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ABSTRACT

This thesis reports on in situ probing of two-dimensional (2D) quantum gases of 133Cs atoms

with tunable inter-atomic interactions. With spatially resolved in situ density measurements, the

experimental work described in this thesis presents detailed studies on local equilibrium proper-

ties, near-equilibrium fluctuations and correlations, and non-equilibrium transport in 2D samples

prepared near the critical points of continuous phase transitions. Specifically, we investigated the

Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition in the bulk and the superfluid-to-Mott

insulator transition in an optical lattice.

The enabling experimental techniques include a new vacuum chamber design which permits

a large numerical aperture for high resolution microscopy, a new approach of implementing all-

optical cooling of cesium atoms to Bose-Einstein condensation (BEC), and the fabrication of a

novel 2D optical trap. In particular, a fast and runaway evaporative cooling is realized using a

tilted optical potential, allowing the production of a large atom number BEC in only 2∼4 s. A

novel two-dimensional “pancake”-like optical trap is subsequently employed to convert a BEC

into a monolayer of 2D quantum gas. This trap can be smoothly transformed into a 2D square

lattice potential, simulating the paradigmatic Bose-Hubbard model.

Using this 2D trapping potential, we realize the superfluid-to-Mott insulator quantum phase

transition in two dimensions and report the direct observation of incompressible Mott-insulating

domains in deep lattices. Investigations on dynamics across the superfluid-insulator transition

are presented, in which we observed anomalously slow mass transport and statistical evolution,

indicating prolonged global many-body time scales across the insulator quantum phase transition.

For weakly interacting 2D Bose gases without the 2D lattice potential, we report on the ob-

servation of universal scaling behaviors in samples prepared at different temperatures and various

interaction strengths. We confirm the scale invariance due to the intrinsic scaling symmetry of 2D

gases and the universality near the BKT superfluid transition. A growing density-density corre-
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lation in the BKT critical region was observed and analyzed, and the static structure factors were

extracted.

The experimental schemes and analysis methods we developed in this thesis to determine the

universal scaling behaviors, fluctuations, correlations, and transport properties can be applied to

other strongly correlated many-body atomic systems near a continuous phase transition. They form

an important set of tools for our future objectives to study both the static and dynamic properties

of quantum critical gases in optical lattices.
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CHAPTER 1

INTRODUCTION

1.1 Toward universal quantum simulation

Cold alkali atoms, with their internal structures and collisional properties known to high accuracy,

offer a clean and highly controllable platform boosting tremendous advances in areas of metrology,

quantum information science, and precision measurements [1]. The realization of Bose-Einstein

condensation (BEC) [2, 3, 4] further opened up a new era of ultracold atomic physics, offering

unprecedented opportunities in studying novel quantum many-body phenomena, many of which

were traditionally studied in the context of condensed matter physics, nuclear physics, or were

proposed without real wold analogy.

The appealing features in an ultracold atomic system are that the atoms are well isolated from

the environment, yet can be coherently manipulated by means of electromagnetic fields; the dilute-

ness of the sample permits a simple and universal description in the two-body interacting potential

[5], while the strength of the interaction parameter can acquire great tunability via, e.g., the mag-

netic Feshbach resonances [6]. The size of the system can vary from just a few particles to a large

number (typically 105 atoms) approaching the thermodynamic limit; the constituent particles can

be chosen to be bosons, fermions or even heterogeneous mixtures. At ultracold temperatures, both

quantum and thermal fluctuations manifest at low enough energy scales that near-equilibrium dy-

namics can potentially be monitored with enhanced spatial and temporal resolutions. Building on

these features, one can assemble complex many-body or few-body Hamiltonians from bottom (sin-

gle particle level) to top (many-body level) with great tunability and even adjustable dimensional-

ity. The behavior of quantum gases can be studied with great detail in well controlled experimental

conditions and be directly compared to results derived from analytical theories or first principle

(ab initio) calculations, providing benchmarks or even challenges to our understanding of complex
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quantum many-body or few-body systems.

For many years, condensed matter systems were the sole laboratory test ground of modern

field theories. Now with the realization of bosonic and fermionic matter wave fields, ultracold

atomic systems are among the strongest candidates toward the realization of a universal quantum

simulator, envisioned by Richard Feynman almost 30 years ago [7]: “It’s been noted time and

time again that the phenomena of field theory (if the world is made in a discrete lattice) are well

imitated by many phenomena in solid state theory (which is simply the analysis of a latticework

of crystal atoms, and in the case of the kind of solid state I mean each atom is just a point which

has numbers associated with it, with quantum-mechanical rules). For example, the spin waves in

a spin lattice imitating Bose-particles in the field theory. I therefore believe it’s true that with a

suitable class of quantum machines you could imitate any quantum system, including the physical

world.”

The past decade has presented astonishing advancements toward this goal. Interacting Bose

condensates were loaded into a periodic lattice potential formed by crossing and interfering laser

beams [8] to simulate the paradigmatic Bose-Hubbard model [9, 10]; clean signatures of superfluid-

to-Mott insulator quantum phase transitions in one-, two-, and three-dimensional lattice geometries

have been observed through drastic changes of coherence properties in thr time-of-flight momen-

tum distributions [8, 11, 12, 13]. The use of optical lattice potentials has since triggered many

research activities [14], particularly on low-dimensional systems, which often exhibit intriguing

quantum many-body phenomena. A one dimensional lattice potential is used to form a series of

quasi-two dimensional traps, which slice a condensate into multiple copies of two-dimensional

quantum gases [15]. The Berezinskii-Kosterlitz-Thouless transition [16, 17] of ultracold Bose

gases was studied using matter wave interference [18], vortex counting [19], and interferometric

measurements [20]. On the other hand, a two-dimensional lattice potential can fragment the con-

densate into multiple independent one-dimensional clouds, each realizing a system of 1D bosons.

Fermionization of bosons in the Tonks-Girardeau limit [21, 22], has been observed in the strong
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interaction regime through measurements of momentum distributions [23], thermalization proper-

ties [24], and photo-association rates [25]; the quantum phase transition from a Luttinger liquid to

a Mott insulator in one dimension has recently been observed through measurements of transport

properties and excitation spectra of 1D Bose gases [26].

1.2 Current technical limitations

Despite demonstrations of various paradigmatic condensed matter models, current experiments

mostly concentrate on bulk measurements after time-of-flight (TOF) expansions. Although ex-

cellent in revealing phase coherence and momentum distribution in quantum gases, time-of-flight

measurements present bulk properties of atomic samples and suffer from the inhomogeneity of

external trapping potentials. Interpretations of these results often require close comparison with

theoretical calculations. From TOF images, extracting information about the homogeneous model

systems is a challenging task in current ultracold atomic experiments, especially for systems pre-

pared in strongly-correlated regimes, where thorough theoretical understandings remain elusive.

Probing atomic samples in situ presents an ideal way to offer complementary information to

TOF measurements, as the in-trap atomic density distribution is preserved during the time of detec-

tion. This is implemented by shining a short laser pulse, and imaging the shadow or fluorescence

photons emitted by trapped atoms [27].

There are, however, difficulties for imaging bulk gases in situ. The first strong limitation is

that one can only obtain column density distributions when imaging a three-dimensional object. A

column density measurement again suffers from the trap inhomogeneity, as it presents an integrated

property along one of the trap axes. The second difficulty is that degenerate quantum gases are

optically dense. Therefore, standard absorption imaging yields a very limited dynamic range in

the atomic density detection. Only light atomic species, such as lithium atoms, which become

quantum degenerate at lower densities permit in situ measurements in the bulk. Phase contrast
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imaging is often the only solution to image heavier and optically dense samples [27].

Many innovative methods attempted to overcome the above limitations, notably microwave

tomographic imaging [28] and density reconstruction using inverse Abel transformation [29, 30,

31]. Since many useful local information is lost in an averaged measurement, investigating near

equilibrium fluctuations and non-equilibrium dynamics using these methods also remains non-

trivial.

1.3 Our approach –in situ imaging of two-dimensional quantum gases

We aim at resolving the aforementioned difficulties by in situ imaging in a new configuration. Our

approach, accomplished in this thesis, is to realize a tunable many-body system in a monolayer

of two-dimensional (2D) quantum gas, in which the atomic motional degree of freedom along the

imaging axis is frozen to its quantum zero-point motion. Interesting thermodynamics and quantum

physics therefore only manifest themselves in the 2D plane. Images of such 2D samples do not

suffer from the axial inhomogeneity. The optical density is reasonably close to the order of unity,

permitting large dynamic range for density detection. It would allow a single snapshot, revealing

a precise in-trap density distribution (see Fig .1.1). We perform in situ absorption imaging with

a high resolution microscope objective1 to obtain images of atomic samples with a micron-sized

resolution, retaining the resolving power of many-body correlations.

In the 2D configuration, a spatially resolved in situ density measurement offers tremendous

advantages in studying both equilibrium and non-equilibrium dynamics of many-body systems.

In equilibrium, assuming the local density approximation, a weakly trapped atomic sample can

be divided into many locally homogeneous subsystems. We can assign a local chemical potential

to each subsystem according to its trap potential energy and turn the remaining 2D trap inhomo-

1. Experiment groups in Harvard [32] and MPQ [33] explored single-site resolved 2D quantum gas microscopy
based on fluorescence imaging inside a 2D lattice formed by optical molasses. This technique yields binary detection
due to radiative loss.
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Figure 1.1: Illustration of in situ imaging of a 2D quantum gas. Due to the 2D geometry, the atomic
distribution can be fully captured in a single snapshot image.

geneity into a great advantage: performing spatially resolved local density measurements reveal

a wealth of information on the many-body phase diagram with many values of local chemical

potentials. Moreover, a spatially resolved in situ probe also allows sensitive detection of near-

equilibrium density fluctuations and their spatial or even non-equal time correlations,2 which is

crucial in revealing collective and statistical behaviors of a many-body system [34, 35, 36, 37].

We also gain the opportunity to monitor non-equilibrium dynamics by applying controlled local-

perturbations to the sample to extract local transport properties of underlying many-body phases

[38], which is a rarely explored territory in ultracold gases.

We use cesium-133 bosonic atoms to form highly tunable 2D quantum gases. Cesium has very

rich collisional properties [39] and is ideal for studies that requires tunable atomic interactions.

We use the lowest energy hyperfine spin state to produce a highly stable quantum fluid [40]. Its

atomic interaction strength can be smoothly adjusted from strongly attractive to strongly repulsive,

over three orders of magnitude, using a broad Feshbach resonance at low magnetic fields [39].

2. This would require an implementation of phase contrast imaging.
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Moreover, there are narrow Feshbach channels convenient for efficient creation of molecules [41,

42, 43]. There exist universal three- [44] and four-body [45, 46] bound states near an Efimov

resonance [44], forming a nice testbed for universal few-body physics.

1.4 Physical phenomena of interest

Our aim is to study many-body physics in strongly correlated systems which could not be resolved

in the time-of-flight bulk measurements. Some of these systems can be found near critical regions

of continuous quantum or classical phase transitions where competing orders lose their dominance

over the many-body state and the system develops strong fluctuations and correlations. A quantum

phase transition, driven by quantum fluctuations, happens at zero temperature, whereas a clas-

sical phase transition happens at a finite temperature and is driven by thermal fluctuations. We

are particularly interested in finite temperature quantum and classical critical fluctuation regimes,

where both static and dynamic behaviors of thermodynamic observables near their critical values

can develop universal dependence on the thermal energy or the thermal de Broglie wavelength

with proper scalings [47, 48, 49, 50]. The universal behavior, classical or quantum, is expected to

be described by the Ginzburg-Landau type of effective field theories which capture physics of an

emerging order parameter as well as its critical fluctuations and spatial correlations. While both

classical and quantum criticality might be studied in a unified view, a quantum field model often

carries intriguing time evolution dynamics in addition to the spatial correlations in its classical

counterpart [51, 49, 52]. Studying these critical behaviors has been a challenging topic and is cur-

rently heavily investigated in various systems such as heavy fermion metals [53, 54] or high-Tc

superconductors [55, 56].
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Figure 1.2: Illustration of the phase diagram of the superfluid-to-Mott insulator quantum phase
transition in two dimensions, shown as a function of the temperature T and a tuning parameter
g. The tuning parameter can either be chosen as chemical potential µ or the ratio between the
tunneling energy t and the on-site interaction U . At zero temperature, the transition happens at
g = gc. At finite temperatures, the system shows quantum critical behavior in the V -shape region
bounded by the two dashed lines. The BKT phase boundary is shown as a solid line, separating the
superfluid phase and the normal gas (thermal disorder) phase. Classical criticality exists within a
finite region near the BKT transition boundary.
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1.4.1 The Berezinskii-Kosterlitz-Thouless superfluid transition and the Mott

insulator-to-superfluid transition in a 2D quantum gas

A tunable 2D quantum gas should provide us great opportunities to realize both classical and

quantum phase transitions as well as to investigate their critical behaviors. The classical phase

transition in the proposed 2D system is the Berezinskii-Kosterlitz-Thouless superfluid transition

(BKT-transition) [16, 17], where a superfluid with quasi-long range order emerges from thermal

disorder. The quantum phase transition is the superfluid-to-Mott insulator transition predicted by

the Bose-Hubbard model [9], where a superfluid (SF) with long range order competes with a Mott

insulator (MI) of localized commensurate boson density. A SF-MI transition can be realized by

loading a 2D quantum gas into a 2D square optical lattice. Inside the lattice, both the classical

and the quantum criticality can coexist. The homogeneous phase diagram of SF-MI transition

is illustrated in Fig. 1.2, where a BKT transition boundary also departs from a zero temperature

SF-MI quantum critical point and extends to the high temperature region. Developing a thorough

understanding on criticality of the BKT transition and the SF-MI transition in two dimensions is

one of the major scientific goals of our experiment.

1.5 Overview of the thesis

The work of this thesis started with building a new cesium apparatus toward a partial realization of

its scientific goal. We realized the SF-MI transition in a 2D quantum gas and observed the emer-

gence of an incompressible MI domain. We then developed experimental tools to study dynamics

of mass transport and statistical evolution across the SF-MI phase boundary. We further diverged

our research focuses separately into studying classical as well as quantum criticality. I studied the

BKT transition and its classical critical phenomena, where we confirmed the universal description

of a classical Ginzburg-Landau field theory and observed growing correlations in the critical fluc-

tuation region. I then developed analysis tools to study density-density correlations and the static
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structure factors of 2D quantum gases. Investigation on quantum criticality near the SF-MI tran-

sition as well as quantum critical dynamics are ongoing projects and some of the discussions will

appear as an outlook of this thesis. Below, we briefly summarize topics covered in each chapter.

• Chapter 2 will be a review of the cesium apparatus. Descriptions on laser cooling to high

phase space density will be given.

• Chapter 3 describes the realization of a tilted-evaporation scheme, with which we achieve

fast and runaway evaporative cooling to BEC. In this research, we overcome the speed limi-

tation in conventional dipole trap cooling techniques, and reach BEC in as few as 2 seconds

by using only a large volume crossed dipole trap.

• Chapter 4 describes the experimental scheme of making and probing 2D quantum gases,

with an introduction on properties of 2D Bose gases. Our method of producing a monolayer

of 2D gas, implementation of a 2D square optical lattice, as well as techniques of in situ

absorption imaging of 2D gases will be introduced.

• The first in-situ observation of an incompressible Mott insulating domain will be presented

in Chapter 5. We observed the SF-MI transition by identifying a “wedding cake” density

structure in a 2D gas after turning on a deep optical lattice. We extract local properties such

as compressibility and density fluctuations in both the SF and MI regimes. We also found

qualitative validation on the fluctuation-dissipation theorem.

• Investigations on dynamics across the SF-MI transition is described in Chapter 6. Through

ramping on the lattice potential fast enough to violate global adiabaticity, we studied mass

transport and statistical evolution of an atomic gas crossing the SF-MI transition. We identi-

fied very long global equilibration time scales as compared to local tunneling and interaction

time scales.
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• Chapter 7 presents the observation of scale invariance and universality in 2D Bose gases,

where we confirmed that the equation of states and the density fluctuations measured at dif-

ferent temperature, chemical potential, and interaction strength can be rescaled and mapped

to four universal behaviors. Through these measurements, we also detect the growing density-

density correlations in the fluctuation region and the superfluid region across the BKT phase

boundary, which is deeply related to the fundamental fluctuation-dissipation theorem, form-

ing the topic of the next chapter.

• In Chapter 8, we present an analysis on density-density correlations and static structure

factors of 2D quantum gases. At long length scales, our measurements agree with the

fluctuation-dissipation theorem; at shorter length scales, our measurements reveal the cor-

relation lengths of interacting 2D quantum gases and possibly their collective excitation

spectrum. The presented work and the analysis tool should make in situ imaging technique a

desirable tool to study the finite temperature density response of interacting quantum gases.

• I will finally discuss in Chapter 9 the outlook of this experiment. With an apparatus capable

of studying quantum gas with high spacial resolution, there are many possibilities opened up

for future investigations, notably quantum critical scaling and quantum critical dynamics.
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CHAPTER 2

EXPERIMENTAL SETUP

In this chapter, we describe details of the cesium apparatus. We will give a brief overview on prop-

erties of cesium atoms, followed by technical descriptions of the vacuum system, the diode laser

system, the computer control, the imaging system, and the magnetic field control. Based on these

apparatuses, we perform conventional laser cooling and trapping, as well as degenerate Raman

sideband cooling, magnetic levitation, and dipole trapping of ultracold cesium gases, discussed in

the second half of this chapter following the actual experimental order.

2.1 Cesium-133 atom

Cesium-133 is the only stable bosonic isotope of the cesium atomic species. It has a nuclear spin

I = 7/2 and an unpaired electron at the outermost shell. The electronic ground state 62S1/2 of the

unpaired electron has two hyperfine levels F = 3 and F = 4 with an energy splitting corresponding

to an exact frequency of 9.192631770 GHz (the clock transition). The first excited states in the

6P -orbital are the fine structure doublets 62P3/2 and 62P1/2, separated by a frequency splitting

of 16.6 THz. Hyperfine splittings in the excited states are smaller at 150∼250 MHz between the

62P3/2 hyperfine states (denoted by F ′ = 2, 3, 4, 5) and 1 GHz between the 62P1/2 hyperfine

states (F ′ = 3, 4). The optical transitions from the ground state to the 6P fine structure doublets,

62S1/2 → 62P3/2 and 62S1/2 → 62P1/2, are abbreviated as the D2 and D1 line transitions,

respectively. The D2 line has the strongest cycling transition, and is the leading option for optical

cooling of cesium atoms. The D1 line will only be discussed in optical trapping using far off

resonant lasers. Figure 2.1 shows the detailed D2 line hyperfine structure as well as the central

frequencies of the diode lasers, which we built for laser cooling experiments.
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Figure 2.1: Cesium-133 ground state and D2 line hyperfine structure. F and F ′ denote the total
spin quantum number of the 62S1/2 and 62P3/2 states, respectively. gF is the Landé g-factor. The
black arrow marks the main optical transition for laser cooling and imaging; red arrows mark the
central frequencies of the diode lasers (discussed in Section 2.3).

2.1.1 Cesium collisional properties

Throughout the thesis work, we produce cesium quantum gases using the absolute lowest energy

ground state, |F = 3,mF = 3〉 (abbreviated as |3, 3〉), of which the inelastic two-body processes

are fully suppressed at low temperatures [57, 39]. Atomic two-body elastic collisions can be fully

described by the s-wave scattering length a [5], which is known to vary smoothly at low magnetic

fields [39] due to a wide Feshbach resonance located at B ≈ −12 G [39, 6].

A Feshbach resonance occurs when the energy of two colliding free atoms is tuned very close

to a molecular bound state. The scattering length of free atoms can therefore be modified through

resonant coupling to the bound state [6]. A Feshbach resonance can be induced through adjust-

ing the background magnetic field, since the molecular states typically have different magnetic

moments from that of the free atoms and the energy difference can be adjusted by the magnetic
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Zeeman shift.

Cesium has a very rich bound state structure near the scattering continuum, and its scattering

length is highly adjustable even at very low magnetic fields [39]. The weakly bound molecular

structure near the scattering continuum has been pinned down using high resolution Feshbach

spectroscopy [57, 39], or directly measured using magnetic moment [42], microwave frequency

[42], and radio frequency spectroscopy [58]. These measurements enabled precise calculations of

cesium collisional properties [59, 60, 39, 58]. Figure 2.2 shows |3, 3〉+ |3, 3〉 scattering length and

bound state energies at low fields [39]. For B = 0 ∼ 150 G, the smooth variation of scattering

length a can be well fit using a formula [39, 44]

a

a0
= (1722 + 1.52 B/G)

(
1− 28.72

B/G+ 11.74

)
(2.1)

where a0 = 0.53 Åis the Bohr radius. In particular, Eq. (2.1) characterizes well the scattering

length near the zero crossing at 17.1 G [39, 61], and is used in our experiment to calculate a for

B = 0 ∼ 50 G. Note that Eq. (2.1) does not include features from other low field narrow Feshbach

resonances, notably a g-wave resonance around 19.84 G and a d-wave resonance around 47.8 G.

Near these narrow resonances, the scattering length can be described by a generalized form

a

abg
= 1− ∆

B −B0
, (2.2)

where abg is the background scattering length at the location of resonance, ∆ is the effective

resonance width, and B0 is the resonance position. For example, an analysis of experiment data

[58] determined that the d-wave resonance at B0 = 47.78(1) G has an effective width of ∆ =

0.16(1) G.
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Figure 2.2: Scattering length and bound state energies for |3, 3〉 + |3, 3〉 atoms as functions of the
background magnetic field. Reprinted figure with permission from Ref. [6]. Copyright 2010 by
the American Physical Society.

2.1.2 Inelastic collision loss

For experiments at high densities, inelastic collisions can create a loss of atoms and release energy

into the sample. Since all two-body inelastic processes are forbidden in collisions between atoms

polarized in the |3, 3〉 state, the dominant collisional loss process is three-body recombination.

Ultracold three-body recombination loss is itself an interesting property of cesium atoms.

When three-body recombination occurs, two out of the three colliding atoms form a molecule,

releasing its binding energy, which causes the third atom and the molecule to be lost from the trap.

The rate of three body recombination is characterized by the loss equation ṅ
n = L3n

2, where L3

is the loss coefficient and n is the atomic density. In the low temperature limit, the recombination

molecules are weakly bound near the continuum, and their binding energy follows the universal

form Eb = ~2/ma2 . Here, ~ is the Plank constant divide by 2π and m is the cesium atomic mass.
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Figure 2.3: Three-body recombination length ρ3 = ( 2m√
3~
L3)1/4 = 1.36C1/4as of the |3, 3〉 state.

Reprinted by permission from Macmillan Publishers Ltd: Nature Ref. [44], copyright 2006.

It can be shown that the loss coefficient L3 follows the universal a4-scaling relation [62, 63, 64]

with L3 = 3C~a4/m, where C(a) is a coefficient showing additional oscillatory dependence on a.

The coefficient C has an upper bound C+ for a > 0 and a lower bound C− for a < 0. At negative

a, C is larger than for positive a [64, 44]. For positive scattering lengths, C+ ≈ 70 is theoretically

predicted [63, 64, 65] and experimentally measured [66, 44].

The oscillatory behavior of C(a) originates from quantum interference with a set of universal

three body bound states. These bound states were first predicted by Vitaly Efimov [67, 68] in

the context of nuclear physics. The value of C is expected to oscillate at multiples of scattering

lengths a− < 0 and a+ > 0. Here, a− denotes the scattering length at which the first Efimov trimer

resonantly couples to the free atomic state, while a+ denotes the smallest positive scattering length

at which Efimov trimers destructively interfere in the atom-dimer decay channels [63, 64, 65].

Universal Efimov bound states appear whenever a/a± = 22.7l, ∀l ∈ N, and there will be a strong

enhancement or suppression in the three-body recombination rate.

The universal a4 scaling behavior in L3, as well as the Efimov resonant maximum and interfer-
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ence minimum in C(a) have been observed in cesium ultracold gases polarized in the |3, 3〉 state

[66, 44]. The measured loss rates are plotted in Fig. 2.3, where we see that L3 can be adjusted

remarkably by over six orders of magnitude. The three-body loss minimum at a = 210 a0 ren-

ders a loss coefficient similar to other alkali species, and has been identified as an ideal place for

evaporative cooling to Bose-Einstein condensation [40]. Moreover, in later chapters we shall see

that fast three-body losses due to an Efimov resonance can be converted into experimental probes

inside optical lattices. Note also that, in Fig. 2.3, the data are taken from thermal gas experiments.

For condensate atoms, we expect the loss coefficient to be 1
3! times smaller than the values shown

here.

2.2 Vacuum system

For BEC experiments, it is necessary to operate under an ultra high vacuum (UHV) environment.

Nevertheless, we also need a bright atomic source, which inevitably requires a high background

vapor pressure, to reach a sufficient number of trapped atoms within an experimentally accessible

time. In order to maintain the pressure difference between the two regions, it is standard to design a

UHV cell (the science chamber) connected to a differential pumping region, and then to the atomic

source (the oven). In our setup, a Zeeman slower tube connects the oven and the science chamber,

which not only serves as a differential pump but also provides a region for laser slowing of the

axial velocity of the atomic flux, which increases the loading efficiency of the magneto-optical

trap (MOT) in the science chamber. It then becomes fairly easy to maintain UHV pressure in the

science chamber using an ion pump and a titanium sublamation pump. Our vacuum system is

illustrated in Fig. 2.4.
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Figure 2.4: Schematic of the vacuum system.

2.2.1 Cesium oven

Our cesium oven design employs the combination of a hot vapor cell and a cold trap that offers

high cesium atomic flux while maintaining a low partial vapor pressure. Our cesium vapor cell

contains five grams of cesium metal stored in a glass tube (Pyrex). The cesium metal is heated

to 60◦C, producing a vapor pressure of 3 × 10−5 torr. The temperature throughout other parts

of the vapor cell is kept slightly higher than that of the glass tube to prevent unnecessary transfer

of cesium metal inside the cell. Hot cesium atoms are only allowed to leave the cell through two

apertures (1 mm radius, heated to > 80◦C) attached to both ends of a 3” long nipple tube, resulting

in a collimated atomic beam ejecting from the oven and traveling along the Zeeman slower tube

toward the center region of the science chamber. The nipple tube is thermal-electrically cooled to

0◦C, forming a cold trap which absorbs background cesium vapors and reduces the vapor pressure

to below 10−7 torr. The oven is connected to an intermediate chamber (2.75 cubic inch) through

a gate valve that can seal the vacuum for future maintenance in the cesium oven. A motor-driven

wobble stick, fed through a flexible bellow, can be used to block the atomic beam during the

experiment. The pressure inside the intermediate chamber is < 10−9 torr, maintained by an ion

pump (Gamma Vacuum: 40S-CV-2D-SC-N-N) at a pumping rate of 40 L/s.
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2.2.2 Zeeman slower

Following the intermediate chamber is the Zeeman slower. The Zeeman slower is a long, thin tube

surrounded by tapered magnetic coils, connecting the science chamber and the cesium oven. The

Zeeman slower tube offers differential pumping to UHV in the science chamber; the tapered coils

generate a spatially varying magnetic field for laser cooling, discussed in Section 2.7.1. The tube

is 7 mm in diameter and is 40 cm long, supporting a low vacuum conductance of 0.06 L/s. The

gas throughput, from the cesium oven to the science chamber, is less than 6× 10−11 torr-L/s. The

slower tube connects to the science chamber through a 1-1/3” conflat flange (CF) bellow.

