
PHYS 143 – Problem Set 4

Instructor: Cheng Chin

1.

a. The divergence of a vector tells us whether it is a source or a sink and the curl tells us

about circulations. Let us calculate that for the two vectors.

For A⃗1 = (y2x, 0,−yx2), we see that

∇ · A⃗1 = ∂xAx + ∂yAy + ∂zAz

= y2 > 0 =⇒ It is a source
(1)

And the curl

∇ × A⃗1 = (∂yAz = ∂zAx)x̂− (∂xAx − ∂zAx)ŷ + (∂xAy − ∂yAx)ẑ

= −x2x̂+ 2xyŷ − 2yzẑ

≡ (−x2, 2xy,−2yx) =⇒ carries circulation

(2)

For A⃗2 = (cos z, sin x− sin y,− cos z. We see that the divergence is

∇ · A⃗2 = − cos y + sin z (3)

And the curl

∇ × A⃗2 = (0,− sin z, cosx) (4)

b. We can use Einstein’s summation notation here to simplify things- so repeated indices

imply summing over them. In other words vij
i ≡

∑
i vij

i.

So the first equation can be written as

∇ · (ϕ∇ψ − ψ∇ϕ) = ∂i (ϕ∂iψ − ψ∂iϕ)

= ∂iϕ∂iψ + ϕ∂2
i ψ − ∂iψ∂iϕ− ψ∂2

i ϕi

= ϕ∂2
i ψ − ψ∂2

i ϕ

= ϕ∇2ψ − ψ∇2ϕ

(5)
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And the second equation can be written as

∇ × (∇ × A⃗) = ϵijk∂j(∇ × A⃗)k

= ϵijk∂j

(
ϵkmn∂mAn

)
= ϵijkϵkmn∂j∂mAn

= ϵkijϵkmn∂j∂mAn

= (δimδjn − δinδjm) ∂j∂mAn

= ∂i∂jAj − ∂j∂jAi = ∇(∇ · A⃗) − ∇2A⃗

(6)

2.

a. We need to impose the boundary conditions which in this case lies at x = 0

ψL(0, t) = ψR(0, t)

∂xψL(0, t) = ∂xψR(0, t)
(7)

Since these conditions should hold at all times, we get

A+B = C

Ak −Bk = Ck∗
(8)

Solving these, we get

C = 2A
(1 + k∗/k)

B = C

2

(
1 − k∗

k

)
= A

(
k − k∗

k + k∗

) (9)

b. Consider now the case with t → −t. We have

ψ(x, t) =


Aeik(x−vRt) +Beik(−x−vRt) x > 0

Ceik∗(x−vLt) x < 0
(10)

Let us treat the two waves (with amplitude B and C) separately like mentioned in the

question. Consider the wave with amplitude C as the incident wave: it will have a

transmitted part and a reflected part- we will denote their amplitudes with CT and

CR

ψ(x, t) =


CT e

ik(x−vRt) x > 0

Ceik∗(x−vLt)+CReik∗(−x−vLt)
x < 0

(11)
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We will have the same boundary conditions like in the previous part

CT = C + CR

kCT = k∗C − k∗CR

(12)

Solving this gives

CT = 2C
(1 + k/k∗)

CR = C

(
k∗ − k

k∗ + k

) (13)

Similarly, treating the wave with amplitude B independently, it will have a transmitted

part BT and reflected part BR and so the boundary conditions

B +BR = BT

− kB + kBR = −k∗BT

(14)

Solving this, we get

BT = 2B
1 + k∗/k

BR = B(k − k∗)
(k + k∗)

(15)

And finally the relation between B and C from the boundary conditions is

A+B = C

Ak −Bk = Ck∗
(16)

giving us

B = C

2

(
1 − k∗

k

)
=⇒ BT = C

(
k − k∗

k + k∗

)
= −CR (17)

3. Given the values for the pressure corresponding to the sound in decibels, we can check

that the relation between the sound level in decibels is related to the pressure as

dB = 20 log10

(
P

P0

)
P0 = 20µPa (18)

a. Let the wave have amplitude A: ϕ(x, t) = A sin (kx− ωt). In class, you found that

∆P = − 1
β
ϕ′(x) = −A

β
k cos (kx− ωt)

