Physics 471 - Introduction to Modern Atomic Physics

HOMEWORK 6

1. Stability of bosons in the ground state

Before the experimental observation, many considered Bose-Einstein condensation will attract all bosons toward a single quantum state and effectively form a blackhole. Here we consider the stability of the BEC based on N bosons with mass m in a large box with volume $V=L^{3}$.
A. Using the Gross-Pitaevskii equation, $\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(x)+g|\psi|^{2}\right) \psi=\mu \psi$, where $V(x)=0$ inside the box and infinity otherwise, show that for $g=\frac{4 \pi a \hbar^{2}}{m}>0$ the chemical potential approaches $\mu_{1}=\frac{3 h^{2}}{8 m L^{2}}$ in the low density limit and $\mu_{2}=\frac{4 \pi a \hbar^{2} N}{m L^{3}}$ in the high density limit. Argue that in the general case the chemical potential is $\mu \approx \mu_{1}+\mu_{2}>\mu_{1}, \mu_{2}$.
B. For bosons with negative scattering length $g=\frac{4 \pi a \hbar^{2}}{m}<0$, argue that the system becomes unstable (and collapses) when chemical potential drops below zero $\mu \leq 0$. Estimate the critical scattering length and sketch the density distribution $|\psi|^{2}$ when the BEC collapses (For simplicity, you can consider BEC in 1D.)

2. Spontaneous symmetry breaking

Here we consider a simple model of spontaneous symmetry breaking. Consider N bosons with the energy in the $2^{\text {nd }}$ quantization form
$H=\sum_{k} \epsilon_{k} a_{k}^{+} a_{k}+\frac{g}{2} \sum_{k_{1}, k_{2}, k_{3}} a_{k_{3}}^{+} a_{k_{1}+k_{2}-k_{3}}^{+} a_{k_{1}} a_{k_{2}}$,
where ϵ_{k} is the kinetic energy of a boson with momentum k, a_{k} and a_{k}^{+}are the annihilation and creation operators of the boson with commutator $\left[a_{k}, a_{k^{\prime}}^{+}\right]=\delta_{k k^{\prime}}$, and the summations go over all momenta $-\infty<k_{i}<\infty . g>0$ is the coupling constant.
A. Assume the kinetic energy has a single minimum $\epsilon_{k}=k^{2}$ at $k=0$. Show that the ground state is $|g>=| n_{k=0}=N, n_{k \neq 0}=0>$ and the ground state energy is $\langle H>=<g| H \mid g>=$ $\frac{g}{2} N(N-1)$, where N is the particle number.
B. Assume the kinetic energy has 2 mimina $\epsilon_{k}=\left(k^{2}-1\right)^{2}$ at $k= \pm 1$, do bosons condense into one of the minima or a superposition of the two?

Let's start with the assumption N_{+}atoms have momentum $k=1$ and N_{-}atoms have momentum $k=-1$, and the total number is conserved $N_{+}+N_{-}=N$. Thus the system is described by $\mid N_{+}, N_{-}>$. Evaluate the energy of the system $<H>=<N_{+}, N_{-}|H| N_{+}, N_{-}>$and determine the combination of N_{+}, N_{-}that gives the lowest energy?
C. Have we found the ground state in B? Assume $N=3$, and thus the ground state can be expressed in the basis of $|3,0>,|2,1>| 1,,2>$ and $| 0,3>$. Minimize the energy and compare the ground state with the result you got in B.?
D. Can you draw a conclusion from the above on the condition that bosons would spontaneously break the reflection symmetry $k \leftrightarrow-k$ at low temperatures when there is degeneracy in the ground state?