2.2.3 Science chamber

The schematic of the science chamber is shown in Fig. 2.5. The main chamber is a stainless steel

spherical octagon (Kimball Physics MCF600-SO200800). Eight 2.75” CF side ports are mounted

with six broadband coated viewports (MDC: fused silica, 1.5” clear aperture) and two ZnSe view-

ports mounted at opposite sides of the chamber for dipole trapping using a CO2 laser. The top and

bottom ports are mounted with recessed viewports (Special Techniques Group: 4 mm thick Spec-

trosil 2000 fused quartz) with a 30 mm clear aperture; both inner surfaces of the top and bottom

viewports are 0.5” from the center of the chamber. Eight additional 1-1/3” CF ports are custom

milled between the 2.75” CF ports for additional optical access, with ±13◦ tilt angles. Seven ports

are mounted with 0.75” clear aperture viewports (MDC: fused silica) and one is counted to the

Zeeman slower tube through a flexible bellow.

All 17 viewports are reserved for optical access. The connection to an additional UHV pump

region is through an elbow-tube-viewport assembly; see Fig. 2.5. The bottom viewport is welded

onto a vacuum tube, which is inserted into a 90 degree elbow and is shaped and welded onto a hole

at the outer radius of the elbow (see Fig. 2.5 for detail). One end of the elbow is mounted to the

bottom port of the science chamber and the other end is mounted to a 100 L/s ion pump (Gamma
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Figure 2.5: Cross section of the science chamber and the vacuum conducting elbow.

Vacuum: 100L-DI-6D-SC-US110-N). This assembly still permits a large cylindrical region con-

ducting vacuum between the chamber and the ion pump. The bottom viewport is accessible from

inside the tube, whose open end is conveniently located at 4.5” above the optical table. An addi-

tional advantage of this design is that the elbow, together with two other supporting pillars, lifts the

chamber above the UHV pump region, permitting a full 360◦ optical access around the chamber.

2.2.4 UHV pump region

A titanium sublimation pump (TSP) is attached to the end of the 100 L/s ion pump, offering further

UHV pumping capability. A large 6” CF tube is mounted to the ion pump, providing large pumping

surface area. Three titanium filaments (Gamma Vacuum) are inserted for sublimation coating of

the tube. A separate ionization gauge (Varian Vacuum Technology: UHV-24P Extended Range,

dual thoria-iridium filaments) is used to measure the pressure.
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2.2.5 Preparation of vacuum system

All stainless steel components of the science chamber are ultrasonically cleaned, assembled, and

then baked at a high temperature (350◦C) for two weeks to remove deeply trapped molecules

under the surface of the stainless steel (with gases pumped out using a turbo pump). Before high

temperature baking, the CF ports are sealed with blank flanges and the permanent magnets in the

ion pumps are removed. After the baking, we remove the blank flanges and put on the fused silica

viewports. The Zeeman slower assembly (which was pre-baked at a lower temperature 180 ◦C),

the science chamber, and all optical viewports are separately prepared and are put together after

the high temperature baking. The whole system is leak-checked using a helium leak detector

(Adixen ASM 142) to ensure all components are sealed for UHV. We then bake the entire system

under 180◦C for another two weeks. During the baking, the roughing port is shut off and the ion

pumps are activated. The filaments of the TSP are then activated several times during the baking

to help pump the vacuum. After the system is cooled down, the pressure of the ionization gauge

reads < 3 × 10−12 torr. Considering the finite vacuum conductance of the elbow, we expect the

background pressure in the science chamber is ∼ 10−11 torr. The UHV has lasted for five years

without significant degradation.

2.3 Diode laser system

In this section, we describe the diode laser systems for driving cooling and imaging transitions.

The relevant experiment stages are Zeeman slowing, MOT/molasses cooling, degenerate Raman

sideband cooling (dRSC), and absorption imaging. In each stage, we need one main beam driving

the cooling or imaging transition, and one repump beam to empty the atomic population accumu-

lating in the unwanted hyperfine ground state. During the stage of dRSC, an additional laser beam

is needed to form a near-detuned optical lattice. In Table 2.1, we summarize all atomic transitions

driven in each individual stage.
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Table 2.1: D2 line cooling and imaging transitions
Experiment stage Main Repump Detuning
Zeeman slowing F = 4→ F ′ = 5 F = 3→ F ′ = 4 -100 MHz
MOT and molasses F = 4→ F ′ = 5 F = 3→ F ′ = 4 -15∼-80 MHz
dRSC F = 3→ F ′ = 2 F = 4→ F ′ = 4 <1 MHz
dRSC (optical lattice) F = 3→ F ′ = 4 -22 GHz
Imaging F = 4→ F ′ = 5 F = 3→ F ′ = 4 0

Five diode lasers are built to drive the optical transitions listed in Table 2.1. Four exter-

nal cavity-feedback diode lasers (ECDLs) deliver laser beams at stable frequencies with narrow

linewidths. One free running diode laser offers high power at 150 mW, and is injection-locked by

one ECDL laser to narrower linewidth.

The ECDLs are set up according to the Littrow configuration. The part number of the laser

diodes is JDS Uniphase SDL-5411-G1. The diode temperature and injection current are feedback-

locked to provide a stable lasing frequency. The temperature is fixed at around 18◦C, two degrees

below the room temperature. At the output of each ECDL, beam ellipticity and astigmatism is

corrected by an anamorphic prism pair (Thorlabs) to an 1/e2 beam diameter of ∼1 mm. A dual

stage optical isolator (Isowave: I-80-U4) is placed closely after the prism pairs to block possi-

bly retro-reflected beams back to the diode. The nominal output power of the ECDLs are set to

20∼40 mW and the free running wavelengths are tuned to desired values near 852.335 nm (Re-

pumper), 852.356 nm (MOT and Reference), and 852.390 nm (dRSC master). Reference, MOT and

Repumper frequencies are feedback-stabilized to within MHz linewidth using different schemes.

The free running diode laser (dRSC slave) is built using a JDS Uniphase SDL-5420-G1 diode,

capable of generating 150 mW maximum output power. Except for the grating feedback, the setup

follows those implemented in an ECDL. A tunable dual stage optical isolator (Isowave: I-80-T4-

H) with escape ports is used, with which we couple a few microwatt of the dRSC master beam into

the dRSC slave diode and create a forced oscillation inside the laser cavity (injection-lock). The

injection-locked dRSC slave is used to form the optical lattice in the dRSC stage.
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The frequency of Reference is stabilized at +320 MHz detuned from the F = 4 → F ′ = 5

(abbreviated as 4 → 5′) transition using a room-temperature vapor cell and polarization spec-

troscopy [69]. This is done by first splitting a weak beam from the Reference, and then shifting

its frequency by −320 MHz using second-order double pass through an 80 MHz acousto-optic

modulator (AOM) before directing the beam for spectroscopy. The spectrum of the polarization

spectroscopy is asymmetric and the amplitude strongest at the 4→ 5′ transition. It is used as an er-

ror signal for the injection current and the piezo voltage feedback control. Setup of the polarization

spectroscopy follows that implemented in Ref. [70]. The +320 MHz frequency shift in Reference

is manifested in the locking scheme of MOT, discussed later.

MOT and Repumper are frequency stabilized to drive D2 line transitions from the F = 4

and F = 3 hyperfine ground states, respectively. We stabilize and control the MOT frequency

by interfering the MOT and Reference beams on a fast photodiode (Hamamatsu G4176-03), and

locking their beat note frequency fb. We obtain the feedback error signal by feeding a beat note

fb ÷ 1020 ÷ 4 (frequency divider: RF BAY, FPS-1020-4; ripple counter: 74HC393) to a phase

locked loop (PLL) chip (LM565), and measure the VCO voltage of the PLL chip. The VCO

free-running frequency in the PLL chip is tuned to 140 kHz with a hold-in range of ±60%. This

corresponds to a tunable range of fb ≈ −230 ∼ −920 MHz (with the frequency of MOT smaller

than the frequency of Reference), which is sufficient to cover all transition frequencies to the D2-

line hyperfine manifold. The Repumper frequency is similarly locked and controlled, except that

the beat note is at microwave frequencies 8.4±0.6 GHz and is first subtracted by 9.1 GHz, using

a mixer and a local oscillator (Jersey Microwave: PLDRO-9100-1210) referenced to a 10 MHz

rubidium frequency standard (SRS: FS725), before sending it through the frequency divider and

PLL lock circuit.

We split the MOT and Repumper beams into multiple paths for use in different cooling and

imaging stages, as shown schematically in Fig. 2.6. Each beam is frequency shifted and intensity

modulated by an AOM, and is directed to the science chamber via a single mode, polarization-
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Figure 2.6: Actual layout of the diode laser system. All beams are coupled to optical fibers for the
following purposes: Magneto-optical trap (MOT), Zeeman slowing (ZS), dRSC optical pumping
(OP), dRSC optical lattice (dRSC), imaging (IMG).

maintaining optical fiber. To reach a high extinction ratio, a mechanical shutter is used to com-

pletely block the beam. The typical power attenuation through these components is 1∼2 dB. To

gain sufficient power to drive 4 → 5′ transitions with the MOT cooling and Zeeman slowing

beams, we use a tapered amplifier (Sacher Laser: TEC400), seeded by a 20 mW MOT beam, to

increase the laser power to 300 mW (Max:500 mW). We also mix the seed beam with a 1 mW

Repumper beam such that the amplified output contains a weak 3→ 4′ repump frequency compo-

nent. The tapered amplifier is protected by an optical isolator, after which the amplified output is

further separated into two parts: one beam is frequency shifted by +80 MHz, serving as the MOT

cooling beam; the other is used as the Zeeman slowing beam. Quite unexpectedly, the tapered am-

plifier output has a TEM01-like double-peak structure, which is bad for fiber coupling. This forces

us to reshape the beams using prism pairs and to redistribute the power within the double-peak

structure, through adjusting the seed beam angle, to maximize their coupling efficiency into the

optical fibers. The coupling efficiency is no better than 45%.
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2.4 Computer control

Computer control offers precise manipulation of experimental parameters such as laser frequen-

cies, laser intensities, and magnetic field strengths in a synchronized order. A schematic diagram of

the computer control is illustrated in Fig. 2.7. A computer (Dimer) is equipped with four National

Instrument PCI-boards, listed below, to generate analog output and digital (TTL) voltages.

• One 32-channel, 20 MHz digital I/O board (PCI-6534). Outputs 5V TTL signals.

• Two 8-channel (1 MS/s per channel), 12-Bit analog I/O boards (PCI-6713). Resolution is

20 V/212 = 4.883 mV. Both are triggered by channel 1 of the DIO board.

• One 32-channel (45 kS/s per channel), 13-Bit analog output board (PCI-6723). Resolution

is 20 V/213 = 2.441 mV. Triggered by channel 2 of the DIO board.

Dimer runs a program (written in LabVIEW) which takes a list of experimental control sequences,

converts them into digitized update tables, and uploads the tables into the on-board FIFO memories

of the output boards as well as various other instruments. The digital board clocks the experiment,

generating TTL signals in pre-programed waveforms. Two channels are reserved to trigger three

analog boards; the rest of the channels are used to trigger other instruments. Upon receiving a

trigger signal from the digital board, an analog board updates voltages in every channel according

to the update table stored in the on-board FIFO memory. Due to the slow PCI data transfer rate, we

limit the size of update tables to the size of on-board FIFO memories to prevent interruption during

an experiment cycle. Currently, we do not suffer from this limitation since our experiment does not

involve many ramps that require an excessive number of updates. New models using PCI express

or PXI bus have sufficient data transfer rates, and remove such a limitation. Field-programmable

gate array (FPGA) boards have now also become a popular choice for fast, realtime programmable

outputs.
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Figure 2.7: Schematic diagram of computer control, data processing, and data storage.

Another computer (Quatromer) is used to collect all experimental out data, such as CCD im-

ages, and perform simple on-the-fly analyses using a lab-developed analysis program. At the end

of an experiment cycle, Dimer sends the table of experiment sequences through Ethernet to Qua-

tromer and the analysis program saves the image, experiment sequences, and pre-analyzed data

into the database in binary format.

2.5 Imaging system

The major detection method in our experiment is absorption imaging. Details on absorption imag-

ing will be covered in Chapter 4 and we only discuss here the experimental technical setups.

We use two imaging systems to probe the atomic density distribution: one vertical setup is for

high resolution in situ imaging through the top viewport; one horizontal setup, imaging through a

side viewport, is for regular time-of-flight absorption imaging.

2.5.1 Horizontal imaging

In the horizontal imaging path, two lenses (GRADIUM plano-convex, focal lengths: 125 mm

for front lens and 150 mm for back lens) forming telescope pairs are used to image the atoms
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onto a CCD camera (Andor DU-434-BV). The camera and the lenses are mounted separately

on the optical table. The position of camera is adjusted using a translational stage. The image

magnification is 1.2, calibrated using atomic free fall under gravity. Image resolution is limited by

the CCD pixel size to 13 µm/1.2 = 10.8 µm.

The horizontal imaging beam shares an optical path with the MOT beam in the y-direction as

well as the y-dipole trapping beam. See Fig. 2.15 for a schematic of the optics and discussion in

Section 2.7.2 for more details.

2.5.2 Vertical imaging optics

In the vertical imaging path, we gain a much larger numerical aperture since the top viewport

is only 0.5” away from the center of the chamber. We use a commercial long working distance

(34 mm), M Plan APO microscope objective (Tech-specialties, OKHNL10) with a coating for

near-infrared (NIR) wavelengths. Transmission is 91% for 852 nm wavelength. The numerical

aperture is N.A. = 0.28 and the resolution is 1.8 µm for 852 nm. Image magnification is 10×

when combining the objective with a 200 mm standard tube lens optics. We use the InfiniTube

standard with an additional 2×amplifier to form the back tube lens system. Both optics are coated

for NIR (99 % total transmission). The total image magnification is 20×.

Image resolution and magnification were bench-tested using a 1951 USAF test target as well as

using absorption images of thermal atoms. Results from the latter method differ from the test target

result for reasons discussed in Chapter 8, where we extract the image point spread function and

modulation transfer function from 2D thermal gases. In Chapter 4, we discuss the determination

of the image magnification using the recoil velocity of atoms diffracted off from a lattice potential.

The vertical imaging beam (σ+ polarization) shares an optical path with the vertical MOT σ−

beam; see Fig. 2.14. We insert two thin polarization optics, a wire grid polarizer (Meadowlark,

VersaLight) and a λ/4-waveplate (CVI zero-order quartz) between the objective and the top view-
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port. The principal axis of the optics are aligned such that the MOT beam can be reflected while

the imaging beam is transmitted. The transmission is around 70 % for 0◦ angle of incidence (AOI)

and drops to about 50 % at 15◦ AOI, which slightly influences the modulation transfer function of

the imaging optics (see Chapter 8). Replacing the quartz waveplate with a polymer waveplate can

maintain constant transmission up to an AOI as large as 30◦. For orientation of the polarization

optics, see Fig. 2.14.

The objective and the back tube lens are mounted onto the CCD camera (Andor DU-434-

BRDD), which is supported by a 3D translational stage for focusing as well as aligning atoms to

the center of field-of-view. The whole assembly is then mounted directly onto the science chamber

for mechanical stability.

2.5.3 CCD cameras

We use back-illuminated CCD cameras for improved high quantum efficiency. An Andor CCD

camera DU-434-BRDD has 90 % quantum efficiency at 850 nm and is used on the vertical imaging

path. An Andor camera DU-434-BV with 70 % quantum efficiency is installed on the horizontal

path. The CCD chips in both cameras have the same physical size (1024×1024 pixels, 13 µm2 per

pixel), clock rate, and readout noise. Yet, the BRDD model is deep depletion processed to enhance

sensitivity on NIR photons. However, it suffers more from dark current noise and needs to operate

at temperatures much below 0◦C.

In both cameras, we utilize the factory fast kinetics mode to record two images, with and

without the atomic absorption, separated only by a short time (∼ 20 ms). The typical readout time

of a CCD chip is about a second, limited by the speed of the A/D converter (set to 1 MHz). Fast

kinetics mode allows the use of a smaller number of rows on the CCD chip to take multiple images

separated only by a few milliseconds of vertical shift time, and followed by a final single readout.

This is useful for imaging fast processes or improving fringe cancellations. In our experiment, we
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apply a metallic mask to block image light from two-thirds of the CCD chip and configure the

camera to run the fast kinetics mode for taking two images with 341×1024 pixels each. To take

the first image, we trigger the camera to start recording photo-electrons (meaning stop the cleaning

cycle) for 100 µs and simultaneously pulse on the imaging beam (pulse width 15 ∼ 40 µs). After

100 µs, the camera shifts the photo-electron charge distribution by 341 rows down to the masked

region and then waits for the second trigger. The shift time is about 4.4 ms, which equals the

number of rows times the vertical shift speed of 13 µs/row. After a certain wait time (typically

around 20 ∼ 30 ms to ensure all atoms are gone), we repeat the trigger and imaging pulse to take

the second image. After this, both images are shifted down to fill the entire mask-protected area,

followed by the final slow readout.

In general, one can apply a mask to cover n/(n + 1) part of the CCD chip and operate the

fast kinetics mode to record n consecutive images. This can be useful for future non-destructive

measurements using phase contrast imaging.

Interline CCD cameras can also operate similarly to fast kinetics mode with two images of full

CCD size. In our earlier experiment, we used a PixelFly QE interline CCD camera from PCO

imaging, configured to run the factory double shutter mode. The advantage of an interline CCD

is that every row of pixels has a nearby row of storage pixels under a built-in mask. With only a

microsecond of shift time, the CCD can be ready for a second exposure. Another advantage of an

interline CCD is the short cleaning cycle ∼1 ms compared to 22 ms of the back-illuminated chips

in Andor cameras. Despite these advantages, the quantum efficiency is only ∼ 15 % at 850 nm,

which is unfavorable for in situ imaging with large image magnification; see Chapter 4.

2.6 Magnetic field control

In an ultracold cesium experiment, controlling the magnetic field is primarily required for manipu-

lating atomic collision properties. The field needs to be stable to within a few milligauss to access
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certain narrow Feshbach resonances and has to switch fast enough to offer a sufficient time window

for monitoring fast collision processes. Since magnetic field trapping is not required in a cesium

experiment and several magnetic Feshbach resonances are accessible within a magnetic field of

0 ∼50 G, we adopted a fairly simple design of magnetic coils and built a stable and agile current

servo.

2.6.1 Magnetic coils

We use a pair of air-cooled magnetic coils, running currents in a superposition of Helmholtz and

anti-Helmholtz configurations, to generate a magnetic field offset as well as a field gradient along

the vertical (z-)direction. The coils have 35 windings each, wound using 2 mm square magnet wire

and filled with strong holding epoxy (Stycast 2850FT, catalyst 23LV) in each layer. The inner and

outer radii are 23.7 mm and 35.8 mm, respectively (cross section: 12.1 × 12.2 mm2). The coil

inductance is Lc =27 µH. The coils are individually attached to a polycarbonate mount. One is

mounted onto the top port of the science chamber; the other one is supported by stable cage rods

beneath the bottom port. The coils are located 17 mm (measured from the bottom of the coils)

above and below the center of the science chamber without direct point contact with its parts.

Together the coils produce a field gradient of

B′ = 1.6∆I G/cm · A, (2.3)

for ∆I = I1 − I2 being the difference of currents running in top (I1) and bottom (I2) coils, and a

field offset of

Bo = 6.7Ī G/A, (2.4)

for Ī = (I1 + I2)/2 being the average current in the two coils. During most of the experiments,

the average coil temperature is around 30 ◦C. When continuously running currents at 13.5 A and
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generating an offset field Bo = 100 G, the coils temperature rises to 55 ◦C. Air-cooling is consid-

ered sufficient since most of our experiments run at much lower currents and at a much lower duty

cycle.

In addition to the top and bottom quadrupole coils, three pairs of bias coils run static currents to

null the background magnetic field at the center of the chamber, as well as providing fine bias field

controls in the x−, y−, and z−directions during experiments; the x, y, z coils have 50, 70, and

50 turns, respectively, and are configured to run currents in the same orientation, offering 2.1, 1.8,

and 5.9 G/A in each pairs. These coils are driven by Howland current sources formed by power

op-amps (Apex PA12) and are feedback stabilized. The current switching time is about 1 ms.

2.6.2 Magnetic field stabilization

We built a bipolar current servo providing currents flowing in both orientations for the top and bot-

tom quadrupole coils. Each coil-servo loop consists of two power MOSFET (IXYS, IXFN80N50P)

current mirrors connected with the magnetic coil as shown in Fig. 2.8. The current flowing through

the MOSFETs is provided by an Agilent 6657A running at supply voltage Vs = ±8 V. Each power

MOSFET runs a 10 A bias current and drives the magnetic coil symmetrically above and below the

bias point. Under this configuration, the current slew rate could be limited by the supply voltage

to dI/dt = Vs/Lc = 0.3 A/µs in both upward and downward slews. To mitigate this limitation,

two transformers are installed into the current loop to effectively cancel the coil inductance during

the current slew. This way, the slew rate is boosted by the breakdown voltage V brds � Vs of either

side of the two MOSFETs and dI/dt = V brds /Lc ≈ 4 A/µs. The mirror FETs (IXTP) are chosen

to match the threshold voltage of the power MOSFETs with a large channel-width ratio, offering

high current gain and good linearity. To achieve good current stability, feedback is provided by a

current sensor through measuring the potential drop (instrumentation amplifier INA103) across a

10 mΩ shunt resistor (Canadian Shunt), connected in series with the magnetic coil. The closed-
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Figure 2.8: Schematic diagram of the current servo loop (for one coil). Q1A(B): mirror FETs,
Q2A(B): power MOSFETs, LC: magnetic coil, RM: shunt resistor. Transformers are connected in
series to the coil, as illustrated.

loop bandwidth is 30 kHz. An independent current sensor monitors the long term current stability

to be < 20ppm. The Fast current feedforward is achieved by running the mirror with a cascode

FET (IRF9610). The cascode is powered by a Howland current source formed by power op-amps

(Apex PA12), supplying as large as 3 A of feedforward currents.

We stabilize the currents in the quadrupole coils, I1 and I2, and therefore the field offset Bo

and gradient B′ according to values of Ī = (I1 + I2)/2 and ∆I = I1 − I2 set by the voltages

of computer analog output (AO) channels. Either Ī or ∆I is determined by the sum of two AO

channel voltages Vcoarse and Vfine, with the latter electronically rescaled by a factor of 0.01. The

conversion from the control to the actual fieldBo and gradientB′ is initially calculated through the

electronic gain in the circuit board and the coil geometry. The control voltage resolution for Vfine is

2.4 mV, corresponding to a fine increments of 1.6 mG in the offset field and 0.8 mG/cm in the field

gradient. To achieve higher precision, we calibrated the value of the computer controlled offset

magnetic field using microwave spectroscopy and found a precise conversion formula to within

0.7 mG; see later discussion in magnetic field calibration.
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A variation of background magnetic field is present in the lab due to nearby elevators, which

adds a 7 mG uncertainty to the magnetic field offset in the vertical direction. To detect the back-

ground field variation in the vertical direction, a magnetic flux sensor is placed at an angle of∼ 35◦

relative to the coil axis, which is tested to be blind to the vertical component of the dipole pattern

generated by the coils. A feedback controlled current flowing through a 5’×5’ wire loop is used to

remove the field variation caused by the elevators.

2.6.3 Magnetic field calibration

The magnetic field can be very well calibrated using microwave spectroscopy on the |3, 3〉 to |4, 4〉

transition, which has the largest difference in the magnetic Zeeman splitting and, therefore, is most

sensitive to the offset magnetic field. The energy of a ground state |F = 7
2 ±

1
2 ,mF 〉 is calculated

using the Breit-Rabi formula [71]

EF,mF
=

∆Ehfs
2

+ gIµBmFB ±
∆Ehfs

2

(
1 +

mFα

2
B + α2B2

)1/2
, (2.5)

where ∆Ehfs = h×9192.63177 MHz is the ground state hyperfine splitting, gI = −0.000398854

is the nuclear g-factor, µB = h× 1.39962481 MHz/G is the Bohr magneton, α =
(gJ−gI)µB

∆Ehfs
, and

gJ = 2.00254032 is the ground state fine structure Landé g-factor. To the leading order expansion,

the above formula gives a linear Zeeman shift ∆Ez = gFmFµBB, where gF = gI±(gJ−gI)/8 ≈

±1
4 is the hyperfine Landé g-factor for F = 4 and F = 3 ground states.

A. Microwave spectroscopy

To calibrate the magnetic field, we perform microwave spectroscopy on polarized |3, 3〉 atoms held

inside the dipole trap with an offset field Bo and zero gradient B′ (set by computer control). We

apply microwaves for > 50 µs and then perform absorption imaging to detect population in the
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|4, 4〉 state. Once we determine the resonant frequency, it can be used to infer the actual offset field

Bo using Eq. (2.5).

The microwave is created using a 9.1 GHz carrier band mixed with an adjustable radio fre-

quency signal. The carrier is created by a PLDRO (Jersey Microwave) referenced to a 10 MHz

rubidium frequency standard. The radio frequency component is generated by a function gen-

erator (Agilent 33250A), whose output is frequency-doubled and low-pass filtered. The mixed

microwave is amplified using a solid state amplifier (MITEQ: AMF-6B-06001800-70-40P-PS)

and is emitted through a microwave horn placed near a viewport of the science chamber. The

microwave amplitude is adjusted through a PIN diode switch which controls the amplitude of the

radio frequency signal to the mixer.

The conversion from the computer control voltage Vcoarse and Vfine to the actual field Bo is

determined to within 0.7 mG in the range of 0 ≤ Bo ≤ 80 G,

Bo(Vcoarse, Vfine) = Bbg − 67.046G/Volt× (1.0001Vcoarse + 0.00977Vfine), (2.6)

where Bbg is an offset (∼ 170 mG) weakly depending on B′ and background field (variation

∼ 5 mG). The value of Bbg is calibrated on a daily basis.

B. Feshbach spectroscopy

An alternative field calibration method is through performing high resolution Feshbach spec-

troscopy. One convenient loss channel is located at Bo = 19.840(4) G with a narrow width of

40 mG [72]. We repeated the measurement and found good agreement on the location of this

resonance compared to our microwave calibration. The Feshbach resonance location is frequently

used to recheck our field calibration to within 4 mG. Figure 2.9 shows a sample scan. The atomic

sample is first prepared inside a tight 2D optical trap and a background magnetic field of 17.7 G.

