
PHYS 143 – Problem Set 4

Instructor: Cheng Chin

1. We want to work with f(x) = 1√
π
e−x2 . So

δ(x) = lim
∆→0

1
∆f

(
x

∆

)
= lim

∆→0

1
∆ exp

(
−x2

∆2

) (1)

1a. Let us use t = 1/∆. So

δ(x ̸= 0) = lim
∆→0

1
∆ exp

(
−x2

∆2

)

= lim
t→∞

t exp (−x2t2)

= lim
t→∞

1
2t exp (−x2t2)

= 0

(2)

where in the third line we used L’Hôpital’s rule limx→x0 = f(x)
g(x) = limx→x0

f ′(x)
g′(x) .

1b. We can see from the definition that δ(x = 0) = lim∆→0
1
∆ diverges.

1c. We have ∫
δ(x)dx = lim

∆→0

1
∆

√
π

∫
exp (−x2/∆2)dx

= lim
∆→0

1
∆

√
π

√
π∆ = 1

(3)

1d. Consider the RHS. We have∫
f(u)δ(x− u)du = lim

∆→0

∫ 1√
π∆f(u) exp (−(x− u)2/∆2)du

= lim
∆→0

∫ ∆√
π∆f(∆y + x) exp (−y2)dy

= 1√
π

∫
f(x) exp (−y2)dy = f(x)

(4)

In the second line, we make a change of variables to y = u−x
∆ =⇒ u = ∆y + x.

1



b1. Let us make a change of variables to y = ax+ b. So then we have∫
dx g(x)δ(ax+ b) = 1

a

∫
dy g

(
y − b

a

)
δ(y) = 1

a
g

(
− b

a

)
(5)

b2. For this part, we can integrate by parts. We have∫
g(x)dδ(x)

dx
dx =

∫
dx

[
d

dx
(g(x)δ(x)) − g′(x)δ(x)

]
= (g(x)δ(x))

∣∣∞
−∞ −

∫
dx g′(x)δ(x)

= −g′(0)

(6)

2.

a. To understand the region around t = 0, let us integrate on a small region around that.

So we integrate the equation from 0 − ϵ to 0 + ϵ

lim
ϵ→0

∫ 0+ϵ

0−ϵ
dt
(
x′′ + ω2

0x
)

= lim
ϵ→0

∫ 0+ϵ

0−ϵ
dt f(t)

=⇒ x′(0+) − x′(0−) = lim
ϵ→0

∫ ϵ

−ϵ
dtf(t)

=⇒ v = lim
ϵ→0

∫ ϵ

−ϵ
dtf(t)

=⇒ f = vδ(t)

(7)

where in the last line, we used the result from 1d. This means then that we are solving

for what is called the Green’s function i.e. the solution to the equation LG(t; 0) = δ(t)

where

L = 1
v

d2

dt2
+ ω2

0
v

and the usual notation for the Green’s function is that the first argument is the variable

we are working with and the second argument is the point at which the delta function

peaks (here it is τ = 0). One way to solve for the Green’s function is to note that the

equation is homogeneous except at t = 0. So the solution when t ̸= 0 should be the

solution to LG(t; 0) = 0 i.e. the solution to

1
v

d2x

dt2
+ ω2

0
v
x = 0

We know the general solution to this equation. So we say,

xG(t) ≡ G(t; 0) =


A sin(ω0t) +B cos(ω0t) t < 0

C sin(ω0t) +D cos(ω0t) t > 0
(8)
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The constants A,B,C,D will be fixed using the initial conditions and the matching

conditions at t = 0. We are given that the initial conditions at t = −∞ which then

give us that A = B = 0

x(−∞) = 0 andx′(−∞) = 0

=⇒ A = 0, B = 0

The second set of conditions are the matching conditions. These come from demanding

that the Green’s function be continuous at the boundary. We are already given these

conditions in the question (we also derived them on our own in the discussion section).

xG(0) = 0 =⇒ D = 0

x′
G(0) = v =⇒ C = v

ω0

(9)

Imposing this on our solution (8), we get

xG ≡ G(t; 0) =


0 t < 0
v

ω0
sin (ω0t) t > 0

(10)

2b. The advantage of finding the Green’s function for any operator is that then we can

find the solution to any general source function. So for Lx(t) = f(t), the solution is

x(t) =
∫
G(t; τ)f(τ)dτ

where LG(t; τ) = δ(t− τ). One way to see that is to just act on both sides by L and

check that x(t) it is actually a solution.

Another way would be to write the source function as a summation of different delta

functions- this is what we do in this part. So we want to solve Lx(t) = F (t). We can

write F (t) as

F (t) =
∫
F (τ)δ(t− τ) dτ

For each F (τ)δ(t− τ), we know the solution from 2a. It will be F (τ)
v G(t; τ) i.e.

xτ =


0 t < τ

F (τ)
v sinω0(t− τ) t > τ

So the solution to F (t) will be a superposition of xτ and so

x(t) =
∫ t

−∞
dτ xτ =

∫ t

−∞

F (τ)
v

sinω0(t− τ) (11)
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3.

a. The kinetic energy per unit length will be

ρK = 1
2ρv

2

Now we note that in a small region ∆x, the velocity will be v = ∂tψ and so

ρK = 1
2ρ(∂tψ)2 (12)

To calculate the potential energy, we can treat the medium like a spring- so the first

thing we will need will be the extension of the string in a small region ∆x.

∆l =
√

(∆y)2 + (∆x)2 − ∆x

= ∆x
(√

1 + (∆y/∆x)2 − 1
)

≃ 1
2

(∆y
∆x

)2
∆x

= 1
2(∂xψ)2∆x

(13)

And the restoring force will be

F = −k∆l = 2T (14)

The factor of 2 comes from noting that the string will be pulled from both ends. So

the potential energy will be

ρU = 1
2k(∆l)2 = 1

2(k∆l)(∆l)

= T

2 (∂xψ)2
(15)

b. We can use the form of the wave solution given to use and that gives us

ρk = 1
2ρ(∂tψ)2 = 1

2ρA
2k2v2 sin2 k(x− vt) = 1

2TA
2k2 sin2 k(x− vt)

ρU = 1
2T (∂xψ)2 = 1

2TA
2k2 sin2 k(x− vt) = ρk

(16)

So we see that the energy travels with the wave in a sinusoidal way with a velocity

v =
√
T/ρ. Points where ρK + ρU = 0 will be when

sin k(x− vt) = 0 =⇒ k(x− vt) = nπ (17)

c. The energy flux is

jE = −dW

dt

4



Now, we know from the hint that

dW

dt
= Ty

dψ

dt

= Tx∂xψ∂tψ

≃ T∂xψ∂tψ

(18)

And so jE = −T∂xψ∂tψ.

d. Substituting the wave form in the formula above gives us

jE = −T∂xψ∂tψ

= ±TA2k2v sin2 k(x± vt) = ±v(ρK + ρU ) ≡ ±vρE

(19)
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