=⇒ A = β∆P
k

= βv

ω
∆P

(19)
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We are given n and β so we can get vair =
√

1/nβ ≃ 337.4ms−1. From here, we can

calculate the amplitude

A =


7.7 × 10−11m (0 dB)

7.7 × 10−5m (100 dB)
(20)

b. We see using our formula relating the sound level to pressure that 200 dB corresponds

to 200 = 20 log
(

P
20×10−6

)
=⇒ P = 2 × 105 Pa. We know that the pressure in air is

105 Pa. When a sound wave passes by, there will be a change in the pressure such that

the new pressure will be given by

P = P0 − ∆P = P0 − 1
β
ϕ′(x) (21)

This pressure can’t be negative. But we see that when the sound level is 200 dB i.e.

corresponding to pressure gradient of ∆P = 2 × 105 Pa, P < 0 which is not possible.

We can in fact calculate the upper bound of sound that can pass by noting that the

pressure can’t go below 0 so the maximum value of ∆P = 105 Pa which corresponds

to

20 log
(

105

20 × 10−6

)
≃ 194 dB (22)

c. Let us assume using the hint that the sound level that can damage our ear is 100 dB.

We see that, that corresponds to a pressure gradient of ∆P = 2 Pa. Last homework,

we found that the energy density is given by

jE(x, t) = T∂tϕ∂xϕ = TA2ωκ cos2(kx− ωt)

=⇒ ⟨jE⟩ = 1
2TA

2ωκ = Tωk
β2v2

ω2 (∆P )2 = (∆P )2βv
(23)

where we used the formula for A = βv
ω ∆P and used v =

√
T/n =

√
1/βn =⇒ T = 1/β.

Using the numerical values from the table, we see

⟨jE⟩ = 1
2(∆P )2βv = 4.86 × 10−3W/m2 (24)

d. We saw from the last part that jE ∼ (∆P )2β = A2

βvω
2. So we get

A =
√
jE
ω

(
β

n

)1/4
(25)

So for fixed jE and ω, we see that the maximum displacement will be in air.
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4.

a. We start with the third Maxwell’s equation and use the result from 1b

∇⃗ × (∇⃗ × E⃗) = ∇⃗(∇⃗ · E⃗) − ∇2E

=⇒ − ∇⃗ × (∂tB⃗) = 1
ϵ

∇⃗ρ− ∇2E

=⇒ ∂t

(
∇⃗ × B⃗

)
= ∇2E − 1

ϵ
∇⃗ρ

=⇒ µϵ∂2
tE + µσ∂tE = ∇2E − 1

ϵ
∇⃗ρ

(26)

where in the last line we used, j⃗ = σE⃗. Similarly for the B⃗,

∇⃗ × (∇⃗ × B⃗) = ∇⃗(∇⃗ · B⃗) − ∇2B⃗

=⇒ µϵ∂t(∇⃗ × E⃗) + µσ(∇⃗ × E⃗) = 0 − ∇2B⃗

µϵ∂2
t B⃗ + µσ∂tB⃗ = ∇2B⃗

(27)

b. We want to solve the wave equation for the electric field when ρ = 0

µϵ∂2
tE + µσ∂tE = ∇2E

Let us use the ansatz E⃗ = E⃗0e
i(k̃z−ωt). Substituting this in the equation, we get

k̃2 = µϵω2 + iµσω (28)

So we see that k̃ has an imaginary part also implying that there will be a decaying

part of the electric field as well in addition to the usual oscillatory piece. So writing

k̃ = k + i
z0

=⇒ k̃2 = k2 − 1
z2

0
+ 2i k

z0
. So comparing the real and imaginary parts with

the equation for k̃2 above, we get

2k
z0

= µσω

1
z0

= µσω

2k

(29)

And

k2 − 1
z2

0
= µϵω2

k2 −
(
µσω

2k

)2
= µϵω2

k4 −
(
µσω

2

)2
− (µϵω2)k2 = 0

k2 = 2µϵω2

1 ±
(

1 + σ2

ω2ϵ2

)1/2


(30)
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And so we get

vp = ω

k
=
√√√√√ 2

µϵ

(
1 +

√
1 + σ2

ω2ϵ2

) (31)

And

z0 = 2k
µσω

= 2
µσvp

(32)
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