The field is then switched to a designated value near 19.8 G to induce three-body recombination
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Figure 2.9: Feshbach spectroscopy of a g-wave resonance around 19.84 G.

loss. After 1.4 ms of hold time, the field is switched back to 17.7 G and the remaining atomic

population is detected using resonant absorption imaging. The Feshbach resonance location is

determined by fitting the center of the valley in the loss spectrum. The loss feature in Fig. 2.9 is

slightly asymmetric because the field is scanned from below the resonance location.

2.6.4 Fast magnetic field switching by pre-emphasis control

Despite a fast current slew in the coil-current servo loop, the actual magnetic field switching time

can be limited by the decay time scale of the eddy currents. This can put strong limitations on ex-

periments intended to measure fast collision dynamics. To mitigate this problem, we electronically

limit the slew rate of the offset magnetic field control to 0.3 G/µs, 1 generating a fixed ramp rate for

offset field switching, and use a pre-emphasis circuit to calculate the necessary current overshoots

to compensate the field contribution from eddy currents.

Accompanying every magnetic field switch, eddy currents are induced in the metallic parts of

1. Only the slew rate of the offset field control is electronically limited.
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or near the science chamber. They generate a magnetic field that slowly decays in millisecond time

scales. The pre-emphasis creates a controlled overshoot on top of a current slew to compensate

the field contributions from the eddy currents, bringing the magnetic field switch profile closer to

the ideal one. To correct the magnetic field pulse profile to leading order, the overshoot consists of

several signals Ip, each of which is a high-pass filtered version of the ideal switch profile Is. The

time constant τ of each high-pass filter matches the decay time constant of a certain eddy current.

Ip satisfies İp +
Ip
τ = Gİs, where G is the gain in the high-pass circuit. On the other hand, an

eddy current Iε induced by the field switch is determined by İε + R
L Iε = −ML İs, where R is the

resistance of the object generating the eddy current, L is its self-inductance, and M is the mutual

inductance. Compensating the field requires τ = L/R and G = MΩ/(L + MΩ), where Ω is a

geometric factor determining the ratio of magnetic field per unit current between the object and the

coil.

We match the time scales and the amplitudes of the controlled overshoots using magnetic field

pulse profile measurements. We determine the time scales of the eddy currents by generating a

current pulse and measuring the corresponding magnetic field pulse profile using a Hall sensor

near the bottom viewport. Figure 2.10 shows a measurement of a magnetic field pulse from 19 G

to -18 G. The measured field pulse profile can be well fit by two exponential decays with time

constants 0.2 ms and 1.1 ms. The slow ramps in the magnetic field are the contributions from the

eddy currents, whose time constants are to be matched by the pre-emphasis circuit. After setting the

time constants, the amplitude of the overshoot current can be determined by directly minimizing

the magnetic field pulse error using microwave spectroscopy on atoms polarized in the |3, 3〉 state.

We have adjusted the pre-emphasis circuit such that the field can be stabilized to less than 2%

within 400 µs. Figure 2.11 shows a sample magnetic field pulse profile with a designated 0.3 G to

17.5 G field jump. Clearly the slow eddy current contribution is removed and the remaining time

constant of 100 µs is close to the time scale associated with the slew-rate limited pulse slope.
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Figure 2.10: Magnetic field pulse profile (circles) generated without the pre-emphasis control.
The ideal pulse profile (blue solid line), calculated according to the measured current pulse in the
quadrupole coils, is plotted for comparison. The magnetic field is measured by a Hall sensor placed
beneath the bottom viewport. The current pulse is measured through an independent Hall current
sensor in the current servo. After the current slew has ceased, a fit with two exponential decays
(red solid line) reveals magnetic field contributions from eddy currents with time constants 0.2 and
1.1 ms.

2.7 Laser cooling

In this section, we briefly summarize several laser cooling schemes carried out in our experiment.

We describe experiment setups of the Zeeman slower, the magneto-optical trap and optical mo-

lasses, and finally the degenerate Raman sideband cooling.

2.7.1 Zeeman slowing

In the Zeeman slower, the atomic beam is slowed down by a counter-propagating laser beam,

whose frequency is kept resonant to the atomic transition by a spatially varying magnetic Zeeman

shift compensating the Doppler shift. Inside the slower, an atom saturated by the resonant laser

beam feels a constant deceleration az = ηs~Γ/2λm, where ~ is the Plank constant h divided by
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Figure 2.11: Magnetic field pulse profile from 0.3 G to 17.5 G (indicated by the dashed line)
with pulse error minimized by the pre-emphasis circuit. The magnetic field is determined through
microwave spectroscopy on the |3, 3〉 state. The microwave pulse length in the spectroscopy is
100 µs, as shown in the horizontal error bar. The solid line is a single exponential fit with a time
constant of 96 µs. The inset shows the field with a larger time window. The field ceased to evolve
at times t > 0.5 ms after the pulse initiates.

2π, Γ = 2π × 5 MHz is the transition linewidth, λ = 852 nm is the laser wavelength, and m is the

cesium atomic mass; ηs is a safety factor, a constant less than unity, which parametrizes the ratio

between the actual photon scattering rate and its ideal value Γ/2, and can be incorporated into the

design in the Zeeman slower. A parabolic-shaped magnetic field is required to match the Doppler

shift seen by atoms moving under constant deceleration,

B(z) =
h

∆µ

(
∆ +

1

λ

√
v2
i − 2azz

)
, (2.7)

where z is the axial position in the Zeeman slower, ∆µ = ±µB depends on the polarization of

photons driving 4 → 5′ cycling transition, ∆ is the laser detuning at zero-field, and vi is the

maximum axial velocity of atoms that can be Zeeman-slowed. Ignoring transverse heating and

other imperfections, atoms with initial axial velocity v ≤ vi entering the slower leave this region
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with a final velocity v ≈ vf =
√
v2
i − 2azL, where L is the length of the slower.

We design our Zeeman slower, with a safety factor ηs = 0.5, capable of slowing atoms with

axial velocities v ≤ vi = 152 m/s to vf = 42 m/s, within the capture velocity of the MOT. A

cesium atomic beam with a mean axial velocity of v = 230 m/s therefore ends up with more than

15 % of its population trappable by the MOT, in sharp contrast with an estimated < 1% without

the Zeeman slowing. The parameters used for designing the slower are summarized in Table 2.2.

A detuning ∆ = −100 MHz is employed to prevent the Zeeman slower laser from interfering with

the MOT operating simultaneously in the science chamber.

Table 2.2: Zeeman slower parameters
Parameter Designed value Optimized value

Slower tube length L 40 cm
Cesium oven temperature 80 ◦C

Safety factor ηs 0.5 0.82
Laser detuning ∆ -100 MHz -93 MHz

Velocity range for slowing (vf ∼ vi) 42∼154 m/s 50∼205 m/s
Atomic flux in MOT capture range < 9× 108 s−1 8×108 s−1

(ignoring transverse heating)

We designed tapered magnetic coils, running 1 A currents, to generate the desired parabolic

field profile, computer program-optimized to within a half linewidth everywhere inside the Zeeman

slower. The Zeeman slower field and the tapered coil design are shown in Fig. 2.12. Since the

field profile has a zero crossing within the slower, the two coils are facing from the tapered end.

Before the slower tube is assembled onto the chamber, we wind the coils directly onto the tube

using square magnet wire (width 2 mm) filled with epoxy in each layer. A bias coil (4mm by

40cm), designed to offer a uniform bias field at 13.2 G/A, is first wound onto the slower tube. The

tapered coils are then wound on top of the bias coil. Two additional thin coils, designed to run 3 A

currents, are wound to both ends of the Zeeman slower to enforce a sharp rise of local magnetic

field. We measured the Zeeman slower field running under designated currents and found very
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Figure 2.12: Zeeman slower magnetic field: design (solid line), measurement (red circle), and the
tapered-coil design (color bars). Shaded curve indicates the magnetic field calculated using the
designed parameters listed in Table 2.2; the width corresponds to the FWHM of the transition line
width. Applied currents are 3, 1, -1, and -3 A from segment 1 to 4.

good agreement to within a half linewidth; see Fig. 2.12.

The actual Zeeman slower parameters are optimized by maximizing the measured slow atomic

flux with the MOT quadrupole field turned on. The Zeeman-slowed atomic flux is measured in

the science chamber with a weak probe beam crossing the atomic beam at a small angle. We

scanned the probe beam frequency to measure the absorption spectrum, thus detecting the velocity

distribution and obtaining the total atomic flux. We found rather different parameters from those

of the original design. We run the bias coil with a rather high current at 3.4A, generating a bias

field at 45 G; the tapered magnetic coils run currents of 1.2 A (segment 2) and -1 A (segment 3),

respectively; the last thin coil (segment 4) runs a current of -0.91 A while the first one (segment 1)

runs 0 A (it does not influence the flux). The slower laser detuning is optimized to around−93 MHz

while the flux mildly saturates at a laser power around 25 mW. We detected an absorption peak

centered around v ≈ 50 m/s with its peak area corresponding to a flux rate of 8×108 atom/s. With

the MOT lasers also turned on, we found a better MOT loading rate (10 % larger) when arranging

the Zeeman slower field in the direction opposite to the quadrupole field at the entrance of the

MOT region. Figure 2.13 illustrates the actual magnetic field configuration.

We can explain these changes after plotting the axial magnetic field generated by the new
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Figure 2.13: Optimized Zeeman slower magnetic field and the MOT quadrupole field. Plotted
field (solid line) is the axial component along the yellow line in the three-dimensional drawing.
The shaded curve indicates the magnetic field calculated using the optimized parameters listed
in Table 2.2; the width corresponds to the FWHM of the transition line width. Currents in coil
segments 1 to 4: 0, 1.2, -1.0, and -0.91 A. The current in the bias coil is 3.4 A.

currents; see Fig. 2.13. We observe that, with the added bias field and the increased field slope,

the field matches very well with a profile that cools a velocity group ranging between 50 m/s and

205 m/s with a larger safety factor ηs = 0.82. Our tapered coil design is compatible with a variable

safety factor, and gives us room for improving the flux rate in the real experiment, enhancing the

total population available for MOT cooling and trapping (by almost a factor of 2 when compared to

that of the original configuration). Last, we suspect that the MOT loading is better under this field

configuration because the entrance MOT field acts as a negative Zeeman slower field to continue

slowing down the atomic flux.
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2.7.2 Magneto-optical trap and optical molasses

Entering the science chamber, Zeeman-slowed cesium atoms are cooled and captured inside the

magneto-optical trap (MOT). A MOT consists of a magnetic quadrupole field with three pairs

of counter-propagating laser beams, red-detuned to the 4 → 5′ transition, and crossing at the

field center. The polarization of each beam, before crossing at the center of the quadrupole field,

is arranged to be σ− relative to the local magnetic field. Under this configuration, atoms feel

both a damping force due to the Doppler cooling effect and a restoring force due to preferentially

scattering local σ− photons inside the quadrupole field [73].

Once a sufficient number of atoms are trapped inside the MOT, the quadrupole field can be

removed and the detuning and intensity of the laser beams can be further adjusted to form an

optical molasses where polarization gradient cooling takes place [74, 75]. In the molasses, sub-

Doppler effects can further cool the atom temperature down to a few microkelvin.

The setup of the MOT optics is illustrated in Fig. 2.14 and Fig. 2.15, and is described as follows.

The MOT laser beams are derived from a single fiber which couples light from the output of the

tapered amplifier. The beam has a total power of 60 mW, containing both 4 → 5′ main transition

and 3 → 4′ repumping frequencies. It is split into three beams with 1” diameters entering the

science chamber in the x−, y−, and z−directions, and the beams are retro-reflected to create six

beams for MOT. The size of each beam is adjusted by a telescope formed from a pair of plano-

convex lenses and is made slightly converging to compensate for the intensity drop after passing

through the atomic cloud. The z− (y−) MOT beam shares the same beam path with the vertical

(horizontal) imaging beam; they are combined and split by polarization beam splitters at both sides

of the chamber. In the z−direction, in particular, a 1.1 mm thick wire grid polarizer (Meadowlark,

VersaLight) is used to retro-reflect the MOT beam and transmit the vertical imaging beam. Four

45◦ dichroic coated mirrors (reflects 1064 nm, and transmits 852 nm) are placed near the view

ports in the x− and y−directions such that the MOT beams can share the same optical access with
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the dipole trapping beams (wavelength: 1064 nm). At each side of the chamber in the x− and

y−beam paths, we place a half-waveplate, in addition to a quarter-waveplate, to compensate for

the ellipticity in the MOT beam polarization, introduced from passing through the dichroic mirror.

We tweak optical alignment and experiment parameters both to improve the MOT loading rate

and the atomic density after the molasses cooling. The MOT beam detuning is set to −14 MHz.

The quadrupole field is produced by the top and bottom coils running at B′ = 15 G/cm. When the

oven temperature is set to 80 ◦C, producing a high flux rate at 109 atom/s, the MOT atom number

can saturate at 109 atoms after 5 seconds of loading time. We nevertheless optimize according to

the number density, leading to 2 × 108 saturated atom number. For typical experiments, we set

the oven temperature lower at 60 ◦C, producing a reduced flux rate at 2 × 108 atom/s, and load

for two seconds to obtain ∼ 4 × 107 atoms. The MOT-captured cloud has a temperature around

40 µK. After the MOT loading stage, we turn off the Zeeman slower laser and the currents in the

Zeeman slower coils, and compress the atomic cloud for 30 ms using an increased field gradient

B′ = 27 G/cm and MOT laser detuning −27 MHz. After this, we perform molasses cooling for

2 ms by shutting off the magnetic field gradient and increasing the MOT laser detuning further

to −110 MHz. The molasses-cooled cloud has a much lower temperature of 10 µK with a peak

density around 1011 cm−3. The root-mean-square radius of the atomic cloud is around 0.5 mm,

ideal for loading into the Raman sideband cooling 3D optical lattice, whose 1/e2 beam radius is

around 1 mm.

2.7.3 Degenerate Raman sideband cooling (dRSC)

We apply three dimensional (3D) dRSC after the MOT and molasses stages to further cool down

the atoms and spin polarize them to the |3, 3〉 state. The basic ingredient of dRSC is detailed in

Ref. [76, 77] and is described here. Thermal atoms are first optically pumped into the F = 3

hyperfine ground state, and then are loaded into a tight 3D optical lattice potential. A background
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Figure 2.14: Top: schematic setup of the vertical imaging beam and the MOT beam optics. The
imaging beam transmits through the polarization optics while the MOT beam is reflected back to
the chamber. Bottom: schematic setup of the polarization optics in the vertical imaging beam path.
Atomic spin is pointing upward in the vertical direction.
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Figure 2.15: Schematic setup of the horizontal MOT beam, imaging beam, and optical dipole
trapping beam optics. The x- and y- MOT beams enter the chamber from the −x and −y sides,
respectively, and are retro-reflected back to the chamber. The horizontal imaging beam enters the
chamber from the +y side and shares the optics with the MOT beams in the y−path. Polarization
optics are placed to adjust the MOT and imaging beam polarizations to the correct configuration.
Four 45◦-dichroic mirrors, transmitting 852 nm and reflecting 1064 nm, are placed on four sides
of the chamber in the horizontal MOT beam paths. The x- and y- optical dipole beams, entering
from the −x and −y sides, are reflected off from the dichroic mirrors and share the same entrance
viewports with the horizontal MOT beams. The light sheet enters the chamber at a 45◦ angle to
the x− y dipole beams. In the laser cooling stage, all beams except for the imaging beam are kept
on at their nominal power.
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magnetic field is applied such that the magnetic Zeeman splitting ∆Ez = 1/4µBB matches the

vibrational energy splitting ~ω, where ω is the lattice vibrational frequency. A Raman transition

couples atoms between the degenerate quantum levels |mF , ν〉 and |mF ± 1, ν ± 1〉, where ν is

the sum of vibrational quantum number in three dimensions. Now, an optical pumping beam with

σ+ polarization is applied to drive the |F = 3,mF , ν〉 to |F ′ = 2,mF + 1, ν〉 transition, followed

by spontaneous emission back to the |F = 3, ν〉 hyperfine ground state manifold. The vibrational

quantum number remains unchanged if the optical transition happens in the Lamb-Dicke regime.

In this regime, the optical pumping preferentially pumps all atoms into the |mF = 2, ν = 0〉 and

|mF = 3, ν = 0, 1〉 low energy states. If there is an additional weak π-component in the optical

pumping beam, it can further remove population in the |F = 3,mF = 2, ν = 0〉 state, leaving the

absolute lowest energy state |F = 3,mF = 3, ν = 0〉 as the only dark state. Thus, the atoms can be

cooled down to the vibrational ground state and are simultaneously polarized into the |3, 3〉 state.

After a sufficient cooling time, the optical pumping beam can be shut off, and the 3D optical lattice

can be adiabatically removed, releasing local ground state atoms into free space or an external trap.

The setup of our dRSC closely follows the configuration reported in Ref. [76]. The schematic

is shown in Fig. 2.17. The 3D optical lattice potential is formed by two counter-propagating laser

beams (±z′) normal to the x′ − y′ plane defined by x′-beam and y′-beam, which form a ∼ 90◦

cross. The optical lattice beams are derived from a 2 mm diameter, 70 mW fiber coupled laser

beam originating from the dRSC slave laser. The linear polarizations of x′ and y′ beams lie in the

x′ − y′ plane while the ±z′-beams are polarized ±10◦ degree to the line bisecting the x′ and y′

beams. The Raman coupling is provided by the same lattice beams through a non-vanishing vector

light shift due to their crossed polarizations [77]. The effective magnetic field of the vector light

shift is along the direction of the ±z′-beams. The weak dRSC optical pumping beam is derived

from a fiber-coupled Repumper beam. The orientation is shown in Fig. 2.17. The optical pumping

beam is polarized using a true zero-order quarter-waveplate and is retro-reflected by a gold mirror.

We apply dRSC immediately after the molasses cooling. The repumper component in the MOT
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Figure 2.16: Diagram of the optical pumping scheme in degenerate Raman sideband cooling.
Raman coupling (double-sided arrows) and σ+ optical pumping quickly remove the atomic vibra-
tional energy. A weak π-transition pumps the atoms into the dark state. Here, ∆Ez is the Zeeman
shift and ∆ELS is the light shift created by optical pumping. Reprinted figure with permission
from Ref. [76]. Copyright 2000 by the American Physical Society.

beams is first extinguished for 1 ms to pump all atoms into the F = 3 hyperfine ground state. The

dRSC optical lattice is then pulsed on to isolate atoms into individual lattice sites. Simultaneously,

the optical pumping beam is applied to the atoms with its frequency adjusted to drive the 3 → 2′

transition. Meanwhile, the MOT beam intensity is greatly reduced and the frequency is switched

to drive the 4 → 3′ transition, removing accidental population in the unwanted F = 4 state. The

bias coils run currents to generate a background magnetic field aligned close to the orientation of

the optical pumping beam. The field strength is optimized to create a degenerate Zeeman splitting.

After 10 ms of cooling time, the optical pumping beam is first extinguished, followed by turning

off the MOT beams. The dRSC is then ramped off in 100 µs, adiabatically releasing atoms into

free space or into the optical dipole tap.

We optimize the experiment parameters by maximizing the number of dRSC-cooled atoms

46



+z’-beam

x’ beam

y’ beam
(through top viewport)

optical pumping
beam

-z’ beam Atomic 
spin

Figure 2.17: Orientation of the dRSC lattice beams (red arrows) and the optical bumping beams
(blue arrows) used in this experiment. The science chamber is plotted with the same view angle
to indicate the entrance viewport of each beam. Except for the y′ beam, all other beams enter the
chamber via 1-1/3” small viewports. The black arrow indicates the orientation of the atomic spin,
which is slightly misaligned to the optical pumping beam.

and minimizing the cloud temperature in free space. We observe a very good cooling efficiency:

80% out of 108 molasses-cooled atoms are spin polarized into the |3, 3〉 state with a free space

temperature of 400 nK. We note that, due to space limitation, our optical pumping beam and

therefore the orientation of the atomic spin is less perpendicular to the effective magnetic field

created by the vector light shift. Despite a smaller Raman coupling strength, we do not observe a

significant deterioration in the cooling efficiency compared to those reported in the literature.

The dRSC is efficient at removing local kinetic energy while freezing the spatial distribution of

the atomic cloud. When an external trapping potential is present, atoms heat up by regaining trap

potential energy after being released from the dRSC optical lattice. Applying multiple dRSC stages

can re-cool atoms rolling down the trap and increase the peak phase space density. The number of

cooling stages is nevertheless limited. When more than one atom is loaded into a single site of the

optical lattice, radiative loss occurs during the optical pumping and the total particle number would

begin to decrease [78]. This occurs when the peak density n = Nω̄3(mλdB/h)3 is larger than
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d−3 = 1.3 × 1013cm−3, where d = 426 nm is the lattice spacing, N is the total particle number,

ω̄ is the mean trap frequency, and λdB = h/
√

2πmkBT is the thermal de Broglie wavelength.

Later we shall see that our typical dipole trap has a mean trap frequency ω̄ = 2π × 34 Hz and a

total particle number N = 107 atoms; the final temperature is limited to 2 µK and the peak phase

space density is limited to nλ3
dB = 0.02. Similar density-limited dRSC performance was observed

in various dipole trapping potentials, prepared during the past few years, where the measured

temperature increases with an increasing trap frequency.

We will later discuss using multi-stage dRSC to transfer cold atoms into the optical dipole trap.

All details on dRSC-assisted and magnetic field levitated dipole trap loading will be discussed in

the end of Section 2.9.

2.7.4 Improving dRSC at high atomic densities

Here, I further comment on a possible improvement to dRSC. Can dRSC help achieve an even

higher phase space density much closer to degeneracy? From the argument in the above paragraph,

we find that the temperature after the density-limited cooling is

Ttrap =
mω̄2d2

2πkB
N2/3. (2.8)

We expect the above equation holds as long as the temperature is higher than the free space value,

which is limited by the lattice recoil energy. From literature [76], the lowest temperature achieved

is 200 nK in an 852 nm near-detuned 2D isotropic lattice, roughly corresponding to twice the recoil

energy. We then assume the recoil-limited temperature depends on the lattice spacing as

Trec =
lh2

8mkBd
2
, (2.9)
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where l ≈ 2 is the ratio of thermal energy kBTrec to the recoil energy. To reach this low temper-

ature while maintaining a high in-trap density, we could use multi-stage cooling inside a trap to

achieve the largest peak density n = d−3 with other parameters chosen such that the temperature

Ttrap reaches the recoil limit Trec. The largest phase space density achievable is then a universal

value

nλdB =

(
4

πl

)3/2

≈ 0.5, (2.10)

which is only a factor of 2 away from degeneracy. The improvement can be realized without

sacrificing much of the total particle number and trap confinement. For example, using a 532 nm

laser to form the dRSC optical lattice and reducing the dipole trap frequency to ω̄ = 2π × 20 Hz,

one can in principle reach the lowest temperature in density-limited cooling. It will be interesting

to test this prediction in future experiments.

2.8 Magnetic levitation and (anti-)trapping

Although magnetic trapping is not emphasized in the cesium BEC experiment, it is however impor-

tant to apply a magnetic force during the dipole trapping and evaporative cooling stage to support

atoms against gravity. Moreover, we use a weak optical trapping potential for most of our experi-

ments, where non-zero magnetic curvature could modify the expected trap frequencies. Below we

consider magnetic levitation of cesium atoms and the (anti-)trapping potential caused by magnetic

field variation.

When the magnetic coils run non-equal currents ∆I 6= 0, they generate an offset magnetic field

B = Boẑ at the center of the chamber as well as a vertical field gradient ∂|B|∂z = B′. The field

gradient creates a magnetic force F = −µB′ on the atoms, where µ = mF gFµB is the atomic

magnetic dipole moment, mF is the magnetic quantum number, and gF is the hyperfine Landé g-

factor. For |3, 3〉 state, gF = −1
4 and the magnetic force is F = 3

4µBB
′; a magnetic field gradient

of 31.09 G/cm generates a levitating force that balances the gravity.
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In general cases with arbitrary Bo and B′, the spatial dependence of the magnetic field can be

calculated to leading order, using the Maxwell’s equations∇ ·B = 0 and ∇2B = 0, as

B = −
(
B′

2
+ εBoz

)
xx̂−

(
B′

2
+ εBoz

)
yŷ +

[
Bo +B′z + εBo(z

2 − x2 + y2

2
)ẑ

]
, (2.11)

where ε = 0.087 cm−2 is calculated from the actual coil geometry (coil radius r = 3 cm and

distance d = 4.6 cm); non-zero ε is due to the departure of our coil geometry from the Helmholtz

configuration (r = d).

We calculate the magnetic trap/anti-trap through looking at the curvature of the magnetic dipole

potential. Since the atomic motion in the dipole trap is much slower than the Larmor precession,

the atomic spin follows the direction of the local magnetic field, leading to a dipole potential

µ · B = µ|B|. Therefore, we only care about the curvature of the field strength |B|. A negative

(positive) curvature in |B| leads to trapping (anti-trapping) for atomic states with negative magnetic

moment µ < 0, as is the case of the |3, 3〉 state. After expanding |B| to quadratic order in vertical

(z) and radial (ρ =
√
x2 + y2) coordinates, we find the corresponding trap frequencies near the

trap center,

ω2
z =

2µεBo
m

(2.12)

ω2
ρ =

µ

4mBo

(
B′2 − 4εB2

o

)
. (2.13)

The radial field curvature vanishes atB′/Bo = ±0.59 cm−1 and changes sign whenB′/Bo crosses

this critical ratio.

We use the trap frequency dependence Eq. (2.13) to improve dipole trap loading efficiency.

When applying the full levitating field B′ = 31.1 G/cm to balance the gravity, a strong magnetic

field offset |Bo| > 52.7 G changes the anti-trap into trapping horizontally. This helps increase our

optical dipole trap horizontal trap volume (see later discussion). However, when atoms become
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colder, we need to set the offset field to Bo = 21 G near a Efimov three-body loss minimum [40].

IfB′ remains the same, we have an anti-trap in all directions, with anti-trap frequencies 2π×1.7 Hz

vertically, and 2π× 2.8 Hz horizontally. The expelling force due to the anti-trap can be aggravated

if the dipole trap is not aligned to the magnetic trap center. In the real experiment, we overlap the

center of the optical dipole trap well with the magnetic trap center, and completely turn off the field

gradient at the end of evaporation, minimizing the magnetic trap/anti-trap contribution to around

1 Hz as well as improving the field homogeneity for precision Feshbach spectroscopy.

Moreover, applying a horizontal bias fieldBx orBy using the bias coils can shift the horizontal

trap/anti-trap center. This is often used to induce dipole oscillations of trapped atomic clouds and

to measure the trap frequencies.

