
Physics 471 – Introduction to Modern Atomic Physics     
  
                                                       HOMEWORK 3                                             (Due: 2/5/2024)  
 
1. Jayne-Cummings model 
A fully quantum mechanical description of an atom interacting with a photon field is given by 
the Jayne-Cummings model 
 

𝐻𝐻 = ℏ𝜔𝜔0
2
𝜎𝜎𝑧𝑧 + ℏ𝜔𝜔𝑏𝑏+𝑏𝑏 + 𝑔𝑔(𝜎𝜎+𝑏𝑏 + 𝜎𝜎−𝑏𝑏+), 

 
where ℏ𝜔𝜔0 is the atomic resonance frequency, 𝜔𝜔 is the laser frequency, 𝑏𝑏+(𝑏𝑏) is the creation 
(annihilation) operator of the photon field, and 𝑔𝑔 is the atom-photon coupling constant,  �⃗�𝜎 is the 
Pauli matrix, and 𝜎𝜎± = (𝜎𝜎𝑥𝑥 ± 𝑖𝑖𝜎𝜎𝑦𝑦)/2 is the raising/lowering operator of the atomic excitation. 
The wavefunction of the system combines the two-level atom and photon as |Ψ >= |𝑒𝑒/𝑔𝑔 >⊗
|𝑛𝑛 >, where 𝑛𝑛 = 0,1,2 … is the number of photons in the field. 
 
A. First we compare this Hamiltonian with the semi-classical Hamiltonian 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
ℏ
2

(Ω𝜎𝜎𝑥𝑥 − Δ𝜎𝜎𝑧𝑧), where Δ = 𝜔𝜔 − 𝜔𝜔0 is the laser detuning. Evaluate the Hamiltonian in the matrix 
form in the bases of |𝑒𝑒,𝑛𝑛 > and |𝑔𝑔,𝑛𝑛 + 1 > : 
 

𝐻𝐻 = �
< 𝑒𝑒,𝑛𝑛|𝐻𝐻|𝑒𝑒,𝑛𝑛 > < 𝑒𝑒,𝑛𝑛|𝐻𝐻|𝑔𝑔,𝑛𝑛 + 1 >

< 𝑔𝑔,𝑛𝑛 + 1|𝐻𝐻|𝑒𝑒,𝑛𝑛 > < 𝑔𝑔,𝑛𝑛 + 1|𝐻𝐻|𝑔𝑔,𝑛𝑛 + 1 >� 

 
and shows that it is equivalent to the semi-classical Hamiltonian in the basis of |𝑒𝑒 > and |𝑔𝑔 > 
when the photon number is large 𝑛𝑛 ≫ 1. More explicitly, show that 
 

𝐻𝐻 ≈ 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⊗ |𝑛𝑛 > +𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐., 
 
When we identify the Rabi frequency in terms of the coupling constant as ℏΩ = 𝑔𝑔√𝑛𝑛. The 
scaling on √𝑛𝑛 can be understood as the photon number is proportional to the intensity and thus 
the electric field squared 𝑛𝑛 ∝ 𝐼𝐼 ∝ |𝐸𝐸|2. 
 
B. For a laser field with positive detuning Δ = 𝜔𝜔 − 𝜔𝜔0>0 and Δ ≪ 𝜔𝜔,𝜔𝜔0, calculate the 
eigenenergies of the lowest 5 states. As an example, the eigenenergies of the Hamiltonian in the 
lowest 3 states can be evaluated from diagonalizing the following Hamiltonian: 
 

𝐻𝐻 = �
< 𝑒𝑒, 1|𝐻𝐻|𝑒𝑒, 1 > < 𝑒𝑒, 1|𝐻𝐻|𝑒𝑒, 0 > < 𝑒𝑒, 1|𝐻𝐻|𝑔𝑔, 0 >
< 𝑒𝑒, 0|𝐻𝐻|𝑒𝑒, 1 > < 𝑒𝑒, 0|𝐻𝐻|𝑒𝑒, 0 > < 𝑒𝑒, 0|𝐻𝐻|𝑔𝑔, 0 >
< 𝑔𝑔, 0|𝐻𝐻|𝑒𝑒, 1 > < 𝑔𝑔, 0|𝐻𝐻|𝑒𝑒, 0 > < 𝑔𝑔, 0|𝐻𝐻|𝑔𝑔, 0 >

� 

 
C. Now let’s include spontaneous emission, which permits decays from >ne,|  to >ng,|  by 
emitting a photon into free space. Draw wiggling lines to show all possible spontaneous emission 
toward lower eigenstates. Determine the frequencies of all emitted photons if an atom is initially 
prepared in any of the lowest 5 eigenstates.  



