Physics 471 – Introduction to Modern Atomic Physics

1. Two-body entanglement

Consider two qubits A and B, the wavefunction can be described by 4 probability amplitudes as $\langle a_{00} \rangle$

$$|\Psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle \equiv \begin{pmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{pmatrix}$$
, and a_{ij} are complex probability

amplitudes.

A product state of the qubits is defined as the direct tensor product of the individual qubit states, and is thus separable and not entangled.

|Product state >=
$$|\psi_A > \otimes |\psi_B >$$

The Bell states are considered as the maximally entangled states of two qubits, defined as

$$\begin{split} |\Phi^{\pm}\rangle &= 2^{-\frac{1}{2}}(|00\rangle \pm |11\rangle) = 2^{-1/2} \begin{pmatrix} 1\\0\\0\\\pm 1 \end{pmatrix} \\ |\Psi^{\pm}\rangle &= 2^{-\frac{1}{2}}(|01\rangle \pm |10\rangle) = 2^{-1/2} \begin{pmatrix} 0\\1\\\pm 1\\0 \end{pmatrix} \end{split}$$

The Bell states form a complete basis to describe all possible pure states of 2 qubits.

A. Express the following states in the Bell basis:

$$|a\rangle = 2^{-1}(|0\rangle + |1\rangle) \otimes (|0\rangle - |1\rangle)$$

 $|b\rangle = 2^{-\frac{1}{2}}(|00\rangle + i|11\rangle)$

B. Show that $|\Phi^+ >$ can be prepared by the following quantum circuit

where the Hadamard gate *H* is followed by the controlled-NOT gate:

$$\mathsf{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2. Prove the following equivalence of logic gate operations

B. SWAP gate exchanges the states of two qubits as $S|\psi_A \rangle \otimes |\psi_B \rangle = |\psi_B \rangle \otimes |\psi_A \rangle$. Show that $S = \frac{1}{2}(1 + \vec{\sigma}_A \cdot \vec{\sigma}_B)$, where $\vec{\sigma}_A$ is the Pauli matrix acting on the qubit A and is equivalent to the following circuit.

C. Quantum teleportation

Charle holds a qubit in quantum state $|a\rangle = {\alpha \choose \beta}$ and wishes to transfer the state to Bob. To teleport the state, Alice and Bob begin with $|0\rangle$ and $|0\rangle$ and then share an EPR pair of qubits with the first 2 operations. Show the subsequent operation allows the transfer of the state $|a\rangle$ to Bob.

3. First and second quantization

Assume we have 3 bosons, and two are in the ground state $|0\rangle$ and one in the excited state $|1\rangle$. The fully symmetrized wavefunction in the 1st quantization form is given by

$$|\psi_i\rangle = 3^{-\frac{1}{2}}(|0,0,1\rangle + |0,1,0\rangle + |1,0,0\rangle),$$

where $|0,0,1\rangle \equiv |\psi_1 = 0 \gg |\psi_2 = 0 \gg |\psi_3 = 0 >$ is the direct tensor product of the quantum states of 3 particles.

Let's apply a pulse to the bosons with the Hamiltonian $H = \frac{\hbar\Omega}{2} (\sigma_x \otimes 1 \otimes 1 + 1 \otimes \sigma_x \otimes 1 + 1 \otimes 1 \otimes \sigma_x)$ for a duration of $t_{\pi} = \frac{\pi}{\Omega} (\pi$ - pulse) or $t_{\pi/2} = \frac{\pi}{2\Omega} (\pi/2$ -pulse).

A. What is the final state of the bosons $|\psi_f\rangle$ after the pulses?

Now let's reformulate the above in the 2nd quantization form. The initial state can be written as $|\Psi_i \rangle = |n_g = 2, n_e = 1 \rangle$, where there are n_g particles in the ground state and n_e particles in the excited state.

B. Write the final state the pulses in the 2nd quantization form $|\Psi_f\rangle$ in the basis of $|n_q, n_e\rangle$.

C. The Hamiltonian in the 2nd quantization form is $H = \frac{\hbar\Omega}{2}(a_g^+a_e + a_e^+a_g)$, evaluate $|\Psi(t) >$ and show that you derive the same final state after pulses as in problem A.

(Hint: Note that the Hamiltonian conserves the total particle number $N = a_g^+ a_g + a_e^+ a_e$ and thus the wavefunction evolves in the restricted Fock space as $|\Psi\rangle = A_{30}|3,0\rangle + A_{21}|2,1\rangle + A_{12}|1,2\rangle + A_{03}|0,3\rangle$. You can solve $|\Psi_f\rangle = e^{-\frac{iHt}{\hbar}}|\Psi_i\rangle$ by diagonalizing the Hamiltonian.)