2.9 Optical dipole trapping

The absolute lowest energy ground state |3, 3〉 atoms are not magnetically trappable. Trapping

cesium atoms by optical means thus becomes a necessary tool for evaporative cooling to Bose-

Einstein condensation, and later we will see that trapping by laser interference patterns provides

the lattice potential in the optical lattice experiments.

An optical trapping potential can be best provided by linearly polarized, far-detuned laser

beams. The simplest way to understand dipole trapping is by looking at the ground state light

shift of a simple two-level system perturbed by far-detuned photons. Atoms in the ground state are

dressed with the excited state and form weak electric-dipoles oscillating out-of (in) phase with the

incident electromagnetic wave due to a negative (positive) detuning. In the rotating wave approxi-

mation, neglecting the counter-rotating term, the time-averaged dipole energy V (r) = 3πc2

2ω30

Γ
∆I(r)

forms the ground state energy shift. Here I(r) is the laser beam intensity at position r, c is the

speed of light, ω0 is the transition frequency, Γ is the linewidth, and ∆ = ω − ω0 is the laser

frequency detuning. The light shift induced by a red-detuned laser beam therefore forms a po-
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tential that attracts atoms near its intensity maximum. On the other hand, the photon scattering

rate Γsc(r) = 3πc2

2~ω30
( Γ

∆)2I(r) = Γ
∆
V (r)
~ is suppressed at a sufficiently large detuning ∆ � Γ.

We estimate that a potential depth of U0 = kB × 10 µK is sufficient for trapping dRSC-cooled

atoms, and the photon scattering rate is Γsc ∼ 2π MHz2/∆. A commercial micron-wavelength

laser could easily meet the requirement with a small photon scattering rate < 2π × 0.02 Hz, cor-

responding to a heating rate <1.3 nK/s. Optical dipole traps are in fact widely used in many cold

atom experiments.

For cesium atoms, one need to consider the fine-structure doublets in the 6P excited state when

calculating the ground state light shift. In particular, our trapping laser is at 1064 nm wavelength,

whose frequency resolves the fine-structure splitting in the 6P state. The ground state light shift

at this wavelength is therefore calculated as the summed contribution of the D1 and D2 lines,

weighted by their relative line strengths 1
3 and 2

3 , respectively,

V (r) =
3πc2

2

(
1

3

Γ1

ω3
1∆1

+
2

3

Γ2

ω3
2∆2

)
I(r) = αI(r). (2.14)

Here Γ1 = 2π × 4.56 MHz and Γ2 = 2π × 5.22 MHz are the natural line widths of the D1

and D2 lines, respectively, ω1 = 2π × 335.1 THz and ω2 = 2π × 351.7 THz are their transition

frequencies, ∆1 = −2π × 53.34 THz and ∆2 = −2π × 69.94THz are the corresponding laser

frequency detunings, and α = −kB × 2.35 nK · cm2/W.

In experiment, we use Gaussian beams (spatial TEM00 mode) to form the trapping potential.

The intensity profile of a Gaussian beam propagating along the y-direction is described by

I(r) = I(x, y, z) =
2P

πwxwz
e−(2x2/w2

x+2z2/w2
z), (2.15)

where P is the total beam power, and wx (wz) is the 1/e2 beam radius along the x − (z−) di-

rection. Due to diffraction, wi = wi0

√
1 + ( y

yri
)2 expands as the distance y increases. Here,
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i indicates either x− or z−axis, wi0 is the beam waist along the i−axis, and yri = πw2
i0/λ

is the Rayleigh length. Near the intensity maximum, V (x, y, z) = αI(x, y, z) can be approxi-

mated by a harmonic trap with trap frequencies ωx,y,z =
√

4αP
πmwx0wz0

(w−1
x0 , y

−1
r , w−1

z0 ), where

y−1
r =

√
(y−2
rx + y−2

rz )/2� w−1
x0 , w

−1
z0 .

2.9.1 Design of the dipole trap potential

For dipole trapping and evaporative cooling, as well as optical lattice experiments, we use two

laser beams, orthogonally crossed at the center of the chamber and propagating along the x− and

y−axes, to provide trapping in the horizontal plane. Each beam has a variable power, normally

fixed at around 2 W, and a round beam waist of wx,y = wz = 300 µm. Together they offer a large

trapping volume to capture dRSC-cooled atoms and provide weak confinement to achieve moderate

trapped atomic densities. The crossed dipole beams provide a trap depth of V0 = kB × 10 µK and

a horizontal trap frequency of 2π × 14 Hz. The beams can be retro-reflected to create interference

patterns and form a two-dimensional optical lattice potential, to be discussed later.

Trapping in the vertical (z−) direction is strongly influenced by gravity. To enhance the trap

confinement in the z−direction, we add an additional elliptical beam (aspect ratio 6:1) in the

horizontal plane intersecting the crossed dipole beams with a 45◦ angle. The vertical beam waist is

45 µm and the beam power is around 400 mW, forming a light sheet capable of supporting atoms

against gravity without significantly modifying the horizontal trap volume.

Without changing the beam intensity, the trap strength depends on the magnetic field gradient

that offers an additional levitating force against gravity, as discussed in the previous section. With

the magnetic force canceling out gravity, the dipole trap created by the three intersecting dipole

beams is at its full strength. The trap depth is kB × 18µK, and the horizontal and vertical trap

frequencies are 2π × 20 Hz and 2π × 110 Hz, respectively; under the gravitational pull, however,

the dipole trap is tilted along the direction of gravity with an effective trap depth as shallow as a
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few tens of nanokelvin. The vertical trap frequency remains moderately strong at around 2π ×

60 Hz even with such a great reduction in trap depth. Utilizing this fact, we further developed an

evaporation scheme by gradually removing the magnetic force to tilt open the trap while cooling

trapped cesium atoms to reach nearly pure BEC, similar to the scheme discussed in the next chapter.
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Figure 2.18: Schematic setup of the Gaussian beam optics for x- and y-dipole beams.

2.9.2 Technical setup

At the time of writing this thesis, all three 1064 nm wavelength dipole beams are derived from

a commercial single mode, single frequency laser (InnoLight, Mephisto MOPA) with an 18 W

total output power. The laser beam is first split into three parts: two for the horizontal dipole

beams and one for the light sheet. The frequency of each beam is then offset via individual AOMs

(Crystal Technology, part number: 97-02848-01) to avoid creating stationary interference patterns

in the crossed dipole trap. The frequency offsets are −80 MHz for the x−beam, +80 MHz for the

y−beam, and +180 MHz for the light sheet (double pass). Each beam is then transported via an
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Figure 2.19: Schematic setup of the Gaussian beam optics for the light sheet.

optical fiber (OFR: FCPP-1064-2-FC/APC2) to the science chamber to remove pointing instability

due to thermal contractions in the AOM crystal. The polarization of each fiber output is cleaned up

using a high extinction ratio (1000:1) polarizing cube. The beam power is then feedback-stabilized

via controlling the RF amplitude to the AOM circuit. To avoid stimulated Brillouin scattering

(SBS), we couple only a few watts of power into each fiber since the core size is small (Mode

Field Diameter < 10 µm) and has high intensity within. We chose a short fiber length of 2 to

3 meters to attain larger SBS threshold power, and tested the fibers to ensure continuous delivery

of a maximum output power of 4 W without degradation in the coupling efficiency.

All the fiber-coupled beams are reshaped by lenses to achieve the desired 1/e2 beam radius at

the position of the atoms. Figures 2.18 and 2.19 show the schematics of the optical setup in each

beam path. At each fiber outlet, an aspherical lens is mounted with the fiber facet to collimate

the output beam. Subsequent lenses then collimate each beam near the center of the chamber.

To ensure we obtain the desired beam profile at designated high power without suffering from

a possible change in the beam divergence, we tweak the position of all lenses when the laser is

running at full power, and use a pick up beam to measure its profile.
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Ideally, to avoid mechanical pointing instability, one would prefer to use lens pairs to also

image the fiber facet onto the position of atoms. Nevertheless, we have chosen to avoid this type

of configuration after finding multiple fringes fragmenting the Bose-condensed atoms. The fringes

are likely caused by scattered light between the back surface of the aspherical lens and the fiber

facet or the fiber facet imperfections, which co-propagates with the dipole beam and is imaged onto

the atoms. Alternatively, using configurations plotted in Fig. 2.18, we still observe only ∼ 1 µm

shot-to-shot cloud center fluctuation. We believe that the mechanical stability of the fiber mount

suffices to provide good pointing stability.

2.10 DRSC-assisted dipole trap loading

We now describe in detail the dRSC-assisted, magnetic field-levitated dipole trap loading proce-

dure. The x − y beams and the light sheet are turned on throughout all laser cooling stages to

minimize transient thermal effects in transmissive optics. Since the resonant radiation pressure is

much stronger than the far-detuned dipole force, the performance of the MOT and molasses cool-

ing is not influenced much by the dipole beams. After the molasses, dRSC is applied for a few ms

to remove atomic kinetic energy. Once atoms are cold, all resonant laser beams are extinguished,

followed by ramping off the dRSC optical lattice. A magnetic field gradient is simultaneously

switched on to levitate the atoms and restore the full strength of the optical dipole trap, allowing

cold atoms to slosh down to the trap center. The levitating field gradient B′ = 31.1 G/cm, with

an offset field Bo = 13 G pointing in the vertical direction, is generated by a current pulse in the

quadrupole coils. During the field switch, the background magnetic field remains finite and the

atomic spin follows the field orientation. After 4.8 ms of atomic sloshing time, the currents in the

quadrupole coils are removed, returning the magnetic field back to the initial condition. Simultane-

ously, atoms are loaded back into the dRSC optical lattice and the next cooling cycle begins. The

same procedure is repeated three times, allowing more atoms to be captured when falling through
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the oblate-shaped dipole potential, formed by the x− y dipole beams and the light sheet. After the

last dRSC cycle, the levitating field is turned on and the offset field is increased to 58 G, enhancing

the horizontal trap strength to preserve more atoms populating the extended arms of the crossed

dipole beams.

2.10.1 Experiment condition before evaporative cooling

The current experiment begins with 4× 107 molasses-cooled atoms, and uses three-stage dRSC to

transfer 107 atoms into the dipole trap. The transfer efficiency is around 25 % and the temperature

of the cloud is ∼ 2µK, which is much smaller than the molasses temperature of 10 µK; the cool-

ing performance reaches the dRSC lattice density limit (see previous discussions). Comparing to

loading without the dRSC, there is an enormous boost in the transfer efficiency: less than 5% of

molasses-cooled atoms (1/e2 cloud radius 0.5 mm, peak density 1011 cm−3) are initially located

inside the trap volume ∼ 4
3π0.3 × 0.3 × 0.045 mm3 determined by the 1/e2 beam radii. We cal-

culate the peak phase space density to be around 0.02, only two orders of magnitude away from

Bose condensation.
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CHAPTER 3

RUNAWAY EVAPORATIVE COOLING TO BOSE-EINSTEIN

CONDENSATION IN OPTICAL TRAPS

In this chapter, we discuss our simple scheme to achieve fast, accelerating (runaway) evaporative

cooling of optically trapped atoms by tilting the optical potential with a magnetic field gradient.

Runaway evaporation is possible in this method due to the weak dependence of vibration frequen-

cies on trap depth, which preserves atomic density during the evaporation process. Using this

scheme, we show that Bose-Einstein condensation with ∼ 105 cesium atoms can be realized in

2 ∼ 4 s of forced evaporation. The performance is in sharp contrast to > 20 s of evaporation time

if we adopt conventional cooling method by reducing the dipole beam intensity. The evaporation

speed and energetics of this new scheme are consistent with the three-dimensional evaporation

picture, despite the fact that atoms can only leave the trap in the direction of tilt.

This chapter is adapted from a published work by C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin

in Phys. Rev. A 78, 011604(R) (2008). Copyright 2008 by the American Physical Society.

3.1 Introduction

Evaporative cooling proceeds by lowering the depth of a confining potential, which allows atoms

with high kinetic energy to escape and the remaining particles to acquire a lower temperature and

higher phase space density through rethermalization. Starting from a sample of precooled atoms in

a dipole trap, one can perform forced evaporative cooling on optically trapped atoms by constantly

reducing the trap depth until quantum degeneracy is reached. This method has been successful

in creating rubidium BEC in a dipole trap [79], and has become a critical component in recent

experiments on quantum gases of Cs [40], Li [80], K [81] and Yb [82]. In all these experiments,

forced evaporative cooling in the dipole trap is realized by reducing the intensity of the trapping
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beam, and consequently also the restoring forces. In later discussion, we will refer to this approach

as the trap-weakening scheme.

Evaporative cooling in optical traps remains one of the most time-consuming and technically

challenging steps in condensate production. Fundamentally, this is due to the fact that cooling by

weakening the trapping potential inevitably reduces the collision rate. Here runaway (accelerating)

evaporation is essentially impossible even with perfect evaporation efficiency and purely elastic

collisions 1. Within experimentally accessible times, the trap-weakening method puts a severe limit

on the maximum gain in phase space density one can reach. Several auxiliary schemes have been

successfully implemented in order to increase the evaporation speed, including the dimple trap

[40] and a zoom lens system [84]. These methods often increase the complexity of the apparatus

or require delicate optical alignment or manipulation.

3.2 A simple way of evaporative cooling: tilting the trap

To overcome the limit trap-weakening scheme, we developed a new and simple evaporative cooling

scheme which can be immediately implemented in many existing experiments. Instead of reducing

the intensity of the trapping beam, we reduce the trap depth by applying an external force on the

optically trapped atoms. This trap-tilting method entails only a weak reduction in confinement

strength over a large range of potential depth and can significantly speed up the cooling process.

Using this method, we demonstrate runaway evaporative cooling in a large volume dipole trap

and reach Bose-Einstein condensation of cesium significantly faster than previous results [85].

Finally, we comment on the conditions for runaway evaporation in a tilted trap and investigate the

dimensionality of atomic energy selection in the evaporation.

1. The only possible runaway evaporation in a weakening trap is on resonant Fermi gas, see Ref. [83]
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U
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(a)

Figure 3.1: Trap-tilt based evaporation and experimental apparatus. (a) Trap depth U decreases
when an external potential gradient is applied to the optically trapped atoms. (b) Apparatus for
evaporation of cesium atoms (black dot) in a crossed-beam dipole trap. A strong, slowly-varying
magnetic field gradient B′(t) over-levitates the atoms with magnetic moment µ against gravita-
tional pull mg and evaporates them upward.

3.3 Key advantage in the trap-tilting scheme: preserving the trap

confinement

To understand the advantage of the trap-tilting scheme, we analyze how the trap frequency is

modified in a model Gaussian potential during the evaporative cooling process. We combine the

magnetic gradient potential and the gravitational potential as −γmgz, where γ = B′/B′c − 1. The

total potential V (x, y, z) can be modeled as

V = −Uo
2

[e−2(x2+z2)/w2
+ e−2(y2+z2)/w2

]− γmgz, (3.1)

where the first two terms come from the two horizontal trapping beams, and the last term is the tilt

potential. Here, we assume the two beams have the same beam waist w and peak light shift U0/2

for convenience.

We introduce the tilt parameter ζ =
√
eγmgw/2U0 to parameterize the trap depth U and trap

frequencies ωx,y,z . The trap depth U = V (0, 0, za)−V (0, 0, zb) is the difference between the local

trap maximum at z = za and the local trap minimum at z = zb, as shown in Fig. 3.1 (a). Near the
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Figure 3.2: Location of the local trap maximum at z = za and minimum at z = zb.

trap center in the x − y coordinate, the extrema can be found at z = sgn(ζ)w|
√
W (−ζ2/e)|/2,

where sgn(x) denotes the sign of x and W (x) is the two-valued Lambert W-function satisfying

W (x)eW (x) = x for −1/e ≤ x ≤ 0. Figure 3.2 (a) shows za and zb as functions of the tilt

parameter ζ . The trap depth U(ζ) is then evaluated through the analytic form of za,b(ζ) and the

result is plotted in Fig. 3.3 (a), normalized to the untilted trap depth U0 = U(0). Note that when

ζ ≥ 1, no extremum exists and the trap opens.

Expanding Eq. (3.1) near the local trap minimum, we calculate both the horizontal and vertical

harmonic trap frequencies

ωx = ωy = ω0
xe
−zb(ζ)2/w2

ωz = ω0
z

√
1− 4zb(ζ)2

w2
e−zb(ζ)2/w2

, (3.2)

where ω0
x,z are the trap frequencies of an untilted potential, and ω0

z =
√

2ω0
x =

√
4U0/mw2.

Figure 3.3 (a) shows ωx and ωz as functions of ζ , whose fractional change remains moderate com-

pared to that of the trap depth U as the tilt increases. The geometric mean of the trap frequencies
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Figure 3.3: Depth and oscillation frequency of a tilted trap. (a) shows the calculated normalized
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trap frequencies are plotted against the trap depth for a tilted trap (solid dots) and for a weakened
trap (dotted line). The solid line shows a power-law fit to the mean frequency, see Eq. (2).

ω̄ = (ωxωyωz)
1/3 can be written as

ω̄(ζ) = ω̄0

[
1− 4zb(ζ)2

w2

]1
6

e−zb(ζ)2/w2
, (3.3)

where ω̄0 is the mean frequency of an untilted trap. Within the range of 10−3 < U/U0 < 1, we

found ω̄0 varies approximately as

ω̄

ω̄0
≈ 1.05

(
U

U0

)0.075(1)

, (3.4)

showing a weak power law dependence on U , see Fig. 3.3 (a).

The key advantage of a tilted trap lies in the gentle, almost negligible weakening of the trap

confinement when the trap depth decreases. As the trap depth reduces by a factor of 100, the

trap frequency only decreases by 45% in the z−direction and 14% in the other two directions, in

contrast to the trap-weakening method, which reduces trap frequencies by a factor of 10 under the

same condition. In general, a weakening trap with ω̄ ∝ Uν and ν = 0.5 shows a much stronger

dependence on the trap depth than the tilting trap with ν = 0.075.
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Preserving the trap confinement can maintain or even increase collision rates during evap-

oration, therefore reaching the condition for runaway evaporative cooling. In a harmonic trap,

collision rates Γ ∝ n〈v〉, where n ∝ Nω̄3T−3/2 is the peak atomic density, N is the total par-

ticle number, and 〈v〉 ∝ T 1/2 is the mean relative velocity. Assuming the truncation parameter

η = U/kBT is kept constant during the cooling process, we have

Γ ∝ Nω̄3T−1

∝ U1/αU3νU−1 ≡ Uβ , (3.5)

where β = 1/α + 3ν − 1, and α > 0 parameterizes the cooling efficiency by removing atoms

[86], discussed in later paragraphs.The condition for runaway evaporation is then given by β < 0.

For the trap weakening scheme with ν = 1/2, β is positive for all η. Runaway evaporation is thus

impossible. For the tilting scheme with ν = 0.075, the exponent β is negative when α > 1.08

(η > 5.4, shown in later discussion), suggesting runaway evaporation with increasing collision

rate is possible.

3.4 Experiment

For this study, cesium atoms are first slowed by a Zeeman slower, collected in a magneto-optical

trap (MOT) for 2 s, molasses precooled, and finally cooled and spin polarized by degenerate

Raman-sideband cooling (dRSC) [87] to the lowest hyperfine ground state |3, 3〉. A crossed dipole

trap and magnetic field gradient are employed to levitate and collect the cooled atoms. The dipole

trap is formed by intersecting two laser beams on the horizontal (x− y) plane; both beams are ex-

tracted from a single-mode, single frequency Yb fiber laser operating at the wavelength of 1064 nm,

frequency offset by 80 MHz, focused to a 1/e2 beam diameter of 540 µm (620 µm) and power of

1.9 W (1.6 W) in the y−(x−) direction. In the absence of trap tilt, the trapping frequencies near
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Figure 3.4: Performance of trap-tilting based forced evaporation: (a) phase space density, (b)
collision rate, (c) particle number and (d) density profile. Two evaporation paths: 4 s (solid dots)
and 1.8 s (open circles) are shown. The dashed line in (a) shows simple exponential increase.
In (d), time-of-flight absorbtion images and single-line optical density profiles are taken from the
1.8 s evaporation path. The expansion time is 70 ms, and the field of view is 1.2 mm × 1.2 mm.
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the bottom of the potential well are (ω0
x, ω

0
y , ω

0
z) = 2π × (17, 34, 38) Hz. During the dipole trap

loading process, we switch on a uniform magnetic field of 58 G in the (vertical) z-direction to

improve the atom number following the loading process (see discussion on magnetic trapping in

previous chapter) and apply a levitating magnetic field gradient of B′c = mg/µ=31.3 G/cm, where

mg is the gravitational force, µ = 0.75µB is the magnetic moment of the atoms in |3, 3〉, and µB

is the Bohr magneton. After 1 s of thermalization and self-evaporation in the dipole trap, we ramp

the magnetic field to 20.8 G, where three-body loss is minimized [88], and the field gradient to

37.8 G/cm in 1.85 s and begin our study on forced evaporation. At this point, which we define as

time t = 0, there are N0 = 1.9 × 106 atoms in the trap with a temperature of T0 = 470 nK, peak

atomic density of n = 3.8 × 1012 cm−3, and peak collision rate of Γ0 =133 /s. The background

collision rate is below 1/60 s.

We perform forced evaporative cooling by linearly increasing the magnetic field gradient B′

from 37.8 to 41.4 G/cm in 2.2 s and then to 43.5 G/cm in another 3 s, which reduces the calculated

trap depth from 3.0 µK to 1.0 µK and then to 170 nK. The magnetic field and dipole trap intensity

are kept constant throughout the process. To evaluate the cooling performance, we interrupt the

evaporation at various times to measure the particle numberN , temperature T and trap frequencies

ωx,y,z . Particle number and temperature are extracted from absorption images taken at low mag-

netic fields, following a 70 ms time-of-flight expansion atB = 17 G to minimize the collisions and

B′ = B′c to levitate the atoms. Trap frequencies are measured from small amplitude oscillations

of the atomic momentum by abruptly displacing the trap center. Peak phase space density is calcu-

lated from φ = nλ3
dB , where n = Nωxωyωz(mλdB/h)3, λdB = h(2πmkBT )−1/2 is the thermal

de Broglie wavelength, kB is the Boltzmann constant and h is the Planck constant. Collision rates

are calculated as Γ = n〈σv〉, where the elastic collision cross section is σ = 8πa2, scattering

length at 20.8 G is a = 200 a0 [89], and 〈v〉 = (16kBT/πm)1/2.

After 4 s forced evaporative cooling, we observe Bose-Einstein condensation from the ap-

pearance of bimodality and anisotropic expansion in time-of-flight images. At this point, the
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temperature is 64 nK and total particle number is 5 × 105. An almost pure condensate with

105 atoms was obtained after another 2.5 s. In this evaporation process, the mean truncation

parameter is calculated to be η̄ = 〈U/kBT 〉 = 6.5(3), and the evaporation efficiency is γ̄ev =

− log(φ/φ0)/ log(N/N0) = 3.4. We observe an increasing collision rate and accelerating evapo-

ration, indicating achievement of runaway evaporation; see Fig. 3.4.

An alternative evaporation path is developed to minimize the time to reach BEC. After a shorter

magnetic field ramping process of 1 s, we ramp the field gradient from 38.9 G/cm at t = 0 to

41.3 G/cm in 0.5 s and then to 43.5 G/cm in another 1.5 s. Here we reach BEC in as short a period

as 1.8 s of forced evaporation. Another 1 s evaporation allows us to obtain 4×104 atoms in an

almost pure condensate, see Fig. 3.4(d). Despite the rapid increase of phase space density, the

collision rate actually decreases by 25% at the end of evaporation. The truncation parameter and

evaporation efficiency are η̄ = 4.6 and γ̄ev = 1.9, respectively.

Throughout both evaporation processes, the peak density is moderate, n < 1.5 × 1013cm−3.

The collision loss rate, dominated by three-body recombination process [88], is below 1/40 s at

20.8 G. Trap loss from collisions is negligible in the following discussion.

3.5 Performance of evaporation in the tilted-trap scheme

To study the performance of evaporation under the tilted scheme, we analyze the phase space den-

sity gain during evaporation, using the kinetic theory derived in Ref. [90, 86] and scaling arguments

discussed in Ref [91].

We first evaluate the total energy loss rate Ė = 3ṄkBT + 3NkBṪ during the evaporation.

Assuming no background collisional loss and three-body recombination loss, the atom number
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loss rate Ṅ and the energy loss rate Ėev due to evaporating hot atoms are

Ṅ = −λNΓ (3.6)

Ėev = Ṅ(U + κkBT ), (3.7)

where λ is the fraction of collisions producing an evaporated atom, and κkBT is the excess thermal

energy carried by atoms leaving the trap. Both λ and κ depend on the truncation parameter η and

the dimensionality of evaporation, and can be calculated using a truncated Boltzmann distribution

and the kinetic theory [90]. In the case of atoms allowed to leave a harmonic trap in all directions

(3D evaporation),

λ3D =
1√
2

[ηγ(3, η)− 4γ(4, η)] e−η (3.8)

κ3D = 1− γ(5, η)

ηγ(3, η)− 4γ(4, η)
, (3.9)

where γ(α, η) =
∫ η

0 x
α−1e−xdx/Γ(α) is the lower incomplete gamma function normalized by the

gamma function Γ(α). For η � 1, γ(α, η) ≈ 1, and the above expressions can be simplified to

λ3D ≈ (η − 4)e−η/
√

2 and κ3D ≈ (η − 5)/(η − 4) [91].

There is additional energy change Ėad due to adiabatic weakening of the trap confinement.

Since the potential energy is E/2 ∝ ω̄2 ∝ U2ν , we find Ėad = Ė/2 = νEU̇/U = νEṪ/T . The

total energy loss rate is then

Ė = Ėev + Ėad = (η + κ)ṄkBT + νE
Ṫ

T
. (3.10)

Comparing the above equation to Ė/E = Ṅ/N + Ṫ /T , we arrive at the rate equation Ṫ /T =
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αṄ/N , where α is the cooling efficiency

α =
d log T

d logN
=
η + κ− 3

3− 3ν
. (3.11)

As previously discussed, the cooling efficiency α forms the condition for runway evaporation

β = 1/α + 3ν − 1 < 0, which requires α to be larger than 1.08. From Eqs. (3.9) and (3.11),

we find η > 5.4 satisfying the runaway condition.

Time evolution of the phase space density φ(t) can now be derived based on the scaling φ ∝

ω̄3N/T 3 ∝ NT 3ν−3 together with Eqs. (3.5), (3.6), and (3.11). We find

φ(t) = φ(0)(1 + λαβΓ0t)
2/β−1, (3.12)

where Γ0 is the initial collision rate. Here, we see that a negative β < 0 leads to a faster-than-

exponential growth of the phase space density, which eventually diverges at time t = (−λαβΓ0)−1.

