Feshbach resonance P471

Scattering in ΘM I (10. p) e iki from the source of the sour

Wovefunc 4= finc + 45 $= e^{ikz} + f(0,\phi) - \frac{e^{ikr}}{r}$ = e^{ikz}+ Z fem Tom e^{ikr}

For low energy scattering only s-wave scattering with L=m=0 dominates. $l=2 \int \int l=1 \frac{l(l+1)}{pR^{2}}$ Contritugal barrier R interationic separation VIR) mol. putential (K->0) When incident energy << 100 pt. only sware is left.

Consider only s-ware eikz = - + + (l+0 torma)

Unchadring scatterer
$$\mathcal{Y} = \frac{1}{r} \left[e^{-ikr} - s e^{ikr} \right]$$

S is the scattering matrix $S = e^{is\delta}$
 $\Rightarrow \mathcal{Y} = \frac{1}{r} \left[1 - e^{is\delta} \frac{s^{ikr}}{s^{ikr}} \right] = \frac{-2i}{r} sin(kr+\delta)$
 $\mathcal{Y}(R) \Rightarrow int.$
 $\mathcal{Y}(R) \Rightarrow int.$
 $\mathcal{Y}(R) \Rightarrow scattering layth a$
In the limit of long vanleyth $k \rightarrow 0$. $\mathcal{Y} \rightarrow sin(r-a)$
 $\Rightarrow lim S = -ka$
More rigoroachy $a = \lim_{k \rightarrow 0} -\frac{1}{k \cdot s \delta}$
 $s = T/4$
 $\delta = 3T/4$
 $\delta = 3T/4$

This is also called potential resonance.