16)

We can expand the potential around the minima (x, y) = (0, 0). Taylor series expansion
for a multivariable function around a point (x0, y0) takes the form

V (x, y) = V (x0, y) + V ′
x(x0, y)(x − x0) + V ′′

x (x0)(x − x0)2 + · · ·

= V (x0, y0) + V ′
x(x0, y0)(x − x0) + V ′

y(x0, y0)(y − y0) + V ′′
xy(x0, y0)(x − x0)(y − y0)

+ 1
2V ′′

x (x0, y0)(x − x0)2 + 1
2V ′′

y (x0, y0)(y − y)2 + · · ·

(17)

where V ′
x = ∂V/∂x and so on. Using this, we get

V (x, y) = 1 − (x2 + y2 − xy) (18)

Substituting this into the equation of motion, we see that we have at leading order

x⃗′′ =

x′′

y′′

 =

−∂xV

−∂yV

 =

 2 −1
−1 2

x

y

 (19)

This is exactly the same as the last part now and we know the eigenfrequencies
ω = 1,

√
3.

An intuitive way to see why the eigen frequencies is the same is to note that the
potential eV is the locally the same as V near (x, y) = (0, 0) and so the physics will be
the same near that point.
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2.

a. The equation in matrix form can be written asx′′

y′′

+

4 0
0 4

x′

y′

+

 3 −2
−2 3

x

y

 =

0
0

 (20)

So γ̂ = 4I and M̂ =

 3 −2
−2 3

.

b. Let us assume that x⃗ = eαtA⃗ where A⃗ =

x0

y0

. That will give us

α2 + 4α + 3 −2
−2 α2 + 4α + 3

x0

y0

 =

0
0

 (21)

We see that to get a non-trivial solution, we would want the determinant of the matrix
to be zero. That gives us

det

α2 + 4α + 3 −2
−2 α2 + 4α + 3

 = 0

(α2 + 4α + 3)2 − 4 = 0

α = −2 ± i, −2 ±
√

3

(22)

The real solutions lead to overdamped modes and the imaginary parts lead to under-
damped modes- there is still some oscillatory piece left. It turns out that the general
solution then takes the form

x(t) = e−2t
(
(c1 cos ωt + c2 sin ωt) λ+ +

(
c3e

√
3t + c4e−

√
3t
)

λ−
)

(23)

where we can see that we have an oscillatory piece corresponding and a decaying piece
(overdamped mode).

c. Now we can write the equation again in matrix form. The equations are

x′′ + γ1x′ + ω2
1x = ϵy

y′′ + γ2y′ + ω2
2y = ϵx

(24)

This in matrix form isx′′

y′′

+

γ1 0
0 γ2

x0

y0

+

ω2
1 0

0 ω2
2

x0

y0

 =

0
0

 (25)
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Assuming x⃗ = eαtx⃗0, we getα2 + αγ1 + ω2
1 −ϵ

−ϵ α2 + αγ2 + ω2
2

x

y

 =

0
0

 (26)

where γi = 2γi. Now to get a non-trivial solution, we would want the determinant of
the matrix to be zero. That can then give us the values for α. We get

(α2 + αγ1 + ω2
1)(α2 + αγ2 + ω2

2) − ϵ2 = 0

α = −1
2

(
(ω1 + ω2) ±

√
(ω1 − ω2)2 ± 4ϵ

) (27)

Now we see that as long as (ω1 −ω2)2 ≤ 4ϵ, we will always have both real and imaginary
solutions for α because of the √ term. The case where the frequencies are real i.e.
when ω1 = ω2 is a special case of this.

