PHYS 143 - Problem Set 4

Instructor: Cheng Chin

1.

a. The divergence of a vector tells us whether it is a source or a sink and the curl tells us about circulations. Let us calculate that for the two vectors.

For $\vec{A}_{1}=\left(y^{2} x, 0,-y x^{2}\right)$, we see that

$$
\begin{align*}
\nabla \cdot \overrightarrow{A_{1}} & =\partial_{x} A_{x}+\partial_{y} A_{y}+\partial_{z} A_{z} \tag{1}\\
& =y^{2}>0 \Longrightarrow \text { It is a source }
\end{align*}
$$

And the curl

$$
\begin{align*}
\nabla \times \vec{A}_{1} & =\left(\partial_{y} A_{z}=\partial_{z} A_{x}\right) \hat{x}-\left(\partial_{x} A_{x}-\partial_{z} A_{x}\right) \hat{y}+\left(\partial_{x} A_{y}-\partial_{y} A_{x}\right) \hat{z} \\
& =-x^{2} \hat{x}+2 x y \hat{y}-2 y z \hat{z} \tag{2}\\
& \equiv\left(-x^{2}, 2 x y,-2 y x\right) \Longrightarrow \text { carries circulation }
\end{align*}
$$

For $\overrightarrow{A_{2}}=(\cos z, \sin x-\sin y,-\cos z$. We see that the divergence is

$$
\begin{equation*}
\nabla \cdot \overrightarrow{A_{2}}=-\cos y+\sin z \tag{3}
\end{equation*}
$$

And the curl

$$
\begin{equation*}
\nabla \times \overrightarrow{A_{2}}=(0,-\sin z, \cos x) \tag{4}
\end{equation*}
$$

b. We can use Einstein's summation notation here to simplify things- so repeated indices imply summing over them. In other words $v_{i} j^{i} \equiv \sum_{i} v_{i} j^{i}$.

So the first equation can be written as

$$
\begin{align*}
\nabla \cdot(\phi \nabla \psi-\psi \nabla \phi) & =\partial_{i}\left(\phi \partial_{i} \psi-\psi \partial_{i} \phi\right) \\
& =\partial_{i} \phi \partial_{i} \psi+\phi \partial_{i}^{2} \psi-\partial_{i} \psi \partial_{i} \phi-\psi \partial_{i}^{2} \phi_{i} \\
& =\phi \partial_{i}^{2} \psi-\psi \partial_{i}^{2} \phi \tag{5}\\
& =\phi \nabla^{2} \psi-\psi \nabla^{2} \phi
\end{align*}
$$

And the second equation can be written as

$$
\begin{align*}
\nabla \times(\nabla \times \vec{A}) & =\epsilon^{i j k} \partial_{j}(\nabla \times \vec{A})_{k} \\
& =\epsilon^{i j k} \partial_{j}\left(\epsilon^{k m n} \partial_{m} A_{n}\right) \\
& =\epsilon^{i j k} \epsilon^{k m n} \partial_{j} \partial_{m} A_{n} \tag{6}\\
& =\epsilon^{k i j} \epsilon^{k m n} \partial_{j} \partial_{m} A_{n} \\
& =\left(\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}\right) \partial_{j} \partial_{m} A_{n} \\
& =\partial_{i} \partial_{j} A_{j}-\partial_{j} \partial_{j} A_{i}=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}
\end{align*}
$$

2.

a. We need to impose the boundary conditions which in this case lies at $x=0$

$$
\begin{align*}
& \psi_{L}(0, t)=\psi_{R}(0, t) \tag{7}\\
& \partial_{x} \psi_{L}(0, t)=\partial_{x} \psi_{R}(0, t)
\end{align*}
$$

Since these conditions should hold at all times, we get

$$
\begin{array}{r}
A+B=C \\
A k-B k=C k^{*} \tag{8}
\end{array}
$$

Solving these, we get

$$
\begin{align*}
C & =\frac{2 A}{\left(1+k^{*} / k\right)} \tag{9}\\
B & =\frac{C}{2}\left(1-\frac{k^{*}}{k}\right)=A\left(\frac{k-k^{*}}{k+k^{*}}\right)
\end{align*}
$$

b. Consider now the case with $t \rightarrow-t$. We have

$$
\psi(x, t)= \begin{cases}A e^{i k\left(x-v_{R} t\right)}+B e^{i k\left(-x-v_{R} t\right)} & x>0 \tag{10}\\ C e^{i k^{*}\left(x-v_{L} t\right)} \quad x<0\end{cases}
$$