We compare the models and our experiment result in Fig. 3.5. To reach the same final phase space

density, the trap-tilting scheme would require a much shorter evaporation time than the weakening

scheme. For comparison, a potential with fixed trap frequency (ν = 0), e.g., radio-frequency based

evaporation in magnetic traps, permits an even stronger runaway effect, see Fig. 3.5.

3.6 Dimensionality of tilted evaporation

Remarkably, the performance of our evaporation is consistent with the 3D evaporation model. The

consistency of our evaporation speed with the 3D model is somewhat surprising. In a strongly

tilted trap where hot atoms can only escape the trap in the tilted direction (see Fig. 3.6), it is

generally expected that the evaporation will exhibit performance consistent with one dimensional

evaporation. In momentum space, atoms allowed to evaporate along the direction of tilt, with

p2
z ∼ 2mU , spans a small transverse area 2πmkBT , due to thermal motion in the transverse
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Figure 3.5: Evaporation speed: experiment (4 s path, solid dot) and models. We assume an initial
collision rate of Γ0=133 /s, η = η̄ = 6.2 ∼ 6.8 and no collision loss. Shaded area covers the 1D
evaporation region with 0 ≤ ν ≤ 1 and all possible η.

direction. Compared this area to that of a full evaporating sphere 8πmU , one estimates a reduction

in the evaporation rate by a factor of 4η [92, 86] and thus λ1D ≈ λ3D/4η. Performance of 1D

evaporation for all possible η is shown in the shaded area in Fig. 3.5. Our experiment result exhibits

evaporation speeds much faster than the any 1D prediction.

We suspect 3D-like evaporation in a tilted trap results from the inseparability of the potential

and the existence of a saddle point located at the rim of the potential barrier, which can lead to

stochastic single particle motion [92]. When atoms with sufficiently high energy are created by

collisions, stochastic motion can allow them to efficiently find escape trajectories. If the energetic

atoms have a high probability to escape, regardless of their initial direction of motion, evaporation

is effectively three dimensional [92]. In realistic models, stochastization may also be induced by

the intensity irregularities of the trapping laser beams.

To further investigate the “dimension of evaporation” in a tilted trap, we come back to η + κ,
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(a) (b)

Figure 3.6: Snapshot of in situ atomic distribution during (a) slow and (b) fast evaporation pro-
cesses. Hot atoms leave the trap in the upward direction due to a strong vertical magnetic force.

which parameterizes the energy removed by evaporating a single atom, or

η + κ = −(kBT )−1dE/dN. (3.13)

For 3D evaporation, we expect κ3D ≈ (η − 5)/(η − 4), which is κ3D = 0.6(1) for our parameter

η̄ = 6.5(3); for 1D evaporation, energy selectivity applies to the axial, but not the transverse mo-

tion, which has a mean energy of 2 kBT per particle (shown to be 7/4 kBT with careful calculation

in Ref. [93]). Hence, we expect a higher energy removed per particle with κ1D = κ3D+2 = 2.6(1)

for our parameter [93]. Experimentally, we can test these predictions by evaluating the cooling ef-

ficiency α, which has a simple dependence on κ as shown in Eq. 3.11. We show in Fig. 3.7 that our

4 s evaporation data is excellently fit to the power-law function with ᾱ = 1.46(2). Using Eq. 3.11,

we derive κ = 0.6(3), which is consistent with the 3D value and confirms the 3D nature of the

trap-tilt based evaporation.
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3.7 Fast evaporation to BEC for 2D gas experiments

The current experiment begins with 107 atoms loaded into the light sheet plus the x − y crossed

dipole traps under a full magnetic levitation balancing gravity (see Section 2.10.1). We implement

a fast evaporation procedure since a 2D gas experiment does not need a large atom number BEC.

The magnetic field gradient B′ is reduced in 1.5 s from 31.1 G/cm to 0.66 G/cm, and to 0 G/cm

in another 1.5 s. During the ramp of B′, the magnetic field offset Bo is ramped from 48.1 G to

24.6 G in 600 ms to reduce the scattering length to a moderate value of a = 370 a0 (the collision

rate > 150 Hz). The field offset is fixed for 2.4 s, followed by a 200 ms ramp to 20.6 G near an

Efimov three-body loss minimum (a = 198 a0). After the fast evaporation, we have a nearly pure

BEC supported by the light sheet against gravity with an atom number of 3× 104.
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CHAPTER 4

MAKING AND PROBING TWO-DIMENSIONAL QUANTUM GASES

After producing a pure 3D condensate, we are now in a position to advance to the 2D world. In this

chapter, I will first introduce the background of 2D physics, followed by a general discussion on

the experimental scheme. I will then discuss more technical details on the setup of the 2D optical

trap and the loading procedures. Finally, a detailed discussion of in situ absorption imaging will

be given.

4.1 Theory: properties of 2D Bose gases

4.1.1 Properties of 2D thermal gases

The properties of 2D thermal gases are well understood and, therefore, form the standard candle

of our experiment. They can be used to calibrate experimental parameters or perform thermometry

when they are in full thermal equilibrium with other regions inside the gas. The first well known

property is the equation of state of an ideal 2D thermal gas. It can be easily derived from the Bose

distribution function [5]

nth(µ, T ) =

∫
d2p

(2π~)2

1

exp[β(p2/2m− µ)]− 1

= −λ−2
dB ln(1− eβµ). (4.1)

where λdB = h/
√

2πmkBT is the thermal de Broglie wavelength and µ < 0 is the chemical

potential. When a weak external trapping potential Vex(r) is present, according to the local density

approximation, one might replace µ with a local chemical potential µ(r) = µ0 − Vex(r), where

µ0 is the global chemical potential of the sample. For interacting 2D thermal gases, a mean field
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potential can be added into Eq. (4.1), forming a self-consistent mean field equation

nmf (µ, T ) = −λ−2
dB ln

[
1− eβ(µ−2gnmf )

]
, (4.2)

where g is the effective 2D interaction strength, to be discussed later. Equations (4.1-4.2) provide

a method for thermometry to determine the global chemical potential µ0 and temperature T from

the thermal tail density distribution in a trapped 2D gas.

Other well known behaviors of thermal gases are their coherence properties, derived in Ref. [94]

for 3D thermal gases and extended here for the 2D case. The first-order correlation function be-

tween two points r and r′, defined as G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 with Ψ̂ the Bose field operator

and 〈.〉 the ensemble average, can be calculated using the Fourier transform of the Wigner function

W (p, q) = 1
(2π~)2

1

expβ[p
2/2m−µ(q)]−1

under the local density approximation as

G(1)(r, r′) =

∫
d2pe−ip·(r−r

′)/~W (p,
r + r′

2
)

= λ−2
dBg1(eβµ, e−π(r−r′)2/λ2dB ), (4.3)

where gγ(x, y) =
∑∞
k=1 x

ky1/k/kγ is the generalized Bose function and µ is the local chemical

potential. The first-order correlation function reveals the phase coherence across a thermal gas,

which decays exponentially at the thermal length scale of λdB . When r = r′, Eq. (4.3) gives the

mean density n̄ = G(1)(r, r) = λ−2
dBg1(eβµ, 1) = −λ−2

dB ln(1− eβµ).

The second-order correlation function, defined as G(2)(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r)Ψ̂(r′)〉, is

related to the behavior of density fluctuations and density-density correlations (see Chapter 8 and

Eq. (8.1)). It can be evaluated based on G(1)(r, r′) [94],

G(2)(r, r′) = G(1)(r, r)G(1)(r′, r′) + |G(1)(r, r′)|2

= n̄2 + λ−4
dB |g1(eβµ, e−π(r−r′)2/λ2dB )|2. (4.4)
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From the second-order correlation function, we obtain the density-density correlation of a 2D

thermal gas

〈δn(r)δn(r′)〉 = n̄δ(r− r′) + λ−4
dB |g1(eβµ, e−π(r−r′)2/λ2dB )|2, (4.5)

where δn(r) = n(r) − n̄ is the local density fluctuation around the mean value n̄ and δ(r) is the

delta function in two dimensions. Clearly, the first term in Eq. (4.5) is the auto-correlation of atoms,

while the second term reveals the behavior of bosonic bunching. When r = r′, the bunching term

is equal to n̄2, as expected [95]. Equation (4.5) is important to understand density fluctuations and

their correlations in a 2D thermal gas as well as to calibrate in situ absorption imaging; see later

discussions.

4.1.2 Effective two-body interaction strength

For dilute, ultracold gases in three dimensions, the two-body s-wave scattering potential can be

approximated by a contact potential

Vsc = g0δ
3(r), (4.6)

where δ3(r) is the delta function in three dimensions. The coupling constant g0 depends on the

scattering length a as

g0 =
4π~2a

m
, (4.7)

which is obtained by solving the scattering amplitude f(k) → a in the limit of zero scattering

momentum k → 0 [5]. This approximation is generally satisfied for ka� 1.

For a 2D quantum gas, which is vertically confined to the ground state of a harmonic oscillator

φz(z) = 1
4
√
πl2z
e−z

2/2l2z with a harmonic oscillator length lz satisfying lz � a, one would expect

the two-body scattering physics to still follow that of a 3D case. The 2D interacting potential should

remain contact-like with an effective 2D coupling strength g calculated by simply integrating out
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the wave function in the vertical direction

g = g0

∫
dz|φz(z)|4 =

√
8π~2a

mlz
. (4.8)

Equation (4.8) and the assumption of 3D scattering characteristics, however, is an approxima-

tion which needs closer inspection. In fact, by carefully matching the scattering boundary condi-

tions [96, 97], the scattering amplitude is found to depend on the momentum q in the 2D plane

as

f(q) =
a/lz√

2π + a/lz[ln(C/πq2l2z) + iπ]
, (4.9)

where C ≈ 0.915 is a constant [97]. Therefore, omitting the complex term, the 2D coupling

strength g is modified as

g(ε) =
4π~2f(ε)

m
=

√
8π~2a

mlz

1

1 + a/
√

2πlz ln(2mCε/π~2l2z)
, (4.10)

where ε = ~2q2/2m may be replaced by the chemical potential µ in the superfluid phase [96],

or the thermal energy kBT in the normal gas regime. The logarithmic term in the denominator

of Eq. (4.10) can only cause a significant modification in g when ε becomes extremely small.

Nevertheless, for typical experiment parameters of lz = 200 nm and a < 200 a0 = 10 nm, the

correction is < 2% even at a very small energy scale of kB × 5 nK. Thus, Eq. (4.8) is a very good

approximation for weakly interacting gases and it will be used to derive the coupling constant g in

the following studies. We will, however, be cautious when advancing toward the study of strongly

interacting gases and use Eq. (4.10) to evaluate their effective coupling strength.
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4.1.3 Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition in two

dimensions

Two-dimensional Bose gases are among the textbook examples exhibiting intriguing thermody-

namic properties different from 3D Bose gases. For example, an ideal 2D gas cannot form a BEC.

This can be observed from Eq. (4.1), as when µ approaches zero, nth diverges logarithmically,

implying that there will be no accumulation of ground state atoms. The exceptions are trapped

ideal 2D gases where the modified density of states can remove such a divergence in the excited

state population [98]. For example, the number of excited state atoms inside a harmonic trapping

potential saturates at a critical temperature TBEC =
√

6N~ω̄/π, allowing a macroscopic ground

state population at temperature T < TBEC . Here, N is the total particle number and ω̄ is the mean

trap frequency.

For interacting, homogeneous 2D gases, it was rigorously proved by Hohenberg [99] that a

symmetry breaking phase 〈φ〉 6= 0 is prohibited at low dimensions (meaning D < 3). Thermal

fluctuations at finite temperature can destroy true long range order. The formation of a BEC is

two dimensions is then forbidden. For trapped interacting samples, we expect that finite repulsive

interactions at the mean-field level can smear out the trap effect and a true condensate is similarly

prohibited [100].

Despite the absence of true long range order, an interacting 2D gas can nevertheless acquire su-

perfluidity. It was pointed by Kosterlitz and Thouless in Ref.[17] that a continuous phase transition

(BKT-transition) from normal gas to superfluid with quasi-long-range order can occur at a low crit-

ical temperature TBKT . Unlike the BEC transition, the BKT-transition does not involve symmetry

breaking. The onset of superfluidity is entirely due to thermodynamic suppression of topological

defects, which are the lowest energy excitations that destabilize any form of long range order. Low

energy topological defects in 2D Bose gases are vortices, whose energies are E = ~2πns
m ln(R/ξ).

Here, ns is the superfluid density, R is the size of the system, and ξ is the healing length.
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To develop a heuristic picture of why the BKT transtion occurs, let us consider minimizing the

free energy inside a 2D superfluid. The entropy of a vortex is S = kB ln(R2/ξ2). Therefore, the

free energy associated with a single vortex is

F = E − TS =

(
π~2ns
m

− 2kBT

)
ln(R/ξ), (4.11)

which can change sign if the ratio between ns/T crosses a critical value. In view of minimizing

the free energy, Eq. (4.11) suggests a critical temperature

TBKT =
~2πns
2kBm

. (4.12)

For temperature T > TBKT , the vortex free energy is negative, F < 0, suggesting that vortex

defects are thermodynamically favorable and an unbounded number of vortices eventually renders

zero superfluid density; for low temperature T < TBKT , F > 0 and a larger superfluid density

becomes more stable against free vortices. The simple free energy argument [17] predicts a super-

fluid jump nsλ2
dB = 4 at the critical temperature, in agreement with the calculation in Ref. [101].

Below the critical temperature TBKT , vortices and anti-vortices (with opposite circulation) form

metastable bound pairs [17], supporting a superfluid with a quasi-long range order. The first-

order correlation is of a form with slow algebraic decay g(1)(r) ∝ (ξ/r)η. Here, the exponent

η = 1/nsλ
2
dB is the inverse of superfluid density.

4.1.4 Critical point and critical behavior near the BKT transition

In the above paragraphs, we have discussed the origin of the BKT transition, and the relation

between the critical temperature and the critical superfluid density. A quantitative calculation of

the total critical density, or the phase boundary, and the critical behavior of a BKT transition

requires additional theoretical treatment.

77



Arguments given in Ref. [102, 103] estimated the critical density to follow the form

ncλ
−2
dB = ln

ξεT
ε∗

= ln
ξ~2

mg
, (4.13)

where ξ is a universal constant. Equation (4.13) is obtained through reevaluating the Bose dis-

tribution function in Eq. (4.1), and assuming that at the critical point the dominant excited state

populations are within the energy range εT ? ε ? ε∗. Here, εT ∼ kBT is the energy of thermal

atoms and ε∗ ∼ mkBTg
~2 is roughly the energy when excited states become strongly coupled [103].

Similar argument would render the critical chemical potential

µc
kBT

=
g

π
ln
ξµ~2

mg
, (4.14)

where ξµ is a universal constant. There is currently no analytic theory that can determine the exact

values of ξ and ξµ. A Monte Carlo calculation, assuming a classical field describing the universal

(long wave) behavior near the BKT transition, determines the constants to be ξ = 380 ± 3 and

ξµ = 13.2± 0.4 [103].

4.1.5 Classical |ψ|4-field model and universality in weakly interacting Bose

gases

For weakly interacting Bose gases, an effective classical |ψ|4-field theory is used to calculate ther-

modynamics near the phase transition [104, 105, 103, 106]. The Hamiltonian of the classical field

is

H =

∫
dDx

~2

2m
|∇ψ0|2 − µ′|ψ0|2 +

U0

2
|ψ0|4, (4.15)

where D is the dimensionality, ψ0 is a two-component O(2) classical field, µ′ is a renormalized

chemical potential after removing a model-dependent ultraviolet cutoff [103, 106], and U0 is a
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coupling constant; U0 = g in two dimensions. The classical field theory is similar to the Ginzburg-

Landau free energy formalism which captures physics of an emerging order parameter as well as

its critical fluctuations and spatial correlations. The field theory has been studied in both three

and two dimensions to evaluate BEC and BKT critical points of weakly interacting Bose gases

[104, 105, 103, 106].

Due to its marginal dimensionality, a weakly interacting 2D Bose gas is predicted to exhibit

extended critical fluctuation region [107]. The classical field model Eq. (4.15) was also used to

calculate the universal relations of density observables in the critical region [103, 107, 106]. The

universal functions, tabulated by the classical field Monte Carlo calculations [107], were recently

verified using ab initio quantum Monte Carlo calculations [108, 109]. Before this thesis work,

there has been no direct experimental demonstration (using cold atoms) of the universal behaviors,

as well as the phase boundary of the BKT transition at various coupling constants g. In Chapter 7,

we will show the first experimental verification of the critical universality of the BKT transition

and a close comparison with the classical field description as well as the quantum Monte Carlo

calculations.

4.2 Theory: 2D Bose gas in 2D optical lattice

4.2.1 Single particle Bloch wavefunctions and band structure

Without the external potential, the eigenfunction of a free particle is simply a plane wave φfree(x) =

eipx/~, where p is the free space momentum. Inside a periodic potential V (x) = V (x + d), the

simple plane wave solution will be modified according to Bloch’s theorem [110]. The new eigen-

function has the form φq(x) = eiqxuq(x), where uq(x + d) = uq(x) has the same periodicity of

the external potential. q is called the quasi-momentum analogous to the free space momentum,

but is now limited to a finite interval due to the presence of the external potential which makes

the translational invariant symmetry discrete. q ∈ [−π/d, π/d] in the 1D case, and the function
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u
(n)
q (x) acquires series of solutions at different energy bands labeled by the quantum number n.

Inserting this ansatz wavefunction into the Schrödinger equation, we find

(p̂+ ~q)2

2m
u

(n)
q (x) + V (x)u

(n)
q (x) = E

(n)
q u

(n)
q (x) (4.16)

is the differential equation for the wavefunction at the n-th energy band with quasi-momentum q.

For lattice structures in higher dimensions, more discrete symmetries can be found, leading to rich

band structure with the quasi-momentum confined to multiple regions, called the Brilloiun zones.

For the 2D square lattice explored in this thesis, we only discuss physics in the first Brilloiun zone.

For a 1D optical lattice potential V (x) = V0 sin2 kx, the Schrödinger equation

− ~2

2m
∇2φ

(n)
q (x) + V0 sin2 kxφ

(n)
q (x) = E

(n)
q φ

(n)
q (x) (4.17)

can be written in the form of Mathieu’s differential equation, d2y/dx2 + (a− 2s cos 2x)y = 0, as

∂2y

∂x2
+

(
E

(n)
q

ER
− V0

2ER
+

V0

2ER
cos 2x

)
y = 0, (4.18)

where ER = ~2k2/2m is the recoil energy. At a given lattice depth s = − V0
4ER

, periodic solutions

of y(x) can be found only at certain characteristic values of a =
E
(n)
q
ER
− V0

2ER
, giving the band

structure E(n)
q /ER = a − 2s. The periodic solutions to Mathieu’s equation have been tabulated

as the Mathieu sine Se(a, s, x) and Mathieu cosine Ce(a, s, x) functions according to their odd

and even parities.1 The Bloch wavefuction φ(n)
q (x) is the linear combination of the Mathieu sine

and cosine functions. According to Bloch’s theorem (mathematically being Floquet’s theorem),

1. We are adopting here the definition from Ref. [111]
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Figure 4.1: Band structure E(n)
q in 1D lattice potentials with various lattice depths V0.

φ
(n)
q (x) is written in the Floquet form

φ
(n)
q (x) = eiνkxuν(kx) = Ce(a, s, kx)± iSe(a, s, kx), (4.19)

where the characteristic exponent ν = q±(−1)nπ[n+(nmod 2)] is related to the quasi-momentum

q and band quantum number n, and the plus-minus sign follows the sign of q. Given the exponent

ν(q, n) and the lattice depth V0/ER = −4s, the characteristic parameter a(ν, s), the band structure

E
(n)
q /ER = a− 2s (see Fig. 4.1), and the Bloch wave functions (see Fig. 4.2) can be fully evalu-

ated using Eq. (4.19) and the tabulated Mathieu’s functions as well as characteristic parameters in

Mathematica; see Appendix C.

4.2.2 The Wannier state basis

Just like the particle-wave dual description in free space, atomic states inside a periodic lattice

potential can also be expanded by a set of localized wavefunctions. A Wannier state is the Fourier

transform of the Bloch waves, which is analogous to the point-like Dirac delta function in free

space but has finite spread and an oscillatory tail within a few sites. Assuming no relevant energy
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Figure 4.2: Probability density of the ground band Bloch waves at various lattice depths V0.

scales exceed the lattice band gap, the atomic motion is restricted to the ground band and the

Wannier state is written as2

w(x− xi) =
1

L

∑
q

e−iqxiφ(0)
q (x) =

1

L

∑
q

eiq(x−xi)u(0)
q (x)

=
1

L

∫ π/d

−π/d
dq [cos(qxi)Ce(q, kx) + sin(qxi)Se(q, kx)] (4.20)

where xi is the central position of the i-th lattice site, L is a normalizing constant, and the sum-

mation goes over the first Brillouin zone. It can also be seen from Eq. (4.20) that the Wannier

states at different sites are orthogonal and form a convenient basis to expand localized wave func-

tions. Fig. 4.3 shows sample Wannier functions. Here we see that for sufficiently deep lattices,

the Wannier wave function already behaves like a Gaussian wave function in the limit of a single

2. From here forward, we omit the band quantum number n = 0 in the superscript.
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Figure 4.3: Probability density of the ground band Wannier states at various lattice depths V0. Inset
shows oscillatory tails in the logarithmic scale.

harmonic potential. Nevertheless, quantum tunneling to neighboring sites is still allowed, which is

manifested in the tail distribution of the Wannier state, a feature strongly suppressed in a Gaussian

distribution.

4.2.3 Tight-binding model

In deep lattices, we can expand the single particle wave function using the Wannier basis ψ(x) =∑
i ciw(x− xi). This would change the Shrödinger equation to a discretized form [112] −i~ċi =

−
∑
l tl(ci−l + ci+l) + ε0ci, where tl is the off-diagonal tunnel coupling to the l-th nearest neigh-

boring sites

tl =

∫
dxw(x+ ld)Ĥ0w(x), (4.21)

and ε0 =
∫
dxw(x)Ĥ0w(x) is the diagonal on-site energy shift. Here, Ĥ0 = ~2p̂2

2m + V (x) is

the single-particle Hamiltonian. It can be shown [112], by expanding Eq. (4.21) and assuming

a periodic boundary condition, that Eq = −2
∑
l tl cos lqd. Keeping only the nearest neighbor
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Figure 4.4: Tunneling t as a function of lattice depth V0 calculated using Eq. (4.23) in the tight-
binding regime.

tunnel coupling t = t1, we have

Eq = −2t cos qd, (4.22)

since t� tl ∀l > 1 in a deep lattice. Conversely, the tunneling t can be determined using

t = (Eq=π/d − Eq=0)/4, (4.23)

where the ground bandwidth can be directly calculated from the Mathieu characteristic parameter

a. In Fig. 4.4, we plot the tunneling t evaluated using Eq. (4.23).

84



4.2.4 Interacting atoms inside a 2D optical lattice and mapping to a 2D

Bose-Hubbard Hamiltonian

In the previous sections, we discussed non-interacting atoms in a 1D homogeneous lattice potential.

Generalization to higher dimensions is straightforward since the lattice potential is separable and

we only consider the first Brillouin zone. Furthermore, adding the two-body interaction maps

the system into the Bose-Hubbard model. Below we consider the full Hamiltonian including the

two-body interaction and an external trapping potential in the framework of the grand canonical

ensemble.

The full Hamiltonian of a trapped, interacting 2D quantum gas inside a 2D lattice potential is

[10]

Ĥ =

∫
d2xΦ̂†(x)

[
Ĥ0 + Vex(x)− µ

]
Φ̂(x) +

g

2

∫
d2xΦ̂†(x)Φ̂†(x)Φ̂(x)Φ̂(x), (4.24)

where Φ̂(x) is the Bose field operator, Ĥ0 = −~2∇2

2m + V0(sin2 kx + sin2 ky) is the single

particle Hamiltonian, Vex(x) is the external trapping potential, µ is the chemical potential, and

g =
√

8π~2a/mlz is the 2D coupling strength.3

In the tight-binding regime, we can similarly use the 2D Wannier states to expand the Bose

field Φ̂(x) =
∑
i âiw(x − xi)w(y − yi), where âi is the particle annihilation operator at the i-th

site with position (xi, yi). Expanding Eq. (4.24), we obtain the 2D Bose-Hubbard Hamiltonian [9]

Ĥ = −t
∑
〈i,j〉

â
†
i âj +

U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i, (4.25)

where 〈i, j〉 denotes summation over the nearest neighboring sites (coordination number z = 4),

ni = â
†
i âi is the on-site number operator, and µi = µ − Vex(xi) is the local chemical potential.

3. Here, we have assumed that the scattering length a is much smaller than the harmonic oscillator strength in all
three directions such that Eq. (4.8) still applies.
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Figure 4.5: On-site interaction U evaluated using the Wannier wavefunction (red line), the ground
state of a harmonic oscillator (black line), and the zero quasi-momentum Bloch wave (blue line).

Here, the local density approximation applies in a weak trapping potential |∇Vex| � U/d, t/d.

The tunneling t is similarly given by the band dispersion relation in Eq. (4.22). The on-site inter-

action U is calculated as

U = g

∫
dxdy|w(x)|4|w(y)|4 = g

[∫
dx|w(x)|4

]2

. (4.26)

Figure 4.5 shows the on-site interaction evaluated at various lattice depths V0. An increased U >

g/d2 is due to the increased on-site density.4

Obtaining Eq. (4.25), we see that the many-body Hamiltonian of a weakly trapped interacting

superfluid loaded into a 2D optical lattice can be mapped onto a 2D Bose-Hubbard model with

various local chemical potentials. The ratio between tunneling t and interaction energy U can be

4. Comparing U evaluated using Eq. (4.26) to those calculated by replacing w(x) with the ground state of a
harmonic oscillator assuming Vex = V0k

2(x2 + y2), we find that even in deep lattices, the approximation yields
a value ∼ 0.8g/d2 larger than the Wannier calculations even in very deep lattice depths. We also calculate U by
replacing w(x) with the zero quasi-momentum Bloch wave, and carry out the integration within a unit cell. The Bloch
wave calculation shows the correct limit of Ud2/g → 1 at shallow lattice depths.
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widely adjusted by varying the lattice depth V0 (see Fig. 4.4 and 4.5) or the 2D coupling strength

g, ideal for exploring the Bose-Hubbard many-body phase diagram.

4.2.5 The superfluid-to-Mott insulator quantum phase transition in the

Bose-Hubbard model

At zero temperature, a homogeneous 2D Bose-Hubbard Hamiltonian predicts two types of many-

body ground states in regimes dominated by the tunneling t and on-site interaction energy U ,

respectively. In the kinetic energy dominated regime t � U , when hopping between sites is

energetically favorable, atoms form a delocalized superfluid (SF) state exhibiting long range phase

coherence. In the interaction energy dominated regime U � t, when hopping is suppressed due to

increased on-site interaction, atoms form a localized Mott-insulator (MI) state with an integer site

occupancy.

