$D F T$ and $F T$
When discrete, equally spaced data is given as $x_{0}, x_{1} \ldots x_{N-1}$
fast fourier transform is defined as

$$
K_{j}=\sum_{l=0}^{N-1} x_{l} e^{-i 2 \pi j l / N} \quad j=0 \cdots N-1
$$

inverse FFT is

$$
x_{l}=\frac{1}{N} \sum_{j=0}^{N-1} k_{j} e^{i 2 \pi j l / N} \quad l=0 \ldots N-1
$$

This equation defines the meaning of $K_{j}$ :
$\frac{K_{j}}{N}$ is the coefficient of the term $e^{i 2 \pi j l / N}=e^{i 2 \pi \frac{l}{N j} \text { whose frog is } 2 \pi j / N}$
If the step size of $X_{e}$ is $\Delta x$, the period is $\frac{N}{j} \Delta x$. frog $\alpha \pi j / N \Delta x$
Application: Given a discrete sample of $f_{l}=f(\Delta t l), l=0 \cdots N-1$
What do we know abate its spectrum $f(\omega)=\frac{1}{2 \pi} \int f(t) e^{-i \omega t} d t$
from the discrete $F T \quad A_{j}=\sum_{l=0}^{N-1} f_{l} e^{-i 2 \pi j l / N}$ ?

$$
\begin{array}{rlrl}
f(t) & =\int f(\omega) e^{i \omega t} d \omega \\
f_{l} & =\int f(\omega) e^{i \omega l \Delta t} d \omega \\
A_{j} & =\sum_{l=0}^{N-1} \int f(\omega) e^{i \omega l \Delta t} e^{-i 2 \pi j l / N} d \omega & \\
& =\int f(\omega) \sum_{l=0}^{N-1} e^{i \omega \Delta t l} e^{-i 2 \pi j l / N} d \omega & & \\
& =\int f(\omega) \frac{1-e^{i \alpha N}}{1-e^{1 \alpha}} d \omega & & \\
& \equiv \int f(\omega) g\left(\omega \omega_{j}-\omega\right) d \omega & & e^{N=1} e^{N} e^{i \alpha l}=\frac{1-e^{i \alpha N}}{1-e^{i \alpha}} \\
& =\int f(\omega) e^{i(N-1) \alpha / 2} \frac{\sin N \alpha / 2}{\sin \alpha / 2} d \omega & & \omega_{j}=2 \pi j / N \Delta t \\
& =\int f(\omega) g\left(\omega-\omega_{j}\right) d \omega & & e^{i N \alpha / 2}\left(e^{i N \alpha / 2}-e^{-i N \alpha / 2}\right) \\
e^{i \alpha / 2}\left(e^{i \alpha / 2}-e^{-i \alpha / 2)}\right.
\end{array}
$$



Assume $f(\omega)$ is a slow-vanging function

$$
\begin{aligned}
& \Rightarrow A_{j}=\frac{2 \pi}{\Delta t} \sum_{k=0 . \pm 1 \cdots} f\left(\omega_{j}\right.+2 \pi k / \Delta t) \\
& \text { for } 0 \leqslant \omega_{j} \leqslant \pi / \Delta t \quad A_{j} \approx \frac{2 \pi}{\Delta t}\left[f\left(\omega_{j}\right)+f\left(\omega_{j}-\alpha \pi / \Delta t\right)\right] \\
&=\frac{2 \pi}{\Delta t}\left[f\left(\omega_{j}\right)+f^{*}\left(\omega_{N-j}\right)\right] \\
&\left(\text { for seal } f_{l}\right) \Rightarrow A_{N_{-j}}=\frac{2 \pi}{\Delta t}\left[f\left(\omega_{N-j}\right)+f^{*}\left(\omega_{j}\right)\right] \\
& A_{j}=A_{N_{-j}}^{*}
\end{aligned}
$$

$$
\omega_{j}=2 \pi j / N \Delta t
$$

Conclusion
Given a disnete data set of length $N: f_{l}=f(x=l \Delta x), l=0 \cdots N-1$

$$
\text { DFT a FFT gives } \begin{array}{rlrl}
A_{j} & =\sum_{l=0}^{N-1} f_{l} e^{-i 2 \pi j l / N} \\
& =\int f(\omega) e^{i(N-1) \alpha / 2 \sin N \alpha / 2} \frac{\sin \alpha / 2}{\sin } d \omega \quad & \alpha=\left(\omega-\omega_{j}\right) \Delta t \\
& \approx \frac{\partial \pi}{\Delta t}\left[f\left(\omega_{j}\right)+f^{*}\left(\omega_{N-j}\right)\right] & \omega_{j}=2 \pi j / N \Delta t
\end{array}
$$