Let us treat the two waves (with amplitude B and C) separately like mentioned in the question. Consider the wave with amplitude C as the incident wave: it will have a transmitted part and a reflected part- we will denote their amplitudes with C_{T} and C_{R}

$$
\psi(x, t)= \begin{cases}C_{T} e^{i k\left(x-v_{R} t\right)} \quad x>0 \tag{11}\\ C e^{i k^{*}\left(x-v_{L} t\right)+C_{R} e^{i k^{*}\left(-x-v_{L} t\right)}} \quad x<0\end{cases}
$$

We will have the same boundary conditions like in the previous part

$$
\begin{align*}
& C_{T}=C+C_{R} \tag{12}\\
& k C_{T}=k^{*} C-k^{*} C_{R}
\end{align*}
$$

Solving this gives

$$
\begin{align*}
C_{T} & =\frac{2 C}{\left(1+k / k^{*}\right)} \tag{13}\\
C_{R} & =C\left(\frac{k^{*}-k}{k^{*}+k}\right)
\end{align*}
$$

Similarly, treating the wave with amplitude B independently, it will have a transmitted part B_{T} and reflected part B_{R} and so the boundary conditions

$$
\begin{align*}
& B+B_{R}=B_{T} \tag{14}\\
& -k B+k B_{R}=-k^{*} B_{T}
\end{align*}
$$

Solving this, we get

$$
\begin{align*}
B_{T} & =\frac{2 B}{1+k^{*} / k} \\
B_{R} & =\frac{B\left(k-k^{*}\right)}{\left(k+k^{*}\right)} \tag{15}
\end{align*}
$$

And finally the relation between B and C from the boundary conditions is

$$
\begin{align*}
& A+B=C \\
& A k-B k=C k^{*} \tag{16}
\end{align*}
$$

giving us

$$
\begin{equation*}
B=\frac{C}{2}\left(1-\frac{k^{*}}{k}\right) \Longrightarrow B_{T}=C\left(\frac{k-k^{*}}{k+k^{*}}\right)=-C_{R} \tag{17}
\end{equation*}
$$

3. Given the values for the pressure corresponding to the sound in decibels, we can check that the relation between the sound level in decibels is related to the pressure as

$$
\begin{equation*}
d B=20 \log _{10}\left(\frac{P}{P_{0}}\right) \quad P_{0}=20 \mu P a \tag{18}
\end{equation*}
$$

a. Let the wave have amplitude $A: \phi(x, t)=A \sin (k x-\omega t)$. In class, you found that

$$
\begin{align*}
& \Delta P=-\frac{1}{\beta} \phi^{\prime}(x)=-\frac{A}{\beta} k \cos (k x-\omega t) \tag{19}\\
\Longrightarrow & A=\frac{\beta \Delta P}{k}=\frac{\beta v}{\omega} \Delta P
\end{align*}
$$

We are given n and β so we can get $v_{\text {air }}=\sqrt{1 / n \beta} \simeq 337.4 \mathrm{~ms}^{-1}$. From here, we can calculate the amplitude

$$
A= \begin{cases}7.7 \times 10^{-11} m & (0 \mathrm{~dB}) \tag{20}\\ 7.7 \times 10^{-5} m & (100 \mathrm{~dB})\end{cases}
$$

b. We see using our formula relating the sound level to pressure that 200 dB corresponds to $200=20 \log \left(\frac{P}{20 \times 10^{-6}}\right) \Longrightarrow P=2 \times 10^{5} \mathrm{~Pa}$. We know that the pressure in air is $10^{5} \mathrm{~Pa}$. When a sound wave passes by, there will be a change in the pressure such that the new pressure will be given by

$$
\begin{equation*}
P=P_{0}-\Delta P=P_{0}-\frac{1}{\beta} \phi^{\prime}(x) \tag{21}
\end{equation*}
$$

This pressure can't be negative. But we see that when the sound level is 200 dB i.e. corresponding to pressure gradient of $\Delta P=2 \times 10^{5} \mathrm{~Pa}, P<0$ which is not possible. We can in fact calculate the upper bound of sound that can pass by noting that the pressure can't go below 0 so the maximum value of $\Delta P=10^{5} \mathrm{~Pa}$ which corresponds to

$$
\begin{equation*}
20 \log \left(\frac{10^{5}}{20 \times 10^{-6}}\right) \simeq 194 \mathrm{~dB} \tag{22}
\end{equation*}
$$

c. Let us assume using the hint that the sound level that can damage our ear is 100 dB . We see that, that corresponds to a pressure gradient of $\Delta P=2 \mathrm{~Pa}$. Last homework, we found that the energy density is given by

$$
\begin{gather*}
j_{E}(x, t)=T \partial_{t} \phi \partial_{x} \phi=T A^{2} \omega \kappa \cos ^{2}(k x-\omega t) \\
\Longrightarrow\left\langle j_{E}\right\rangle=\frac{1}{2} T A^{2} \omega \kappa=T \omega k \frac{\beta^{2} v^{2}}{\omega^{2}}(\Delta P)^{2}=(\Delta P)^{2} \beta v \tag{23}
\end{gather*}
$$