3.

a. Let us set the origin to be the point where the springs hang from i.e. the top wall
and let the distance from the origin be denoted by Xi. Now to write the equation of
motion for the two masses we note that we have two different kinds of forces acting-
one is the gravitational pull downwards and the other is the force from the spring.
The equation of motion for the two masses would be

mX ′′
1 = −kX1 + mg − k(X1 − X2) = −k(2X1 − X2) + mg

mX ′′
2 = −k(X2 − X1) + mg = −k(X2 − X1) + mg

(28)

At equilibrium, the forces will balance each other out and the masses will not move.
Let us denote the equilibrium positions by X0

i , then the equations will be

− k(2X1 − X0
2 ) + mg = 0 =⇒ mg = k(2X0

1 − X0
2 )

− k(X0
2 − X0

1 ) + mg = 0 =⇒ mg = k(X0
2 − X0

1 )
(29)

Solving these equations, we get

X0
1 = 2mg

k

X0
2 = 3mg

k

(30)

Let us denote the deviation from the equilibrium position by xi, so then we have

x1 = X1 − X0
1

x2 = X2 − X0
2

(31)
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Now we can re-express the equations of motion (28) above in terms of xi by writing
Xi = xi + X0

i and then use (30). We then get

mx′′
1 = −k(x1 + 2mg

k
) + mg − k(x1 − x2 + mg

k
) = −k(2x1 − x2)

mx′′
2 = −k(x2 − x1)

(32)

we see that the gravitational pull does not explicitly show up in the equations.

b. Now to solve the equations above, let us assume again x⃗ = eαtx⃗0. So the equation in
matrix form can be written as be

α2

x0

y0

 = ω2
0

 2 −1
−1 1

 (33)

We can then solve for the eigenvalues and eigenvectors now. For the eigen values, we
get

(α2 + 2ω2
0)(α2 + ω2

0) − ω4
0 = 0

α2
± = −ω2

0

(
3 ±

√
5

2

) (34)

with eigenvectors

λ± = 1
2

−1 ±
√

5
2

 (35)

So the general solution will have the form

x⃗(t) = λ⃗+ (A1 cos ω+t + B1 sin ω+t) + λ⃗− (A2 cos ω−t + B2 sin ω−t) (36)

where ω± = ω0
2 (

√
5 ± 1).

c. Next, we impose the initial conditions. We are given that x1(0) = 0 and x2(0) = D.
In other words, we have

x⃗(0) =

x1(0)
x2(0)

 = A1
2

−1 +
√

5
2

+ A2
2

−1 −
√

5
2

 =

 0
D

 (37)

Solving these two equations

1
2(−1 +

√
5)A1 + 1

2(−1 −
√

5)A2 = 0

A1 + A2 = D

=⇒ A1 = 1
10
(
5 +

√
5
)

D, A2 = 1
10
(
5 −

√
5
)

D

(38)
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Imposing the second condition x′
1(0) = x′

2(0) = 0 gives B1 = B2 = 0. So we will finally
have

x(t) = D

20(5 +
√

5)

−1 +
√

5
2

 cos ω+t + D

20(5 −
√

5)

−1 −
√

5
2

 cos ω−t (39)

4.

• The equation of motion for the three molecules can be directly read by looking at how
the forces are acting. An alternate way is to consider the total energy and derive the
force equation from there. So, we have

U(x1, x2, x3) = 1
2k(x3 − x2)2 + 1

2k(x2 − x1)2 (40)

And so

F1 = mx′′
1 = − ∂U

∂x1
= −k(x1 − x2)

F2 = mx′′
2 = − ∂U

∂x2
= −k(x2 − x3) − k(x2 − x1)

F3 = mx′′
3 = − ∂U

∂x3
= −k(x3 − x2)

(41)

In matrix form, this would be (we again write x⃗(t) = eαtx⃗0)

α2


x1

x2

x3

 = −ω2


1 −1 0

−β 2β −β

0 −1 1




x1

x2

x3

 (42)

Solving for the eigenvalues and eigenvectors, we get

α± = ±iω0, α0 = 0, αβ
± = ±ω

√
2β + 1 (43)

with corresponding eigenvectors

λ± =


−1
0
1

 , λ0 =


1
1
1

 , λβ =


1

−2β

1

 (44)

c. The mode corresponding to λ0 is just pure translation.
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