Physics 471 - Introduction to Modern Atomic Physics

HOMEWORK 5

(Due: 2/19/2024)

1. Two-body entanglement

Consider two qubits A and B , the wavefunction can be described by 4 probability amplitudes as $\left|\Psi>=a_{00}\right| 00>+a_{01}\left|01>+a_{10}\right| 10>+a_{11} \left\lvert\, 11>\equiv\left(\begin{array}{l}a_{00} \\ a_{01} \\ a_{10} \\ a_{11}\end{array}\right)\right.$, and $a_{i j}$ are complex probability amplitudes.

A product state of the qubits is defined as the direct tensor product of the individual qubit states, and is thus separable and not entangled.

$$
\left.\mid \text { Product state }>=\left|\psi_{A}>\otimes\right| \psi_{B}\right\rangle
$$

The Bell states are considered as the maximally entangled states of two qubits, defined as

$$
\begin{aligned}
& \left\lvert\, \Phi^{ \pm}>=2^{-\frac{1}{2}}(|00> \pm| 11>)=2^{-1 / 2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\pm 1
\end{array}\right)\right. \\
& \left\lvert\, \Psi^{ \pm}>=2^{-\frac{1}{2}}(|01> \pm| 10>)=2^{-1 / 2}\left(\begin{array}{c}
0 \\
1 \\
\pm 1 \\
0
\end{array}\right)\right.
\end{aligned}
$$

The Bell states form a complete basis to describe all possible pure states of 2 qubits.
A. Express the following states in the Bell basis:

$$
\begin{aligned}
& \mid a>=2^{-1}(|0>+| 1>) \otimes(|0>-| 1>) \\
& \left\lvert\, b>=2^{-\frac{1}{2}}(|00>+i| 11>)\right.
\end{aligned}
$$

B. Show that $\mid \Phi^{+}>$can be prepared by the following quantum circuit

where the Hadamard gate H is followed by the controlled-NOT gate:

$$
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

2. Prove the following equivalence of logic gate operations

A.

B. \quad SWAP gate exchanges the states of two qubits as $\left.S\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle=\left|\psi_{B}>\otimes\right| \psi_{A}\right\rangle$. Show that $S=\frac{1}{2}\left(1+\vec{\sigma}_{A} \cdot \vec{\sigma}_{B}\right)$, where $\vec{\sigma}_{A}$ is the Pauli matrix acting on the qubit A and is equivalent to the following circuit.

C. Quantum teleportation

Charle holds a qubit in quantum state $\left\lvert\, a>=\binom{\alpha}{\beta}\right.$ and wishes to transfer the state to Bob.
To teleport the state, Alice and Bob begin with $\mid 0>$ and $\mid 0>$ and then share an EPR pair of qubits with the first 2 operations. Show the subsequent operation allows the transfer of the state $\mid a>$ to Bob.

3. First and second quantization

Assume we have 3 bosons, and two are in the ground state $\mid 0>$ and one in the excited state $\mid 1>$. The fully symmetrized wavefunction in the $1^{\text {st }}$ quantization form is given by

$$
\left|\psi_{i}\right\rangle=3^{-\frac{1}{2}}(|0,0,1>+|0,1,0>+| 1,0,0>)
$$

where $|0,0,1>\equiv| \psi_{1}=0>\otimes\left|\psi_{2}=0>\otimes\right| \psi_{3}=0>$ is the direct tensor product of the quantum states of 3 particles.

Let's apply a pulse to the bosons with the Hamiltonian $H=\frac{\hbar \Omega}{2}\left(\sigma_{x} \otimes 1 \otimes 1+1 \otimes \sigma_{x} \otimes 1+\right.$ $1 \otimes 1 \otimes \sigma_{x}$) for a duration of $t_{\pi}=\frac{\pi}{\Omega}(\pi$-pulse $)$ or $t_{\pi / 2}=\frac{\pi}{2 \Omega}(\pi / 2$-pulse $)$.
A. What is the final state of the bosons $\mid \psi_{f}>$ after the pulses?

Now let's reformulate the above in the $2^{\text {nd }}$ quantization form. The initial state can be written as $\left|\Psi_{\mathrm{i}}>=\right| n_{g}=2, n_{e}=1>$, where there are n_{g} particles in the ground state and n_{e} particles in the excited state.
B. Write the final state the pulses in the $2^{\text {nd }}$ quantization form $\mid \Psi_{\mathrm{f}}>$ in the basis of $\mid n_{g}, n_{e}>$.
C. The Hamiltonian in the $2^{\text {nd }}$ quantization form is $H=\frac{\hbar \Omega}{2}\left(a_{g}^{+} a_{e}+a_{e}^{+} a_{g}\right)$, evaluate $\mid \Psi(\mathrm{t})>$ and show that you derive the same final state after pulses as in problem A.
(Hint: Note that the Hamiltonian conserves the total particle number $N=a_{g}^{+} a_{g}+a_{e}^{+} a_{e}$ and thus the wavefunction evolves in the restricted Fock space as $\left|\Psi>=A_{30}\right| 3,0>+A_{21} \mid 2,1>$ $+A_{12}\left|1,2>+A_{03}\right| 0,3>$. You can solve $\left|\Psi_{\mathrm{f}}>=e^{-\frac{i H t}{\hbar}}\right| \Psi_{\mathrm{i}}>$ by diagonalizing the Hamiltonian.)