While it is possible to adjust the ratio of t/U to drive the SF-MI quantum phase transition, Mott

insulator states can only form at commensurate bosonic densities. Departing from these densities,

a small number of excess particles or holes gain the freedom to tunnel between sites, recovering

a phase coherent superfluid state. Therefore, at sufficiently small t/U , a SF-MI transition can

alternatively be driven by the competition between on-site interaction U and the coupling µ to the

particle reservoir, i.e. the chemical potential.

The complete SF-MI phase boundary of the Bose-Hubbard model is formed by critical values

of (t/U)c and (µ/U)c in the t
U −

µ
U parameter space, as illustrated in Figure 4.6. Adjusting the

couplings t/U or µ/U across the phase boundary, quantum fluctuations at zero temperature drive

the quantum phase transition from the superfluid to the Mott insulator phase, or vise versa. The

location of the phase boundaries can be estimated using a mean-field calculation [9], and more

accurate values can be calculated using strong coupling expansions [113, 114], as well as quantum

Monte Carlo methods [115].
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Figure 4.6: Illustrations of the zero-temperature 2D Bose-Hubbard model phase diagram in the
µ/U -t/U plane. Here, MI denotes the Mott insulator state, SF denotes the superfluid state, and
vacuum denotes the state with no atoms occupying lattice sites. The horizontal dashed lines in-
dicate the commensurate fillings in the superfluid region nSF = 1, 2. Local phases in a trapped
gas map out the phase diagram vertically (with fixed t/U ), as illustrated by the vertical dashed
lines. One of the dashed line crosses the tip of a boundary lobe, where a multi-critical point
of SF-MI transition resides. The phase boundary is generated using a mean field calculation
µ/U = nMI − 1/2 − Dt/U ±

√
(Dt/U)2 + (2nMI + 1)Dt/U + 1/4 [9, 113], where nMI is

the site occupancy and D = 2 is the dimensionality.
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4.2.6 Critical universality class and critical behavior of the SF-MI quantum

phase transition

One interesting aspect of the SF-MI transition is its critical behavior. The lobe-like structure of

the Bose-Hubbard phase boundary reflects the fact that there are two types of critical behaviors

that can occur in this model. One is the generic SF-MI transition driven by adjusting the chemical

potential µ at a constant value of t/U , crossing the upper or lower side of the boundary lobe.

This type of transition belongs to the dilute Bose gas universality class, which can be described

by the classical O(2) XY model in two dimensions [9]. To understand this mapping, consider the

behavior of particle (hole) excitations near the upper (lower) side of the lobe. When the chemical

potential is adjusted to approach the critical point, the many-body gap ∆ ∝ (µ − µc)zν to create

particle (hole) excitations vanishes and the excitations can Bose-condense, forming a superfluid.

Here, z is the dynamic critical exponent, and ν is the correlation length exponent. The critical

scaling behavior therefore follows that of a dilute Bose gas, with z = 2 and ν = 1/2 [9]. In fact,

the effective field theory describing the critical behavior of particle (hole) excitations in this generic

phase transition is identical to that of a superfluid BKT transition in 2D [49, 9]. It may be compared

with measurements of a 2D gas without the lattice potential, with an additional renormalization on

the dynamics (non-zero Matsubara frequency modes) [116, 106] that has been dropped in deriving

the classical field Eq. (4.15) for weakly interacting Bose gases [104].

The second type of transition occurs at the tip of the lobe, where the upper and the lower

phase boundaries meet. The transition happens at a commensurate density. It is a multi-critical

point where the particle and hole excitations become energetically degenerate [9]. The particle-

hole degeneracy creates a space-time symmetry in the effective field theory describing the critical

behavior [49, 9], mapping the transition to the universality class of the O(2) quantum rotor model

in two dimensions [49] or the O(2) classical XY model in 2+1 dimensions [49, 9]. The critical

point can be traversed via tuning the coupling t/U or can be tangentially cut through by adjusting
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the chemical potential µ. The theoretical expectation for the dynamic critical exponent is z = 1,

while the correlation length exponent depends on the tuning parameter: ν = 1 for approaching the

critical point by scanning the chemical potential µ, and ν ≈ 0.67 for adjusting t/U to drive the SF-

MI transition [115]. The latter intriguing value can be compared with a recent experimental value

of ν = 0.67± 0.13, which is determined through the scaling of correlation length ξ ∝ |T − Tc|−ν

near the BEC critical temperature Tc of a 3D bulk gas [117]. The BEC transition assumes an O(2)

XY universality class in three dimensions [118].

Measuring quantum critical behavior near the SF-MI critical points presents a challenging ex-

perimental task, and is currently pursued as another thesis project in this experiment. We will leave

the details to Ref. [38] and some discussions in the last chapter.

4.2.7 In situ signature of the superfluid and the Mott insulator states

One of the static features distinguishing the superfluid and the Mott insulator states is their isother-

mal compressibility, defined as κ = ∂n
∂µ . Here n is the mean site occupancy. While a superfluid is

a gapless, compressible fluid with κSF ∼ 1
ng , a Mott-insulator state is protected by a many-body

gap ∆, with 0 < ∆ ≤ U , preventing particles with energy smaller than ∆ from being added to or

removed from the system. This leads to a zero compressibility κMI = 0. The incompressibility

of an insulator is also revealed in the phase diagram. For constant t/U , a Mott insulator regime

with site occupancy nMI can persist for a finite adjustment of the chemical potential before the

superfluid phase prevails.

For a trapped atomic sample, the locally varying chemical potential presents a vertical cut

across the phase diagram, as illustrated in Fig. 4.6. This suggests coexisting domains of Mott insu-

lator and superfluid phases can be observed inside one single sample. They are distinguishable via

the mean site occupancy or the compressibility profiles. Inside the superfluid domain, the mean site

occupancy increases as the local chemical potential increases; within the Mott insulator domain,
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the incompressibility leads to a density plateau or shoulder. In a harmonic trapping potential, these

domains manifest in the density profile as a wedding cake-like density distribution, which is con-

sidered an important in situ signature of the SF-MI quantum phase transition. Ab initio quantum

Monte Carlo calculations have confirmed the existence of wedding cake structures, for example see

Ref. [119]. In Chapter 5, we image the cake structure in situ. Similar experimental observations

were also reported in Refs. [28, 120, 121, 33, 122] using various experimental techniques.

4.2.8 Finite temperature Mott insulator

In experiment, we prepare samples at finite temperatures. Thermal fluctuations enter as a com-

peting energy scale which complicates the Bose-Hubbard physics. Without resorting to quantum

Monte Carlo calculations, analytic calculations of finite temperature Mott insulators in the small

tunneling limit t � kBT, U can be found in Ref. [123, 124]. In the following discussions we

consider a thermal insulator in the zero tunneling limit.

When tunneling is negligible t� U, kBT , the system enters the thermal insulator regime where

particle and hole excitations are only generated by thermal fluctuations. The local site occupancy

of a thermal insulator can be modeled analytically [123, 124]. Here, the mean occupation number

can be written as

n̄ =

∑
nPn∑
Pn

=

∑
ne−β[Un(n−1)/2−µn]∑
e−β[Un(n−1)/2−µn]

, (4.27)

where Pn = exp(−βHn) is the probability for n particles to occupy one lattice site, Hn is the

associated free energy (assuming t = 0), β = 1/kBT , and µ is the local chemical potential.

Assuming µ(ri) = µc−Vex(ri) for a fully thermal-equilibrated sample held inside a weak trap with

potential energy Vex(r), Eq. (4.27) can be turned into a density profile function n̄(r;T, µc) with

temperature T and chemical potential at the trap center µc as two free parameters. An illustration

of density profiles calculated using Eq. (4.27) is shown in Fig. 4.7(a) based on parameters close to

our experiment. The calculation shows that the plateau feature is clear only at temperatures equal
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Figure 4.7: (a) Density and (b) entropy density profiles in the deep Mott insulator regime. The
profiles are calculated based on Eq. (4.27), Eq. (4.29), and parameters relevant to our experiment:
U = kB×24 nK, total particle numberN = 8, 000 and Vex(r) = kB×9.0 pK(r/d)2. Temperatures
are 0.1 nK (black), 1 nK (red), 2.5 nK (green) and 5 nK (blue).

or below 2.5 nK and quickly disappear approaching 5 nK or higher. This observation is consistent

with Ref. [123] that an insulator plateau melts at temperatures T ∗ > 0.2U/kB .

More thermodynamic functions can be extracted from the simple thermal insulator model.

Equation (4.27) is derived from the grand potential

Ω(T, µ) = β−1 ln

[∑
n

e−βHn
]
, (4.28)

which can also be used to calculate the entropy per site

s(T, µ) =
∂Ω

∂T
|µ= kB

{
ln

[∑
n

e−βHn
]

+ β

∑
n[U2 n(n− 1)− µn]e−βHn∑

n e
−βHn

}
. (4.29)

Figure 4.7(b) shows entropy density profiles calculated using Eq. (4.29) and parameters used in

plotting Fig. 4.7(a). Here we see that the entropy is mostly concentrated near the boundary of the

insulator domains where thermal excitations are populated, while inside the density plateau the

entropy density is small. These regions might be isolated to form low entropy quantum simulators,

similarly discussed in Ref. [125] for fermions inside optical lattices.
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The wedding-cake density structure of a thermal insulator and its ripple-like entropy distri-

bution could raise concern regarding the non-trivial mass and heat transport during experimental

preparation of loading a bulk superfluid gas to form an insulator sample. In Chapter 6, we shall dis-

cuss global equilibration dynamics across the SF-MI transition, using the thermal insulator model

for local thermometry.

4.2.9 Thermometry

Fitting the temperature of an atomic cloud loaded into an optical lattice proceeds in several ways

depending on the phase of the sample. Inside deep lattices, assuming sufficient global thermal-

ization, one can compare the global density profile to the thermal insulator model Eq. (4.27) and

obtain the temperature and peak chemical potential. For intermediate lattice depths, we use a

formula derived from the Bose distribution function to fit the low density thermal gas region

n̄ =

∫
BZ

dk2

(2π)2

1

eβ(Ek−µ) − 1

=

∫
BZ

dk2

(2π)2

∞∑
l=1

zle−lβEl

= d−2
∞∑
l=1

zlI0(2tβl)2, (4.30)

where the integration goes over the first Brillouin zone, Ek = −2t(cos kxd+cos kyd) is the energy

of the ground band, and I0(x) is the modified zeroth order Bessel function of the first kind. Here,

we expand the Bose distribution function using the fugacity z = eβµ. To include interaction, we

add a mean-field potential into the local chemical potential µmf = µ − 2gn̄ and solve the mean

field equation self-consistently. The fit formula has been tested on the quantum Monte Carlo data

and the result agrees to within 3%.
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4.3 Experimental preparation of a 2D quantum gas

We describe the experimental preparation of 2D quantum gases at the time of thesis writing. Fig-

ure 4.8 illustrates the optical setup of our 2D gas experiment. A 2D gas is formed by freezing the

atomic motion along the vertical axis into the quantum mechanical ground state. This is realized

in our experiment through loading a thin condensate into a single site of a one dimensional lattice

potential, formed by a laser standing wave. The lattice trap vibrational energy is made to be large

compared to the interaction and thermal energy scales in the quantum gas to ensure all excitations

are strictly two-dimensional. The lattice depth and periodicity are chosen to be large enough such

that during the course of experiment, atoms do not tunnel to adjacent lattice sites. Once convert-

ing the condensate into a 2D gas, the temperature can either be lowered by further evaporating

inside the lattice or be raised by applying magnetic field pulses (therefore pulsing the scattering

length) to excite the atoms. After the 2D sample is sufficiently thermalized, we apply subsequent

manipulations and perform in situ measurement.

For experiments on simulating the Bose-Hubbard Hamiltonian, a horizontal 2D lattice potential

is further applied to the sample. The 2D lattice is formed by introducing the retro-reflections

of x- and y- dipole beams. Unlike the vertical lattice, the horizontal lattice has a much shorter

periodicity and permits fast inter-site tunneling. The lattice depth can be adjusted with a wide

dynamic range, forming a highly tunable 2D Bose-Hubbard potential. Typical experiments begin

with slowly ramping up the retro-beams, allowing the atomic sample to evolve inside the lattice

potential. After subsequent experimental procedures, the horizontal beams are shut off, allowing

the on-site atomic wave function to relax and fill the space within a lattice site. After 100 µs of short

expansion, absorption imaging is applied to record the in situ density distribution. The imaging

setup also permits a longer ∼10 ms time-of-flight time for probing the momentum distribution or

coherence property of the gas.

To probe the in situ density distribution, we perform resonant absorption imaging by shining a
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Figure 4.8: Optical setup of the 2D gas experiment. A condensate is loaded into a single site of
a 1D optical lattice formed by the vertical confinement beams. The crossed dipole beams provide
the horizontal confinement. Atomic density is probed via resonant absorption imaging, with a long
working distance microscope objective.

probe beam from beneath the quantum gas and use a long working distance microscope objective

with a standard tube lens to image the density shadow onto the CCD camera. The imaging pulse

length is chosen to be short to ensure that atoms are imaged near the focal plane. The imaging is

always performed at a magnetic field of 17.7 G, where the atomic scattering length is small, to fix

the imaging condition and to reduce any possible light-assisted collisions during the imaging pulse

[126].

4.3.1 Forming a lattice potential

Optical lattices are dipole potentials formed by laser interference patterns. Consider the simplest

case of two coherent laser beams interfering with parallel linear polarizations. The beams propa-

gate with wave vectors, ~k1 and ~k2, crossing at an angle θ > 0◦. The fringe pattern forms along the
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direction (assumed to be the z-axis) parallel to ~k1 − ~k2, and the intensity varies as

I(z) =

[
(
√
I1 +

√
I2)2 − 4

√
I1I2 sin2(∆kz +

φ

2
)

]
, (4.31)

where I1 and I2 are laser beam intensities, φ is the phase difference, ∆k = | ~k1 − ~k2|/2 = k sin θ
2 ,

and k is the wavenumber of the beams. According to Eq. (2.14), the fringe pattern creates a one-

dimensional lattice potential

V1D = −4α
√
I1I2 sin2 ∆kz, (4.32)

where α = −kB × 2.34 nK · cm2/W is the polarizability derived in the previous section. The

lattice laser beams typically have Gaussian profiles and the intensities I1 and I2 vary spatially

as Eq. (2.15). Since the lattice periodicity π/∆k is typically much smaller than the laser beam

waist, intensity variation in the beam profile results in a weak external trapping potential Vex =

α(
√
I1 +

√
I2)2.

4.3.2 Tight, vertical confinement by an optical lattice

The vertical lattice provides tight confinement in the z-direction, and is formed by two beams

crossing the horizontal plane at +8◦ and −8◦. The horizontal plane is defined by the propagation

direction of the horizontal dipole beams, in which the condensate is formed, and the vertical lattice

beams are carefully aligned to cross at the position of the BEC. The fringe pattern is described by

Eq. (4.31), with ∆k = k sin 8◦, resulting in a lattice periodicity of 3.8 µm and a vertical harmonic

confinement frequency of 2 KHz.

To ensure a stable interference pattern on the atoms, the vertical lattice beams share common

optics along their paths. The two beams are derived from a fiber-coupled 1064 nm laser beam

(from InnoLight, Mephisto) with a maximum output power of 900 mW. The main beam is split

into two parts by a YVO4 Wollaston polarizer (DayOptics, PWS8010). Three lenses (including one
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Figure 4.9: Schematic setup of the Gaussian beam optics for the vertical lattice beam. Vertical line
indicates the position of the atoms.

cylindrical lens), as shown in Fig. 4.9, are placed in order to image the splitting point inside the

polarizer onto the position of the atoms as well as to shape the beam profiles. The phase noise due

to mechanical instability is commonly rejected in this optical setup. The only exception is a half

wave plate placed in one of the beam paths, which rotates the beam polarization and maximizes

the fringe contrast. Note that the light sheet, which defines the vertical position of the condensate,

also passes through the same optics. As a result, the lattice pattern is very stable at the position of

the condensate. The power of the lattice beams is feedback stabilized to remove intensity noise.

To reduce horizontal confinement exerted by the vertical lattice beam, we chose to shape the

lattice beam profiles to be elliptical at the position of the atoms with their long axes lying on

the horizontal plane. The beam waists are 700 µm horizontally and 120 µm vertically. At the

maximum lattice depth, the horizontal trap frequencies are kept reasonably small at around 10 Hz,

which preserves low surface densities in the 2D sample.
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Figure 4.10: Microwave tomographic imaging of the atomic population inside the vertical lattice.
(a) shows the microwave-transferred atomic population at various resonant frequencies. The solid
line is a two-Lorentzian fit. The alignment of the anti-node is tuned to load a small population
into one of the neighboring sites (the minor site). (b) shows density profiles measured when the
microwave frequency is resonant to the center position of the major (red circles) and the minor
(blue triangles) sites. The anti-node is well aligned to the condensate. In each profile, we have
subtracted out a small off-resonantly pumped contribution from the other site, estimated from the
line shape measured in (a). From (b) we deduce that there are fewer than 2% of the atoms in the
minor site. Insets show the raw images.
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4.3.3 Loading a monolayer of 2D gas - technical details

To convert the condensate into a 2D gas, we adiabatically turn on the vertical confinement beams in

100 ms to an intermediate intensity, compressing almost all condensate atoms into a single site of

the vertical lattice. The high loading efficiency can be achieved by carefully aligning one anti-node

of the lattice potential to the position of the condensate. The alignment is conveniently realized by

adjusting the intensity of the light sheet at the end of the tilted evaporation.5 After ramping on the

vertical lattice potential, the intensity of the light sheet is then ramped to zero. The vertical lattice

depth is chosen to be shallow enough such that the thermal atoms excited during the compression

can further evaporate out of the lattice site. After 400 ms of evaporative cooling, the vertical lattice

potential is ramped in 100 ms to its full strength, converting the condensate into a 2D quantum gas.

We test the loading efficiency by applying microwave tomographic imaging to detect the pop-

ulation in individual vertical lattice sites. We first apply a strong vertical magnetic field gradient

∼ 50 G/cm to create a position-dependent Zeeman energy shift in the magnetic sub-levels. We than

apply a microwave pulse driving the |3, 3〉 to |4, 4〉 transition, which is resonant at different vertical

positions. The number of atoms transfered into the |4, 4〉 states are then directly imaged vertically

through in situ absorption imaging. Figure 4.10(a) shows a sample tomographic scan. Here the

on-site atomic population is proportional to the resonant peak value. Multiple peaks at different

frequency shifts indicate that atoms are populating multiple lattice sites. Condensate atoms are

typically loaded into less than two sites, as shown in Fig. 4.10(a), due to the small vertical size

(∼ 2 micron) of a pure condensate compared to the 3.8 micron periodicity of the vertical lattice.

When one anti-node is aligned well to the position of the condensate, we detect less than 4% of

the atomic population in the neighboring sites, as shown in Fig. 4.10(b). We frequently check the

single site loading efficiency and the position of the majorly populated site. We found that the

alignment can last for hours or for more than a day.

5. See previous chapter on the dependence of the trap minimum on the tilt parameter.
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4.3.4 The 2D Bose-Hubbard lattice potential

In the Bose-Hubbard lattice experiment, we create a 2D square lattice by introducing the retro-

reflections of the horizontal (x − y) dipole beams. By increasing the intensity Iret of the retro-

reflected beam, the 2D optical trap is transformed into a 2D square lattice potential. Assuming

the x- and y-beams have the same peak intensity I0 and the same retro-efficiency ε = Iret/I0, we

derive the 2D intensity pattern I (at z = 0) from Eqs. (2.15) and (4.31),

I(x, y, 0) = I0(1 +
√
ε)2(e−2y2/w2

+ e−2x2/w2
)

−4I0
√
ε

[
e−2y2/w2

sin2(kx+
φx
2

) + e−2x2/w2
sin2(ky +

φy
2

)

]
, (4.33)

where all beams are assumed to have the same beam waist w, and φx,y are the phase differences

in the x- and y-beams. Near the center of the crossed-dipole beams, we have a 2D square lattice

potential with an envelope harmonic trap

V (x, y) =
1

2
mω2

ex(x2 + y2) + V0[sin2(kx+
φx
2

) + sin2(ky +
φy
2

)], (4.34)

where V0 = −4αI0
√
ε is the lattice depth, and ω2

ex = −4αI0(1+
√
ε)

mw2 is the envelope trap frequency.

Because the lattice potential is heterodyne-amplified, a small ε ∼ 0.1 already creates sufficiently

deep lattice for Bose-Hubbard physics. The envelope frequency can be kept nearly constant during

the lattice loading, or can be easily adjusted (reduced) by changing the incident beam intensity I0.

Our lattice setup requires a large dynamic range in controlling the retro-reflected intensity.

It also needs a high extinction ratio to ensure a corrugation-free dipole potential during forced

evaporation to BEC. This is achieved by sending each dipole beam, after it passes through the

atomic cloud once, through two AOMs controlled by a single radio-frequency (rf) source, then off

a retro-reflection mirror. The AOMs induce an overall zero frequency shift, but permit a dynamic

control of the retro-reflection intensity over six orders of magnitude. The retro-beam intensity is
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Figure 4.11: Schematic setup of the AMO controlled retro-reflection. L1, L2: beam-shaping
lenses. Log PD: logarithmic photodetector, which measures a pickup beam reflected off from L1.
ωrf is the frequency of the rf source. In this setup, all higher order Bragg diffractions are blocked
(not shown).

measured using a logarithmic photodetector, and is feedback stabilized via controlling the rf level

into the AOMs. For the setup, see Fig. 4.11. Two additional lenses are placed to image the retro-

mirror onto the atoms to ensure a good retro-alignment as well as to reshape the retro-reflected

beam to a similar waist as that of the incident beam.

4.3.5 Lattice depth calibration

The lattice depth is calibrated by measuring the lattice vibrational frequency. We first adiabatically

load non-interacting condensate atoms (prepared at Bo = 17.1 G) into the lattice potential and

then induce a small on-site center-of-mass (c.o.m.) oscillation by suddenly shifting the position

of the lattice well. The shift is conveniently created by changing the rf frequency ωrf to the retro

AOMs, which modifies the beam deflection angle and therefore the light path. The small change

in the light path adds additional phase difference ∆φ between the incident and the retro beams

and can shift the lattice well (Eq. (4.11)). After a variable oscillation time, we shut off the lattice

potential and image the atomic interference pattern after time-of-flight expansion. The on-site

c.o.m. oscillation frequency can be measured via observing the amplitude modulation of the±2~k
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Figure 4.12: Lattice depth calibration. (a) Recoil peak amplitude (weighted) oscillation. Solid line
shows a fit of damped oscillation. Fitted frequency is ∆f = 7.146(8) kHz, corresponding to a
lattice depth of V0 = 8.91(3) ER. (b) Illustration of the excited state population in the lattice band
structure.

recoil peaks. Figure 4.12 shows the oscillation of the weighted sum A2~k − A−2~k of recoil peak

amplitudes.

The amplitude modulation of recoil peaks can be understood in the language of Bloch waves

similarly found in Ref. [127]. Our condensate (non-interacting) is initially prepared at the ground

band |φ(0)
q=0〉 Bloch wave and is suddenly perturbed by a position shift operator X̂ . After the shift,

the condensate evolves as

|Ψ(τ)〉 =
∞∑
n=0

aneiE
(n)
0 τ/~|φ(n)

0 〉, (4.35)

where τ is the evolution time, and an = 〈φ(n)
0 |X̂|φ

(0)
0 〉 is the projection coefficient. Shutting off

the lattice potential projects the condensate into the plane wave states |p = 2l~k〉,

|Ψ(τ)〉 =
∞∑
n=0

∑
l

anbnl e
iE

(n)
0 τ/~|2l~k〉, (4.36)

where bnl is the projection coefficient of the Bloch wave |φ(n)
0 〉 =

∑l
−l b

n
l |p = 2l~k〉. Measuring

the amplitude modulation ofA2~k−A−2~k shows the time-dependence of |
∑∞
n=0 a

nbn1e
iE

(n)
0 τ/~|2−
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|
∑∞
n=0 a

nbn−1e
iE

(n)
0 τ/~|2. For a very small shift, the excitation is mostly populated in the first ex-

cited band n = 1, (a1 � a3, a5 . . . ). The oscillation frequency is therefore equal to ∆f =

(E
(1)
0 − E(0)

0 )/h, which can be used to calibrate the lattice depth.

4.4 In situ imaging

4.4.1 Absorption imaging of a three-dimensional sample

Absorption imaging is performed by shining a resonant laser pulse through the sample and measur-

ing the intensity attenuation, from which we determine the atomic column density. For an imaging

beam with intensity I propagating along the z-direction, the intensity attenuation is described by

dI

dz
= −n3D(x, y, z)σI, (4.37)

σ(I) =
σ0

1 + I/Isat
, (4.38)

where n3D(x, y, z) is the 3D atomic density, σ(I) is the scattering cross section with a maximum

value σ0 = 3λ2/2π for imaging using the cycling transition, and Isat = ~ω3
0Γ/12πc2 is the

saturation intensity. Conventional absorption imaging assumes I � Isat, leading to an intensity-

independent scattering cross section, and the transmission through a dilute sample follows Beer’s

law
It(x, y)

I0(x, y)
= e−σ0

∫
n3D(x,y,z)dz, (4.39)

where I0(x, y) is the incident beam intensity profile and It(x, y) is the transmitted intensity profile.

The atomic column density n(x, y) =
∫
n3D(x, y, z)dz is then given by

n(x, y) = − 1

σ0
ln
It(x, y)

I0(x, y)
. (4.40)
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The intensity profiles It(x, y) and I0(x, y) are measured using a CCD camera, obtaining the

photo-electron counts, Pt,CCD(xi, yi) and P0,CCD(xi, yi), with and without the atomic absorp-

tion (method described in Section 2.5). Here, (xi, yi) labels the position of the i-th CCD pixel.

Each CCD image contains a signal from the imaging beam photons, as well as a background sig-

nal ∆bg(xi, yi) from the leakage light, the dark current, and the readout noise. The background

signal ∆bg(xi, yi) can be separately measured by repeating the imaging procedure without puls-

ing on the imaging beam. Subtracting off ∆bg(xi, yi) from PCCD(xi, yi), we obtain the number

distribution of imaging photo-electrons,

P (xi, yi) = PCCD(xi, yi)−∆bg(xi, yi). (4.41)

We expect that P (xi, yi) = QAI(xi, yi)τ/~ω0. Here, the quantum efficiency Q of the imaging

system, the pixel size A, the imaging time τ , and the energy quanta ~ω0 per imaging photon are

common factors of Pt(xi, yi) and P0(xi, yi). Equation (4.40) can therefore be written as

n(xi, yi) = − 1

σ0
ln
Pt,CCD(xi, yi)−∆t,bg(xi, yi)

P0,CCD(x, y)−∆0,bg(xi, yi)
= − 1

σ0
ln
Pt(xi, yi)

P0(xi, yi)
, (4.42)

which forms the density conversion formula of weak absorption imaging.