where we used the formula for $A=\frac{\beta v}{\omega} \Delta P$ and used $v=\sqrt{T / n}=\sqrt{1 / \beta n} \Longrightarrow T=1 / \beta$. Using the numerical values from the table, we see

$$
\begin{equation*}
\left\langle j_{E}\right\rangle=\frac{1}{2}(\Delta P)^{2} \beta v=4.86 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} \tag{24}
\end{equation*}
$$

d. We saw from the last part that $j_{E} \sim(\Delta P)^{2} \beta=\frac{A^{2}}{\beta v} \omega^{2}$. So we get

$$
\begin{equation*}
A=\frac{\sqrt{j_{E}}}{\omega}\left(\frac{\beta}{n}\right)^{1 / 4} \tag{25}
\end{equation*}
$$

So for fixed j_{E} and ω, we see that the maximum displacement will be in air.
4.
a. We start with the third Maxwell's equation and use the result from 1b

$$
\begin{align*}
& \vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\nabla^{2} E \\
\Longrightarrow & -\vec{\nabla} \times\left(\partial_{t} \vec{B}\right)=\frac{1}{\epsilon} \vec{\nabla} \rho-\nabla^{2} E \\
\Longrightarrow & \partial_{t}(\vec{\nabla} \times \vec{B})=\nabla^{2} E-\frac{1}{\epsilon} \vec{\nabla} \rho \tag{26}\\
\Longrightarrow & \mu \epsilon \partial_{t}^{2} E+\mu \sigma \partial_{t} E=\nabla^{2} E-\frac{1}{\epsilon} \vec{\nabla} \rho
\end{align*}
$$

where in the last line we used, $\vec{j}=\sigma \vec{E}$. Similarly for the \vec{B},

$$
\begin{align*}
& \vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\vec{\nabla}(\vec{\nabla} \cdot \vec{B})-\nabla^{2} \vec{B} \\
\Longrightarrow & \mu \epsilon \partial_{t}(\vec{\nabla} \times \vec{E})+\mu \sigma(\vec{\nabla} \times \vec{E})=0-\nabla^{2} \vec{B} \tag{27}\\
& \mu \epsilon \partial_{t}^{2} \vec{B}+\mu \sigma \partial_{t} \vec{B}=\nabla^{2} \vec{B}
\end{align*}
$$

b. We want to solve the wave equation for the electric field when $\rho=0$

$$
\mu \epsilon \partial_{t}^{2} E+\mu \sigma \partial_{t} E=\nabla^{2} E
$$

Let us use the ansatz $\vec{E}=\vec{E}_{0} e^{i(\tilde{k} z-\omega t)}$. Substituting this in the equation, we get

$$
\begin{equation*}
\tilde{k}^{2}=\mu \epsilon \omega^{2}+i \mu \sigma \omega \tag{28}
\end{equation*}
$$

So we see that \tilde{k} has an imaginary part also implying that there will be a decaying part of the electric field as well in addition to the usual oscillatory piece. So writing $\tilde{k}=k+\frac{i}{z_{0}} \Longrightarrow \tilde{k}^{2}=k^{2}-\frac{1}{z_{0}^{2}}+2 i \frac{k}{z_{0}}$. So comparing the real and imaginary parts with the equation for \tilde{k}^{2} above, we get

$$
\begin{align*}
& \frac{2 k}{z_{0}}=\mu \sigma \omega \\
& \frac{1}{z_{0}}=\frac{\mu \sigma \omega}{2 k} \tag{29}
\end{align*}
$$

And

$$
\begin{align*}
& k^{2}-\frac{1}{z_{0}^{2}}=\mu \epsilon \omega^{2} \\
& k^{2}-\left(\frac{\mu \sigma \omega}{2 k}\right)^{2}=\mu \epsilon \omega^{2} \\
& k^{4}-\left(\frac{\mu \sigma \omega}{2}\right)^{2}-\left(\mu \epsilon \omega^{2}\right) k^{2}=0 \tag{30}\\
& k^{2}=2 \mu \epsilon \omega^{2}\left(1 \pm\left(1+\frac{\sigma^{2}}{\omega^{2} \epsilon^{2}}\right)^{1 / 2}\right)
\end{align*}
$$

And so we get

$$
\begin{equation*}
v_{p}=\frac{\omega}{k}=\sqrt{\frac{2}{\mu \epsilon\left(1+\sqrt{1+\frac{\sigma^{2}}{\omega^{2} \epsilon^{2}}}\right)}} \tag{31}
\end{equation*}
$$

And

$$
\begin{equation*}
z_{0}=\frac{2 k}{\mu \sigma \omega}=\frac{2}{\mu \sigma v_{p}} \tag{32}
\end{equation*}
$$