2. Hyperfine structure of a H2 molecule 
Hamiltonian of a 𝐻𝐻2 molecule in the electronic ground state 
𝑛𝑛 = 1 can be written as 
 

𝐻𝐻 = 𝐴𝐴(𝑐𝑐1 ⋅ 𝑖𝑖1 + 𝑐𝑐2 ⋅ 𝑖𝑖2) + 𝑉𝑉(𝑅𝑅), 
 
where 𝑐𝑐1 = 1

2
, 𝑐𝑐2 = 1

2
, 𝑖𝑖1 = 1

2
, 𝑖𝑖2 = 1

2
 are the electron spins and 

nuclear spins of the 1st and 2nd atom and 𝑅𝑅 is the interatomic 
separation. The molecular potential is conventionally modeled 
by the sum of a spin-independent scalar potential 𝑉𝑉𝑠𝑠(𝑅𝑅) ≈
− 𝐶𝐶6

𝑅𝑅6
+ 𝐶𝐶12

𝑅𝑅12
 and a spin-dependent exchange term 𝑉𝑉𝑠𝑠𝑥𝑥(𝑅𝑅)𝑐𝑐1 ⋅ 𝑐𝑐2 that emerges at a much shorter 

range. 
 

𝑉𝑉(𝑅𝑅) = 𝑉𝑉𝑠𝑠(𝑅𝑅) + 𝑉𝑉𝑠𝑠𝑥𝑥(𝑅𝑅)𝑐𝑐1 ⋅ 𝑐𝑐2 
 
The figure shows the experimentally measured molecular potential in atomic units (a.u.), which 
includes the singlet potential 𝑉𝑉1(𝑅𝑅) labelled as 11Σ𝑔𝑔+ with 𝑆𝑆 = 𝑐𝑐1 + 𝑐𝑐2 = 0 and triplet state 
𝑉𝑉0(𝑅𝑅) labelled as 13Σ𝑢𝑢+ with 𝑆𝑆 = 1.  
 
A. Assuming the hyperfine interaction is negligible 𝐴𝐴 ≈ 0, determine 𝑉𝑉𝑠𝑠 and 𝑉𝑉𝑠𝑠𝑥𝑥 based on 𝑉𝑉0 and 
𝑉𝑉1. 
 
B. Determine the hyperfine structure of 𝐻𝐻2 molecules in the singlet and triplet ground states. 
(Hint: Here the hyperfine interactions is weak compared to the exchange energy 𝐴𝐴 ≈ 10−6 in 
atomic units. You may evaluate the hyperfine energy perturbatively.) 
 
C. Determine the hyperfine structure of highly excited 𝐻𝐻2 molecules with sizes > 10 a.u. 
(Hint: At large interatomic separations, as you can see in the figure, the atomic interaction is 
negligible 𝑉𝑉𝑠𝑠𝑥𝑥,𝑉𝑉𝑠𝑠 ≈ 0 and the Hamiltonian is dominated by the hyperfine interactions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Low energy scattering with a square well 
The simplest model to describe finite range interactions between atoms is a 3D square well 
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 and 0)( 0 => rrV . Consider the incoming spherical wave    

re ikr /−  and the outgoing wave is rSeikr / , where δieS 2=  is the scattering matrix and δ is the s-
wave scattering phase shift. 
A. Starting with Schrodinger’s equation in the spherical coordinate, and show that the scattering 

phase shift is given by 
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B. Determine scattering length a  in the low scattering energy limit .0→k  
 
(Hint: Determine the location where wavefunction vanishes in the low energy limit.) 
 
C. Plot the scattering phase shift and scattering length vs. the depth D. Determine the depth 𝐷𝐷 =
𝐷𝐷𝑛𝑛 when the 𝑛𝑛-th molecular state emerges below the continuum.  