In the horizontal path, atoms are released from the trap for a finite time-of-flight time to form a

dilute absorptive sample. We measure Pi(x, y) and Pt(x, y) using the CCD camera in the horizon-

tal path, independently calibrate the maximum scattering cross section σ0, and obtain the column

density of the atomic sample.

In situ absorption imaging along the vertical imaging path is significantly different from the

weak absorption case. First, a degenerate quantum gas is optically dense, nσ0 � 1, leading

to strong absorption. To increase the transmitted signal Pt(xi, yi), one either adopts a longer

imaging pulse length τ or uses a strong incident beam intensity to saturate the atomic absorption.
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Improvement using the former method is quite limited since we set the criterion that atoms should

travel less than the depth of focus during the pulse (to be discussed in the next section). The latter

method, nevertheless, requires a carefully calibrated saturation intensity I∗sat (rather than the ideal

value Isat) since the scattering cross section Eq. (4.38) becomes intensity-dependent and Eq. (4.42)

has to be modified. Moreover, the value of I∗sat deviates from Isat due to imperfectness of the

imaging beam polarization, a transient optical pumping effect, and a broadened transition line

width caused by laser jitter or atomic collisions. A similar modification applies to the maximum

cross section σ∗0 (rather than σ0) [128]. For a strong incident beam intensity I0, we find the column

density now relates to absorption in a modified Beer-Lambert law as [128]

n(x, y)σ∗0 = − ln
It(x, y)

I0(x, y)
+
Ii(x, y)− It(x, y)

I∗sat
, (4.43)

where I∗sat and σ∗0 are to be independently calibrated.

There is another advantage to use a stronger probe beam for in situ imaging. In deriving all

of the above equations, we assume photon scattering is a single atom process. Nevertheless, since

the atomic separation is comparable to the laser beam wavelength, there might be coherent effects

on the scattered field causing density-dependent atomic absorption [109]. Since the atom-photon

scattering rate should ultimately be limited by the transition linewidth, using a strong incident field

to saturate the atoms can suppress a possible collective effect [109, 129] which might complicate

the conversion of the column density.

4.4.2 Absorption imaging of a two-dimensional sample

Applying Eq. (4.43) to in situ imaging of a thin 2D sample, one pauses when noticing that the

intensity loss caused by crossing a 2D cloud only happens within the axial extent of the atomic

wave packet. All atoms should see a similar imaging beam intensity and Eq. (4.37) might be

inapplicable since it is a semi-classical equation describing the continuous intensity drop inside an
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atomic ensemble where atoms are sparsely spread over the axial direction. To deduce 2D density

from absorption images, we should instead use a probability description starting from the atom-

photon scattering rate

R =
Γ

2

I/I∗sat
1 + I/I∗sat

, (4.44)

and find the number of photons that are scattered off by individual atoms within the pulse interval.

Here, we show that 2D absorption can still be approximated by the semi-classical formula

Eq. (4.43) in the limit of saturated absorption imaging. We adopt an argument established in

Ref. [129]. Inside a small area A, where the photon wavefunction is uniform, the number of

photons scattered by N atoms is predicted to be NRτ , where τ � 1/Γ is the imaging pulse time.

The number of transmitted photons out of N0 incident photons is then given by Nt = N0 −NRτ ,

which can be converted into intensity in the classical formula as

It = I0 − nσ∗I. (4.45)

Here σ∗ = σ∗0/(1 + I/I∗sat) is the modified scattering cross section, and I is an effective inten-

sity determining the scattering rate of the illuminated sample. The probability of transmitting an

incident photon is6 (1− σ∗(I)
A )N ≈ e−nσ

∗(I). Accumulating Nt transmitted photons, we have

Nt
N0

=
It
I0
≈ e−nσ

∗(I). (4.46)

Solving Eq. (4.45) and Eq. (4.46), we obtain

nσ∗0 ≈ − ln
It
I0

+
I0 − It
I∗sat

, (4.47)

6. Within a small time interval dτ , there will be R(I)dτ photons per atom scattered out from I0Adτ/~ω incident
photons. The probability of transmission through a single atom is p = 1 − R(I)~ω0

I0A
= 1 − σ∗

A . For N atoms seeing
the same photon, transmission propability is pN .
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which is identical to Eq. (4.43). We see that the approximation holds for nσ∗ ∼> 1. This is

usually satisfied in our experiment with an incident beam intensity I0 ≈ 6I∗sat and σ∗0 = 0.12 µm2

(calibrated value).

4.4.3 Experimental calibration of 2D absorption imaging

In this section, we first describe our procedure for testing the validity of Eq. (4.47), followed by

the calibration of I∗sat, similarly discussed in [128]. We then describe two independent ways of

determining σ∗0 . Last, we describe calibrating the image magnification using recoil momentum.

Calibration of the saturation intensity

To verify Eq. (4.47) and to calibrate I∗sat, a straightforward method is to fix the atomic density,

perform imaging at different intensities, and measure how the absorption changes. As discussed in

the previous section, we expect that the absorption is described by the modified Beer-Lambert law

Eq. (4.47) and, for a fixed density n, our measurements of OD = ln P0
Pt

and ∆P = P0−Pt should

reveal the following linear relation

OD +
∆P

P ∗sat
= nσ∗0 = const., (4.48)

where 1/P ∗sat = ~ω/QAI∗satτ is the slope of the linear curve.

Experimentally, we test the linearity using 2D thermal gases prepared at identical experimental

conditions. In each image, we pick the center 10 × 10 pixels, where n is identical, to evalu-

ate the averaged OD and ∆P/τ . Figure 4.13 shows sample OD versus ∆P/τ curves measured

at two different densities. Here we indeed find a good linear dependence over a wide range of

imaging beam intensity I0 = 1 ∼ 8 Isat, where Isat = 1.1 mW/cm2 is the saturation intensity

of 4 → 5′ cycling transition. We also tested the linearity over a density range 0 > nσ∗ > 2,
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Figure 4.13: Sample curves of OD versus ∆P at different atomic densities. Solid lines are the
linear fits.

and found that the fitted slope is nearly density independent, giving P ∗sat/τ = 26(4) µs−1 and

I∗sat = P ∗sat~ω0/τQA ≈ 2.3(3) mW/cm2 ≈ 2Isat. Here we have used Q ≈ 0.6, the prod-

uct of the overall transmission of imaging optics and the quantum efficiency of the camera, and

A = (666 nm)2, the calibrated CCD pixel size in the object plane (to be discussed later). In our

experiment, P ∗sat suffices to calculate the atomic density since only its ratios to P0 and Pt matter.

Calibration of the scattering cross section

We continue to calibrate the scattering cross section σ∗0 from nσ∗0 evaluated using Eq. (4.47). In the

first calibration method, we use a strong imaging beam to probe a vertically thin (∆z ≈ 2.5 µm)

and nearly pure 3D condensate, with a known peak column density, as a density ruler to extract σ∗0 .

The peak column density n0 =
m2ω3xR

3
x

6π~2aωz
=

m2ω3yR
3
y

6π~2aωz
can be determined from the Thomas-Fermi

radii Rx,y in the x and y directions, as long as the atomic scattering length a and the harmonic

trap frequencies ωx,y,z are known. The trap frequencies can be independently determined by
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Figure 4.14: Line-cut profiles along the principal axes of a 3D condensate. Solid lines are the fitted
curves using the Thomas-Fermi profile Eq. (4.49). Inset: 2D image of the condensate, where the
solid lines indicate the directions of line-cuts.

measuring the frequency of atomic dipole oscillations in the x-, y-, and z-directions or from the in

situ root-mean-square radii of a 2D thermal cloud (for determining ωx,y), whose temperature can

be measured from time-of-flight expansions. The atomic scattering length can be well-determined

from the background magnetic field using Eq. (2.1). We fit the condensate column density using

the Thomas-Fermi form

n(x, y)σ∗0 = n0σ
∗
0[1− (x/Rx)2 − (y/Ry)2]3/2, (4.49)

with n0σ
∗
0 , and the Thomas-Fermi radii Rx,y as fit parameters. We then deduce n0 from Rx or Ry

and obtain the calibrated value of the scattering cross section σ∗0 .

Figure 4.14 shows line-cut density profiles of a nearly pure condensate held in an oblate dipole

trap with trap frequencies ωx,y,z = 2π × (16, 11, 58) Hz. The atomic scattering length is adjusted

to a = 370 a0, reducing the condensate peak density to a moderate value comparable to a typical
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2D gas peak surface density. We find that each line cut can be well fit by the Thomas-Fermi form

Eq. (4.49), giving the Thomas-Fermi radii Rx = 8.5 µm and Ry = 13 µm. The expected peak

column density is n0 = 2.2(3)×109 cm−2. Comparing to the measured peak value of n0σ
∗
0 = 2.6,

we obtain σ∗0 = 1.2(2) × 10−9 cm2 = 0.34σ0, where σ0 = 3λ2/2π is the resonant cross section

of the cycling transition.

Finally, we justify using a thin condensate to calibrate the atom-photon cross section of a 2D

gas. Indeed the vertical size of the condensate is around 2.5 µm, which is larger than the 2D gas ver-

tical harmonic oscillator length of 200 nm. Nevertheless, the surface density conversion Eq. (4.47)

in 2D is formally identical to the column density formula Eq. (4.43) in 3D, and we expect the

scattering process is single atom-like using a strong probe beam, giving σ∗0 and I∗sat independent

of the atomic distribution. Calibration using a thin condensate should be an approximately valid

method.

We also cross-check our calibrated value independently using atomic shot-noise in a 2D ther-

mal gas to further strengthen our assertion. The shot-noise behavior of a 2D thermal gas measured

inside an area V is expected to be

〈δN2〉 = α〈N〉, (4.50)

where N is the number of particles inside the area V , δN = N−〈N〉, and 〈.〉 denotes an ensemble

average. Here, α is a number slightly larger than 1 due to bosonic bunching. For an ideal thermal

gas with a density n and a thermal de Broglie wavelength λdB , α can be evaluated based on

Eq. (4.5) as7

α ≈ 1 +
1

g1(z, 1)λ2
dB

∫
V
|g1(z, e−πr

2/λ2dB )|2dr (4.51)

≈ g0(z, 1)

g1(z, 1)
=

−z
(1− z) ln(1− z)

, for V � λdB , (4.52)

7. See Chapter 8 for discussions on arbitrary area V , λdB , as well as the finite resolution effect on density fluctua-
tion measurements.
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where the integration goes over the area V , gγ(x, y) =
∑∞
k=1 x

ky1/k/kγ is the generalized

Bose function, and z is a constant (fugacity) such that the 2D density n = λ−2
dBg1(z, 1) =

−λ−2
dB ln(1 − z). When the area V is much larger than the thermal de Broglie wavelength, the

integration can be evaluated as λ2
dB [g0(z, 1) − g1(z, 1)], leading to Eq. (4.52). In this limit, one

can also obtain Eq. (4.52) by directly applying the fluctuation-dissipation theorem[95] 〈δN2〉 =

kBT∂N/∂µ = V g0(z, 1)/λ2
dB , where we have used ∂g1(z, 1)/∂z = g0(z, 1). For a weakly

interacting thermal cloud far from the critical fluctuation regime, one can use the mean field ap-

proximation to modify the fugacity z′ = ze−2βgn, where g is the interaction strength of the 2D

gas. Under this approximation, Eq. (4.52) generalizes to

α(g) =
−ze−2βgn

[1− (1− mg
π~2 )ze−2βgn] ln(1− ze−2βgn)

, (4.53)

which describes the bosonic bunching factor of a weakly interacting cloud in the normal gas region.

Comparing measured noise with the expectation value using Eq. (4.50) and (4.52-4.53) can also

calibrate the atom-photon cross section.

Before proceeding to the analysis, one needs to consider the additional complication that in

the real experiment we measure nσ∗0 with a finite image resolution. Denoting the experimental

measurement of nσ∗0 with nexpσ∗0 and evaluating its noise 〈δn2
expσ

∗2
0 〉, we expect

〈δn2
expσ

∗2
0 〉V =

σ∗20

V
Θ〈δN2〉 = α(g)σ∗0Θ〈nexpσ∗0〉, (4.54)

where Θ is a reduction coefficient due to the finite image resolution. Θ depends on the ratio

between
√
V and the resolution limited length r. When

√
V is comparable to or smaller than r, the

atomic signal is blurred into an area larger than the detection area, reducing the detected shot-noise

with Θ < 1; when
√
V � r, all atomic signals are well contained within the area V and Θ ≈ 1.

Studying 〈δn2
expσ

∗2
0 〉V versus α〈nexpσ∗0〉 in the large V limit is then necessary to remove the finite
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Figure 4.15: Noise of an ideal thermal gas evaluated using different pixel binning V = L2A:
L2 = 1(circle), 36 (square), 81 (up triangle), 100 (down triangle), and 144 (diamond). The shaded
curve indicates the fit to the noise curve of L2 = 144, using Eq. (4.53-4.54) and setting σ∗0 as a
free parameter. The width indicates a ±10 % uncertainty.

resolution effect.

Experimentally, we bin the CCD pixels to evaluate the atomic density noise in the large V limit.

We first obtain the absorption images of 2D thermal gases prepared at a temperature T = 90 nK and

g ≈ 0. We then evaluate 〈δn2
expσ

∗2
0 〉V using different binned areas V = L2A. Here L is the linear

bin size. In Fig. 4.15, we plot 〈δn2
expσ

∗2
0 〉V as a function of 〈nexpσ∗0〉, evaluated using multiple

bin sizes. We observe that by increasing the bin size V , the fluctuation curve saturates to a single

curve independent of the area V , indicating that the finite resolution effect is removed (Θ ≈ 1).

We also see that the entire fluctuation curve is nonlinear with respect to the atomic density, which

is expected due to the nonlinearity in α. Finally, all curves have a non-zero noise floor due to the

image photon shot-noise and the background noise. The noise floor is almost independent of the

bin size.

At L = 11 ∼ 12, the fluctuation curve can be well fitted using Eq. (4.53-4.54) with only σ∗0
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as a free parameter; see Fig. 4.15. We find σ∗0 = 1.25(15) × 109 cm2 agrees very well with the

calibrated value σ∗0 = 1.2(2) × 109 cm2 using a 3D condensate Thomas-Fermi radius-to-peak

density conversion.

4.4.4 Optimization of the signal-to-noise ratio

For in situ imaging, using a strong probe beam or a longer imaging pulse can increase the number

of transmitted photons and improve the range of density detection. Nevertheless, applying excess

probe beam intensity could impose much larger photon shot-noise compared to the real atomic

signal, while a longer pulse width can deteriorate image resolution. We therefore need to find out

the optimal intensity as well as imaging pulse width to achieve the best signal-to-noise ratio.

From the modified Beer-Lambert law Eq. (4.43), it is not difficult to find out that the noise in

two images Pt and P0 contributes to the measured density noise δn2
img as

δn2
imgσ

∗2
0 =

δP 2
t

P 2
t

(
1 +

Pt
P ∗sat

)2

+
δP 2

0

P 2
0

(
1 +

P0

P ∗sat

)2

, (4.55)

where P ∗sat = QI∗satAτ/~ω0 is the corresponding photo-electron number of one saturation inten-

sity I∗sat. Each image’s noise, δP 2
0 = P0 + ∆0 and δP 2

t = Pt + ∆t, contains the photo-electron

shot-noise δP 2
0,t = P0,t as well as the background noise8 δ∆2

0,t = ∆0,t. Equation (4.55) can now

be further written as

δn2
imgσ

∗2
0 = P ∗−1

sat

[
(γ + ∆′0)(1 + γ−1)2 + (γe−nσ

∗
+ ∆′t)(1 + γ−1enσ

∗
)2
]
, (4.56)

where γ = P0/P
∗
sat and ∆′0,t = ∆0,t/P

∗
sat. To emphasize the weak density dependence in the

image noise, we have used Eq. (4.46) to replace Pt/P0 with e−nσ
∗
.

8. For simplicity, we assume the background noise is shot-noise limited. In reality, the noise can acquire a different
behavior and can be directly measured experimentally.
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Figure 4.16: Inverse square-root of the image noise 1/
√
δn2
imgσ

∗2
0 as a function of imaging beam

intensity I0 at various densities nσ∗0 = 3 (black), 1.5(red), and 0.1(blue) with background image
noise ∆′0 = 3∆′t = 3 (solid lines, experiment condition) and ∆′0,t = 0 (dashed lines).

From Eq. (4.56), it is clear that the overall signal-to-noise level can be elevated by increasing

the value of P ∗sat. The terms in the bracket can also be optimized. They depend on the ratio of

intensity γ = I0/I
∗
sat which is independent of the imaging time τ and the optimal value can be

easily determined.

Although the actual value of P ∗sat = QI∗satAτ/~ω can be increased to improve the overall

signal-to-noise ratio, it is nevertheless quite limited if one desires to preserve the image resolution.

The adjustable factors in P ∗sat are the quantum efficiency Q, the pixel area A, and the imaging time

τ . While we have improved the overall quantum efficiency to Q ≈ 0.6 (limited by the transmissive

optics in the imaging beam path; see Section 2.5.2), imaging atoms with high resolution sets strong

limits on the values of A and τ . The pixel size
√
A = 666 nm is chosen to be smaller than the

resolution limited spot size; the imaging time is limited to 15 µs such that, under coherent light
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pressure, the atoms travel less than 6 µm near the focal plane, which is comparable to the depth of

focus. These limitations constrain P ∗sat ≈ 400.

To qualitatively estimate the general constraint on P ∗sat for an arbitrary image resolution, con-

sider that the depth of focus d.o.f. ∼ λ/N.A.2 is related to the diffraction limited spot size

r = 0.61λ/N.A. as d.o.f. = 2.7r2/λ, where N.A. is the numerical aperture of the objective.

Both the pixel size
√
A and the vertical traveling distance of an atom l =

~ω0(P0−Pt)τ
2nAmcQ will be

limited by the resolution r. Choosing
√
A = r/3 and constraining l ≤ d.o.f. ≈ 3r2/λ, we find

P ∗sat >

√
mI∗satr

6

27π~2ω0σ
∗
0

(1 + γ−1)Q2 ≈ ζQ

(
r

1 µm

)3

, (4.57)

where ζ ≈ 140 is a constant determined by the calibrated values of I∗sat = 2.3 mW/cm2 and

σ∗0 = 1.2× 10−9 cm2. Our experimental parameter is bounded by this criterion.

We also determine the optimal imaging beam intensity Ii = γI∗sat. Figure 4.16 shows the

intensity dependence of 1/
√
δn2
imgσ

∗2
0 in a density range of experimental interest. For our back-

ground noise of ∆′0 ≈ 3 and ∆′t ≈ 1, the optimal imaging beam intensity is at I0/I∗sat = 2 ∼ 4.

There we have 1/
√
δn2
imgσ

∗2
0 = 0.24

√
P ∗sat. For P ∗sat = 400, signal-to-noise is around 2 for a

density corresponding to one atom per lattice site (532 nm)2. We currently use γ = 6, which is not

far from the optimum.

We determine the background noise ∆′0 ≈ 3 and ∆′t ≈ 1 by counting the image noise recorded

on the CCD without pulsing on the imaging beam. In our experiment, background noise mainly

comes from the noise of integrated dark current during the readout time ∼ 1 sec. The unequal

amount of background noise ∆0 > ∆t is due to the readout order of Pt,CCD and P0,CCD. The

dark current causes 0∼1600 e− counts per pixel across the CCD chip. It can be further reduced by

a factor of 100 through cooling the CCD from 0◦C down to −40◦C.
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4.4.5 Calibration of image magnification

For vertical imaging, the standard ruler for calibrating the image magnification is the recoil velocity

of atoms diffracting off from the horizontal 2D square lattice. To measure the recoil velocity, we

first adiabatically load a BEC into the lattice. The lattice beams are then shut off, allowing atoms

to expand inside the vertical confinement potential without leaving the focal plane. We expect

diffraction peaks appearing at positions ∆x = ∆y = ±vrτ away from the zero-th diffraction

order, where vr = 2~k/m = 5.644 mm/s is the known recoil velocity and τ is the time-of-flight

time. Figure 4.17 shows the diffraction pattern measured at τ =10 ms and Fig. 4.17 shows the

averaged line-cut profile after correcting for the 11.5◦ rotation angle relative to the x-axes defined

by the x−lattice beam. By comparing measured ∆x and ∆y to the expectation value, we determine

the image magnification to be 19.5±0.1. The linear size of the CCD pixel corresponds to a length

of 666± 4 nm in the focal plane.

116



0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 

 

Op
tica

l d
en

sity

P o s i t i o n  ( p i x e l )

∆x

Figure 4.17: Calibration of the image magnification in the vertical imaging path. (a) Diffraction
pattern of BEC atoms recorded via the vertical imaging path after they are released from a 2D
square optical lattice for a time-of-flight time of 10 ms. Image size is 300 × 300 pixels. Camera
is rotated by 11.5◦ relative to the x-axes. (b) Averaged line-cut profile (circles) along the x-axes
defined by the x-lattice beam. Solid line is a three-Gaussian fit to the data, assuming the ±1 recoil
peaks are both at a distance ∆x away from the central peak.
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CHAPTER 5

IN SITU OBSERVATION OF INCOMPRESSIBLE MOTT-INSULATING

DOMAINS IN ULTRACOLD ATOMIC GASES

The observation of the Superfluid (SF) to Mott-insulator (MI) phase transition of ultracold atoms

in optical lattices [8] was an enabling discovery in experimental many-body physics, providing

the first tangible example of a quantum phase transition (one that occurs even at zero tempera-

ture) in an ultracold atomic gas. For a trapped gas, the spatially varying local chemical potential

introduces multiple quantum phases into a single sample, complicating the interpretation of bulk

measurements [8, 130, 12, 131, 132]. Here, we report spatially resolved, in situ imaging of a two-

dimensional ultracold atomic gas as it crosses the SF to MI transition, providing unprecedented

and direct access to individual characteristics of the insulating, superfluid and normal phases. We

present results for the local compressibility in all phases, showing a strong suppression in the in-

sulator domain, and observe suppressed density fluctuations for the MI in accordance with the

fluctuation-dissipation theorem. Furthermore, we obtain a direct measure of the finite temperature

of the system. Taken together, these methods make possible a highly complete characterization

of multiple phases in a strongly correlated Bose gas, and of the interplay between quantum and

thermal fluctuations in the quantum critical regime.

This is a published work by N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin in Nature 460, 995

(2009).

5.1 Introduction

Since its theoretical inception [133, 9, 10], two of the most celebrated properties of the bosonic

Mott insulator have been its incompressibility and suppression of local density fluctuations [134],

induced by the enhanced importance of inter-particle repulsion for particles subject to a strong lat-
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tice potential. The result for a trapped atom gas is the remarkable “wedding-cake” density profile,

where successive MI domains are manifest as plateaus of constant density. Related phenomena

have been studied through the coherence [8, 130], transport [8, 12], noise correlations [131], and

number variance [8, 132], but direct observation of the incompressibility has proven difficult due to

the inhomogeneous nature of all experiments to date, and to the technical difficulty of making spa-

tially resolved measurements. Innovative experimental efforts incorporating tomographic imaging

and other advanced techniques have yielded evidence [28, 120] that shell structure exists in the

Mott insulator regime, though none has directly observed the incompressibility of the insulating

density plateaus by imaging a complete and single physical system in situ.

We report studies based on direct in-situ imaging of an atomic MI. By loading a degenerate

Bose gas of cesium-133 atoms into a thin layer of a two-dimensional optical lattice potential, and

adiabatically increasing the optical lattice depth, we observe the emergence of an extremely flat

density near the center of the cloud, which corresponds to a MI phase with accurately one atom-

per-site. From density profiles, we extract important thermodynamic and statistical information,

confirming the incompressibility and reduction of density fluctuations in the MI as described by

the fluctuation-dissipation theorem.

5.2 Experiment

The single layer, two-dimensional (2D) optical lattice is formed by two pairs of counter-propagating

laser beams derived from a Yb fiber laser at wavelength λ = 1064 nm. The pairs are ori-

ented orthogonally on the horizontal (x − y) plane, forming a square lattice with site spacing

d = λ/2 = 0.532 µm. A weak harmonic potential of VH = m(ω2
xx

2 + ω2
yy

2)/2 localizes

the sample, where m is the cesium mass, and the geometric mean of the trap frequencies is

ωr =
√
ωxωy = 2π × 9.5Hz (a weak dependence on lattice depth is described in Section 5.5).

Vertical confinement is provided by an additional vertical optical lattice with a site spacing 4 µm,
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formed by two beams intersecting at an angle of 15◦, confining atoms in a gaussian wavepacket

of width (oscillator length) az = 0.30 µm. The sample is loaded into a single site of the vertical

lattice, kept deep to prevent vertical tunneling. Tunneling in the horizontal 2D lattice is controlled

by varying the lattice depth V [8]. Details on preparation of the atomic sample can be found in

Chapter 4 and Ref. [135].

We obtain a top view of the sample using absorption imaging, directly revealing the atomic

surface density n(x, y) on the horizontal plane. The imaging resolution is 3 ∼ 4µm, and magni-

fication such that one imaging pixel corresponds to an area of (2µm)2 on the object plane. Unit

filling in a 2D optical lattice has a conveniently measurable optical absorption on resonance.

The superflulid-to-Mott insulator (SF-MI) transition of ultracold atoms in an optical lattice is

described by the Bose-Hubbard model, characterized by on-site interaction U and the tunneling

t [10]. In 2D optical lattices, superfluid is converted into a MI when U/t exceeds 16 [130, 13]

near the density of one atom per site. Here, the SF-MI phase transition can be induced by either in-

creasing the lattice potential depth V (typically measured in units of recoil energyER = h 1.3kHz,

where h is Planck’s constant) [8, 130, 120] or the atomic interaction strength (characterized by scat-

tering length a) via a magnetically-tuned Feshbach resonance [6], together providing complete,

independent control of U and t.

Atomic density profiles in the lattice are shown in Fig. 5.1. For weak lattice depths (superfluid

regime), the density profiles are bell-shape, with negative curvature at the center (Fig. 5.1a), in-

dicating a finite, positive compressibility dictated by the interaction coupling constant (discussed

below.) In sufficiently deep lattices, we observe a flattened density at the center of the sample (Fig.

5.1b,c), indicating development of a Mott insulating phase with one particle per lattice site. This

density plateau, an important feature of the MI phase, arises from incompressibility.

A primary check on the MI is to compare the measured density in the plateau to that correspond-

ing to one atom-per-site, given by MI physics as a “standard candle” of atomic density. Using the

known scattering cross-section, correcting for saturation effects (see Section 5.5), we determine the
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Figure 5.1: False color absorption images and line cuts along major axis of density profiles for
N = 7500 ultracold cesium atoms at scattering length a = 310 aB in a 2D optical lattice. (a)
Superfluid regime (shallow lattice V = 2.4ER), (b) Phase transition regime (medium lattice depth
V = 9.4ER), and (c) Mott insulator regime (deep lattice V = 22ER). Images are averaged over
three experiment repetitions. Colorbar shows linear variation with density from zero to peak value
of 5.4µm−2. Line cuts are taken along the major axis, and compared to radial average of density
(solid line) over the entire image as described in text. The blue horizontal line indicates the density
of one atom per site.
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plateau density to be n = 3.5(3)/µm2, in agreement with the expected value 1/d2 = 3.53/µm2.

To distinguish a MI from superfluid or normal gas, we histogram the occurrence of pixels

h(n) in the images corresponding to a density n with a bin size of ∆n � n. The MI plateau,

containing a large number of pixels with similar atomic density, appears as a peak at n = 1/d2

(Fig. 5.2a). In general, the occurrence of a particular density n can be regarded as the rate at

which local chemical potential changes with density, multiplied by the number of pixels w(µ)∆µ

corresponding to a chemical potential between µ and µ+ ∆µ. The occurrence at density n is then

h(n) = ∆nw(µ)∆µ/∆n ≈ ∆nw(µ)κ−1, (5.1)

where κ = ∂n/∂µ is the local compressibility [136]. In a harmonic trap, w(µ) = 2π/md2ω2
r

is constant, and the histogram is a particularly useful tool to distinguish different phases. For a

pure BEC in the Thomas-Fermi limit, the compressibility is constant to the maximally-allowed

density npk, and results in a constant h(n) for n ≤ npk (see Fig. 5.2b for 0.5/d2 < n < 1.5/d2).

For the MI, the density is insensitive to chemical potential in a narrow range near n = 1/d2,

indicating a vanishing compressibility, and thus a sharp histogram peak at n = 1/d2. The peak’s

presence in Fig. 5.2a is thus directly related to the incompressibility in the Mott phase. Finally, the

compressibility of a normal (ideal) gas is proportional to its density, thus h(n) ∝ 1/n, leading to

the strong upturn at low densities in Fig. 5.2a,b for both regimes.

Much more information can be obtained from the density profiles, as recently suggested in

Ref. [29]. For example, the compressibility in a two-dimensional cylindrically symmetric trap can

be written

κ = ∂n/∂µ = −n′(r)/(rmω2
r ), (5.2)

where we have assumed the local density approximation, and that the chemical potential depends

on the trapping potential µ = µ0−VH(r). For a BEC in the Thomas-Fermi regime, the compress-
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Figure 5.2: Histograms of density profiles in the MI regime (a, V = 38ER, a = 460aB) and the
superfluid regime (b, V = 0.5ER, a = 460aB .) The histograms are based on an average of three
density images. The bin size is ∆n = 0.03.

ibility is positive and constant, κBEC = 1/g, where g =
√

8πa~2/maz is the (2D) interaction

parameter[96]. We can thereby relate the measured compressibility to that of a BEC as

κ

κBEC
= −(

2

π
)7/2n

′(r)
rd−4

a

az
(
ER
~ωr

)2. (5.3)

We evaluate κ from azimuthally averaged density profiles (Fig. 5.3a). Eccentricity of the trap is

corrected by rescaling the principal axes as determined from the density profile, and verified to

be consistent with direct measurement of trap frequencies. Due to the singular nature of n′(r)/r

near the center, we evaluate κ there by fitting n(r) to a quadratic, n(r) = n(0) − αr2. The

curvature then gives the compressibility as κ(0) = 2α/mω2
r , for which we obtain κ/κBEC =

0.34(10) in a weak lattice and κ/κBEC = 0.013(6) in a strong lattice (See Fig. 5.3). In the weak

lattice (SF regime), the finite and constant compressibility at the center agrees with expectation

for the superfluid phase, though lower than expected, which we attribute to finite temperature and

calibration of trap parameters. The finite temperature is also clear in the exponential tail of the

density profile and the compressibility [123], from which we derive the temperature 10(2) nK in
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Figure 5.3: Extraction of compressibility from density profiles. (a) Radially averaged profiles (3
images) in the superfluid (black squares: V = 0.3ER, N = 7200) and MI (red circles: V = 22ER,
N = 6700), with a = 310aB . A quadratic fit to the sample’s center extracts the curvature near
r = 0. (b) Normalized compressibilities derived from (a) using Eq. (1) in the superfluid (black
squares) and MI (red circles) regimes. The horizontal lines indicate compressibility near r = 0,
estimated from the quadratic fits in (a). Rising compressibility at r = 30d marks the MI boundary.
(c) The dependence of compressibility on atomic density. Linear dependence at low densities
(normal gas) is best fit by solid lines. Error bars indicate standard error in the mean.

the superfluid regime (V = 0.3Er) and 15(3) nK in the MI regime (V = 22Er).

In a deep lattice (MI regime), we observe a strong reduction of the compressibility in the trap

center, below that in the superfluid phase for the weak lattice, strongly supporting the emergence

of a MI phase at the center of the sample. Away from center, κ suddenly increases at r = 20d,

then decreases for r > 40d. The exponential decay is again consistent with a normal gas. Between

MI and normal gas (20d < r < 40d), a more detailed measurement and model of compressibility

would be necessary to identify the local phase.
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5.3 Qualitative comparison to the fluctuation-dissipation theorem

Within the local density approximation, one may consider any small area of the sample as a ther-

modynamic subsystem in a grand-canonical ensemble, assumed to be in equilibrium with the

remainder of the gas. One can then invoke the fluctuation-dissipation theorem (FDT) (see e.g.

Refs. [136, 95]) to ascertain that incompressibility necessarily implies a low local particle number

fluctuation; this relationship takes the form

δn2 ≈ κ kBT (5.4)

Resolved in-situ imaging provides an enticing opportunity to measure fluctuations of the local

density [137, 134], and thus check the validity of the FDT. We measured fluctuations by recording

multiple absorption images, calculating the variance of density measured in each pixel (each col-

lects signals from a patch of (2µm/d)2 ≈ 14 lattice sites). Fig. 5.4 shows the recorded fluctuations,

where pixels are binned according to their mean atomic density. Fluctuations consist of detection

(photo-electron shot) noise and thermal and quantum atomic density fluctuations. Detection shot

noise can be well-calibrated and modeled by analyzing portions of the images with low density;

extension to higher optical depth (density) shows the weak dependence illustrated in Fig. 5.4.

Above the detection noise, density fluctuations (see Fig. 5.4) show a strong qualitative agree-

ment with the compressibility presented in Fig. 5.3 as expected from the FDT. For example, the

Mott-phase shows a strong suppression of fluctuations at the density of one atom-per-site. The su-

perfluid regime lacks this feature, instead showing a pronounced flattening as the sample transitions

from normal gas to superfluid, as expected from the constant compressibility in the superfluid phase

(Figure 3c). Finally, at low density, the normal gas shows a temperature-independent fluctuation

of δn = γ
√
n, which can be anticipated from Figure 3c, and agrees with the FDT. The coefficient

γ is roughly consistent with the FDT, and measured imaging resolution (see Section 5.5).
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Figure 5.4: The fluctuation of local density extracted from a set of twelve absorption images in the
weak (a) and deep (b) lattice regimes. The insulator and superfluid show a pronounced difference
at one atom-per-site, where the insulator’s fluctuation is suppressed by incompressibility. In the
superfluid, constant compressibility initiates a flattening. At low densities, in both regimes, the
fluctuation shows a characteristic

√
n dependence, where the gas is presumed to be normal; the

dashed line shows best fit
√
n dependence. The total number of atoms was N = 8300 (SF) and

N = 9600 (MI) with a = 310aB for both sets. Error bars indicate standard error in the mean.
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5.4 Conclusion

Clearly, in situ imaging of the Mott insulator is a powerful new tool to investigate new quantum

phases of cold atoms in optical lattices. From the density profiles, not only can one observe the

density plateau, incompressibility and reduction of fluctuations in the Mott insulating phase, but

also demonstrate a qualitative validation of the fluctuation-dissipation theorem. Relatively modest

extension of this work holds new promise for studying the role of quantum fluctuations, correlation

and thermodynamics near a quantum phase transition.

5.5 Methods Summary

Cesium Bose condensates are produced by forced evaporative cooling in a crossed beam dipole

trap. The condensate is compressed vertically by loading into a single layer of an optical lattice

with the scattering length tuned near zero. After this, the lattice is adiabatically instated by con-

trolled retroreflection of dipole trapping beams, and the scattering length brought to its final value.

Imaging is performed absorptively along the vertical, calibrated for saturation effects by varying

the intensity of the imaging light. Fluctuations of density are calculated for each pixel in a series

of images taken at identical experimental parameters, and plotted against the mean density at that

pixel. The parameter γ is estimated from a model of the expected averaging of thermal fluctuations

over an imaging resolution limited spot.

5.5.1 Preparation of BEC in a thin 2D optical lattice

The 133Cs BEC is formed in a crossed-beam dipole trap by an efficient evaporative cooling method

[135]. The dipole trap consists of three beams on the horizontal plane: two orthogonal beams at

the wavelength of 1064 nm (Yb fiber laser, YLR-20-1064-LP-SF, IPG), focused to 1/e2 radii of

350 µm, and one CO2 laser beam at the wavelength of 10.6 µm (Gem-Select 100, Coherent),
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focused to a vertical 1/e2 radius of 70 µm and horizontal of 2 mm . The CO2 beam intersects the

Yb laser beams at an angle of 45◦ and provides an enhanced vertical confinement to support the

atoms against gravity. With N = 104 atoms in a pure condensate, the Thomas-Fermi radii of the

condensate are (rx, ry, rz) = (23, 14, 3.6)µm.

After a pure BEC is obtained, the sample is compressed vertically by introducing a vertical

lattice, formed by two laser beams (Mephisto, Innolight) inclined at +7.5◦ and -7.5◦ relative to the

horizontal plane. The vertical lattice has a spacing of 4 µm and, together with the crossed dipole

trap, forms an array of 2D oblate “pancake” potentials, with harmonic confinement frequencies of

850Hz at its maximum depth.

In order to load the condensate into a single pancake trap, we first ramp the magnetic field to

17.2 G in 400 ms, reducing the s-wave scattering length to a <10 aB , and then turn on the vertical

lattice in 100 ms. Atomic population in other lattice sites, if any, can be identified by observing

an interference pattern in time-of-flight images taken from the side. For this work, we observe

a sufficiently weak interference pattern contrast to conclude > 98% of the atoms are in a single

pancake trap. After the vertical lattice is fully turned on, the CO2 laser intensity is ramped to zero

in 100 ms while the scattering length is ramped to its final value by tuning the external magnetic

field.

The 2D lattice potential in the horizontal (x- and y-) directions is formed by introducing retro-

reflections of the 1064 nm dipole trap beams. A continuous evolution from a pure dipole trap

(with zero retro-reflection) to a 2D optical lattice (with significant retro-reflection) is achieved

by passing each dipole trap beam (after it passes through the atomic cloud once) through two

acousto-optic modulators (AOMs) controlled by the same radio-frequency (rf) source, then off a

retroreflection mirror. The AOMs induce an overall zero frequency shift, but permit a dynamic

control of the retroreflection intensity over six orders of magnitude. To load the lattice to a depth

of 38Er, the retro-reflection intensities are slowly ramped over 200ms with an exponential wave-

form of 36ms time constant. For smaller final lattice depths, the ramp waveform is fixed but
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duration shortened. Onsite interaction energy U and tunneling rate t are evaluated from the mea-

surements of the lattice vibration frequencies and band structure calculation. Envelope trapping

frequencies were separately measured by exciting center of mass oscillations, and found to be con-

sistent with orientation and ellipticity of in-situ images of atomic density. A weak variation of the

mean envelope frequency with lattice depth was measured and accounted for by the expression

ωr =
√
ωxωy = 2π × 9.5(1 + V/82ER)Hz.

5.5.2 Calibration of atomic surface density

By varying the intensity of the imaging beam, we measure the optical depth on resonance in the

density plateau using OD = ln(M0/M), where M is the number of photons collected by a CCD

pixel in the presence of the atoms andM0 is that without the atoms. The optical depth in the plateau

is extracted from a fit to the peak in the histogram. We then fit the variation of peak optical depth

assuming OD = nσ/(1 + M0/Msat) to determine the depth in the zero intensity limit M0 → 0,

and thus the surface density of the sample. Here, σ=0.347 µm2 is the known cesium atom-photon

cross-section while the fit parameter Msat represents the photon number on a CCD pixel at the

atomic saturation intensity.

5.5.3 Fluctuation of atomic density

The fluctuations in the absorption images are estimated by taking the average of 11 images under

the same experimental procedure, and calculating the mean and variance of optical depth measured

at each CCD pixel. Fluctuations are presumed to arise from optical shot noise, thermal atomic

fluctuation, and long lengthscale variations arising from total atom number fluctuation. The optical

shot noise is calibrated by examining regions with negligible atomic density, and extended to higher

optical depth using δODos ∝
√

1 + eOD. For the thermal cloud, with density n < 0.3 atoms/site,

the fluctuation-dissipation theorem predicts δNa =
√
Na, with Na the number of atoms measured
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in a given region. This result should be valid for a region significantly larger than the correlation

length, which we expect for the normal gas to be on order of the deBroglie thermal wavelength,

expected to be < 1.5µm for our sample. Though each imaging pixel corresponds to an area in

the object plane consisting of ∼14 sites, imperfect imaging resolution is expected to effectively

average away a certain fraction of the total fluctuation. This effect can be calculated, assuming

statistical independence for each site, by summing the weight wi,j of a resolution-limited spot

falling within a given pixel j for each lattice site i, giving a variance reduced by
∑
iw

2
i,j . The

result for our parameters is a reduction to δn = γ
√
n, with γ ∼ 0.11(1). This should be compared

with the fraction of the total fluctuation shown in Fig. 5.4 corresponding to thermal fluctuations

in the superfluid regime. To make this comparison, we reject global fluctuations associated with

variation of the total atom number by subtracting the variance we calculate after first applying a

resolution-spoiling gaussian blur to the images from the variance without modification. We find,

for the remaining high spatial-frequency fluctuations, a best fit to γ of 0.15(2), using a gaussian

blur 1/e2 radius of rb = 14µm to remove global variations (the result varies within stated error for

blur radii 7µm< rb < 28µm). The remaining discrepancy is likely due to calibration of imaging

resolution, and possibly the effect of a nonnegligible correlation length.
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CHAPTER 6

SLOW MASS TRANSPORT AND STATISTICAL EVOLUTION OF AN

ATOMIC GAS ACROSS THE SUPERFLUID-MOTT INSULATOR

TRANSITION

In this chapter, we study transport dynamics of ultracold cesium atoms in a two-dimensional optical

lattice across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase

transition with a lattice ramping routine expected to be locally adiabatic, we observe a global mass

redistribution which requires a very long time to equilibrate, more than 100 times longer than the

microscopic time scales for on-site interaction and tunneling. When the sample enters the Mott

insulator regime, mass transport significantly slows down. By employing fast recombination loss

pulses to analyze the occupancy distribution, we observe similarly slow-evolving dynamics, and a

lower effective temperature at the center of the sample.

This is a published work by C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin. in Phys. Rev. Lett.

104, 160403 (2010). Copyright 2010 by the American Physical Society.

6.1 Introduction

The thorough understanding of atomic interactions in optical lattices provides a testing ground

to investigate hypothetical models widely discussed in condensed matter and many-body physics

[14, 138]. Because of the simplicity and tunability of the underlying Hamiltonian, research on

optical lattices generates new fronts to perform precise, quantitative comparison between theoret-

ical calculations and measurements. This new class of “precision many-body physics” has gener-

ated tremendous interest in recent years to locate the superfluid (SF) to Mott insulator (MI) phase

boundaries [8, 130, 139], described by the Bose-Hubbard model [9, 10], and to characterize Mott

and band insulators in Fermi gases [140, 141], described by the Fermi-Hubbard model [142]. Many
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new, exotic quantum phases in optical lattices have also been proposed [138], even in the absence

of counterparts in condensed matter physics.

As promising as the precise characterization of quantum phases is, fundamental assumptions

such as the thermal dynamic equilibrium of the sample should be investigated. Since the prepara-

tion of quantum gases generally involves ramping up the lattice potential, dynamics are an insepa-

rable part of all optical lattice experiments. Very slow equilibration processes have been reported

in one-dimensional optical lattices [143] and have been suggested by the observation of long-

lived repulsively bound pairs [144] and doublons [145] in three-dimensional lattices. Prospects

of non-equilibrium dynamics in optical lattices have also attracted much interest recently. Mass

and entropy transport in the optical lattices can provide a wealth of information to characterize the

underlying quantum phases [146, 147]. Dynamic passage across a phase transition can lead to the

proliferation of topological defects in the optical lattices [148].

In the following sections, we study global dynamics of ultracold atomic gases in a monolayer

of two-dimensional (2D) optical lattice. After ramping up the lattice potential, we observe both

mass transport and statistical distribution of atomic occupancy in the lattice. Mass transport is

directly seen from in situ density profiles, while occupancy statistics is probed by inducing loss in

sites of three or more atoms using a fast three-body recombination loss pulse (see Fig. 6.1). Both

processes show intriguing behavior at times much longer than microscopic time scales for atomic

interaction and tunneling.

6.2 Experiment

We begin the experiment with a 133Cs quantum gas in a 2D optical trap. Details on the preparation

of the quantum gas and optical lattice loading procedure can be found in Ref. [135] and Ref. [149],

respectively. In brief, a nearly pure Bose condensate is loaded into a 2D optical dipole trap, formed

by two orthogonally crossed beams on the x − y plane and a one-dimensional vertical optical
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Figure 6.1: Averaged absorption images and density cross sections of N = 2 × 104 cesium
atoms in a monolayer of 2D optical lattice. After ramping the lattice in 150 ms to a lattice depth
Vf = 13 ER, (a) shows the sample immediately after the ramp. In (b), an additional fast recom-
bination pulse removes atoms in sites of occupancy three or more. (c) shows the average density
cross sections of (a) (circles) and (b) (triangles). (d) shows the average density cross sections of
the samples with additional 800 ms hold time after the ramp, without (circles) and with the recom-
bination loss pulse (triangles). Image size is (106 µm)2 = (200 sites)2 and seven images are used
in each averaged result.
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lattice of 4 µm spacing which confines the whole sample in a single “pancake”-like lattice site

[149]. Using microwave tomography, we find∼ 95% of the atoms are loaded into a single pancake

trap. The remaining ∼ 5% in the neighboring sites do not contribute to the main results reported

in this letter. The trap vibration frequencies are (ωx, ωy, ωz) = 2π × (11, 13, 1970) Hz, and the

cloud temperature is T = 11 nK. The ratios ~ωi/kBT = (0.05, 0.06, 9) indicate the sample is

two-dimensional. After 2D trap loading, we adjust the atomic scattering length a by ramping the

magnetic field to a designated value, typically, B = 20.7 G where a = 200 aB and aB is the Bohr

radius. At this field, the three-body recombination loss rate is at the Efimov minimum [44].

We introduce a 2D optical lattice by slowly turning on retro-reflections of the crossed dipole

beams which add a square lattice potential with lattice spacing d = 532 nm and a weak contri-

bution to the envelope confinement characterized by a mean radial frequency √ωxωy = 2π(1 +

V/82ER)× 12 Hz, where ER = kB × 64 nK is the recoil energy and V is the lattice depth. Care

is taken to equalize lattice depths in the x and y directions by balancing the lattice vibration fre-

quencies to within 5%. Based on the vibration frequency measurements, we calculate tunneling t

and on-site interaction U numerically from the band structure in a homogeneous 2D lattice.

We ramp on the lattice depth following V (τ) = Vf (1+γ)/[1+γe4(τ−τc)2/τ2c ] [150], preceded

by a 30 ms linear ramp from 0 to 0.4 ER to ensure a smooth turning on of the lattice potential at

low depth. The final depth Vf is reached at time τ = τc and γ is chosen such that V (0) = 0.4 ER.

After the ramp, the sample is held in the lattice for a hold time τhold. The adiabaticity parameter

of the ramp is given by

α = ~|ṫ|/t2; (6.1)

slow ramps with α < 1 suggest that local equilibrium of the system is preserved [151, 150].

We obtain the in situ density profile of the sample by absorption imaging normal to the x − y

plane. After a hold time τhold, we first switch the magnetic field to B = 17.7 G (a = 40aB) and

then turn off the 2D lattice 100 µs before the imaging, reducing the on-site peak density by a factor
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Figure 6.2: Evolution of the density profile after a short lattice ramp. Following a τc = 20 ms ramp
to Vf = 10 ER (U/t = 11, α < 0.6), (a) shows the radial density profiles measured after hold
times of 0 ms (squares), 200 ms (circles) and 500 ms (triangles). Inset shows the time evolution of
∆, normalized to the initial value ∆0 = ∆(0) (circles) and the single exponential fit. (b) shows the
profiles measured at Vf = 12 ER (U/t = 20, α < 1). The fitted decay times at different depths of
Vf are shown in (c), where the dashed line marks the critical lattice depth, see text.

of 30, in order to mitigate any density dependent loss during the imaging process.1 The atomic

density is measured with a spatial resolution of 1.3 µm using a long working distance (34 mm)

commercial microscope objective. The strength and duration of the imaging pulse are chosen to

keep the travel distance of the atoms due to the radiation pressure from the imaging beam small

compared to the depth of focus, while maintaining a good signal-to-noise ratio.

1. This procedure suppresses systematic distortions of the density measurement. In previous works [149], our
imaging was performed at low magnetic fields, where recombination and radiative losses preferentially reduce the
density at the center and can enhance the plateau feature in deep lattices.
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6.3 Dynamics of mass transport

Our first step to study the global dynamics is to watch how the density profile equilibrates after

a lattice ramp. Here we employ a ramp which is locally adiabatic, but is fast enough to induce

detectable mass flow. An example is shown in Fig. 6.2 (a), where after a τc = 20 ms ramp to

Vf = 10 ER (U/t = 11, α < 0.6) the sample of N = 2 × 104 atoms at scattering length

a = 200 aB gently expands and the peak density slowly decreases. This deformation is consistent

with the increase of repulsive atomic interaction in stronger lattice confinement.

To quantify the rate of mass redistribution, we define the root-mean-square deviation of a den-

sity profile at hold time τ from equilibrium as

∆(τ) =

{∑
i

[n̄i(τ)− n̄eq,i]2
}1/2

, (6.2)

where the sum goes over lattice sites enclosing the sample. n̄i(τ) is the mean occupancy of site i

at hold time τ , obtained by averaging over an annular area centered on the cloud, containing site

i, and with width 1.3 µm [149]. n̄eq,i is the mean occupancy of site i at equilibrium, which we

obtain from samples that cease to evolve after long hold time of τhold = 500 ∼ 800 ms.

At lattice depths Vf < 10 ER, the sample shows a weak breathing mode oscillation in the

first 50 ms of hold time. After 50 ms, ∆(τ) can be fit by single exponential decays with time

constants > 100 ms. When the lattice depth reaches 11 ER or higher, the mass flow slows down

significantly, see Fig. 6.2 (b) and (c), suggesting that the mass transport is suppressed in this regime.

The crossover behavior near Vf = 11 ER, where U/t ≈ 15, is consistent with a recent observation

of the suppression of superfluidity at U/t = 16 in a 2D optical lattice [130], and quantum Monte

Carlo calculations, predicting that the SF-MI transition at the tip of the n = 1 Mott lobe occurs

at U/t ≈ 16.74 in 2D [115]. For Vf > 13 ER, even slower dynamics require much longer hold

time and the slow loss from three-body recombination limits our ability to determine the mass
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redistribution time scale.2

The slow dynamics throughout the SF-MI regime indicate that the global thermalization is

much slower than the microscopic time scales. Indeed, in the range of Vf = 6 ∼ 13 ER, tunneling

to neighboring sites occurs in τt = ~/zt = 0.6 ∼ 3 ms, where z = 4 is the coordination number

of the 2D square lattice.

6.4 Dynamics of occupancy statistics

In the second experiment, we investigate the evolution of occupancy statistics. For this, we develop

a scheme to determine the fraction of sites with three or more atoms by inducing a fast three-body

recombination loss, and comparing the density profiles with and without the loss. For cesium

atoms, extremely fast three-body loss can be induced by jumping the magnetic field near an Efimov

resonance [44], where the loss happens much faster than atoms tunnel.

We induce the recombination loss at Vf = 13 ER by jumping the magnetic field to B = 2 G

for a duration of 1 ms before imaging at 17.7 G. The 1/e time of the field switching is below

100 µs. During the switching, the magnetic field from the eddy currents is measured by microwave

spectroscopy and compensated by a controlled overshoot of currents in the magnetic coils. At

2 G, the three-body loss rate is as high as (20 µs)−1 for 3 atoms in one site, much faster than the

tunneling rate 1/τt = (3 ms)−1, and the 1 ms pulse is sufficient to remove all the atoms that could

participate in the loss process.

We analyze the dynamics of on-site statistics by first ramping the lattice in τc =300 ms to

Vf =13 ER (U/t = 41, α < 0.1) at scattering length a =310 aB and then holding the sample for

up to 800 ms. Here, the lattice ramp is slow enough to ensure negligible subsequent mass flow.

Density profiles at different hold times, with and without the loss pulse, are shown in Fig. 6.3 (a-

c). A larger fractional loss occurs at the central part of the sample where the density is higher, as

2. At Vf = 13 ER and scattering length a = 200 a0, three body loss rate for 3 atoms per site is ∼ 0.4 s−1
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expected; there is no apparent loss in the wing. We observe a smaller fractional loss after a longer

hold time, which suggests that fewer sites are found with three or more atoms.

The evolution of the statistics is best shown in Fig. 6.3 (d), where the atom loss, ∆n̄, is induced

by the recombination pulse after different hold times. A dramatic difference is seen near the center

with mean occupancy near n̄ = 2. Here the loss fraction reaches ∆n̄/n̄ = 50% immediately after

the ramp, and it slowly declines to merely 15% after a hold time of τhold =800 ms.

To quantitatively model the loss, we assume, starting with n atoms in one site, (n modulo 3)

atoms remain after the pulse. To test this model, we prepare an ideal 2D gas by tuning the magnetic

field to B = 17.1 G, where a ≈ 0 aB . We then quickly ramp on the lattice to 30 ER in 10 ms to

freeze the on-site occupancy and perform the loss measurement. For non-interacting particles, we

expect the occupancy obeys a Poisson distribution. The calculated atom loss, see black solid lines

in Fig. 6.3 (d) and the inset, is in good agreement with our measurement.

Recombination losses measured with interacting samples and slow lattice ramps, on the other

hand, deviate from the Poisson model toward lower values for all mean occupancies (see Fig. 6.3

(d)). This is a general characteristic of the strongly interacting gas.

To gain further insight into the occupancy statistics in an insulator, we compare our mea-

surement with thermal insulator model discussed in Section 4.2.8. In deep lattices with t �

U, kBT , the probability for occupancy n can be written as Pn = Q−1e−β(Hn−µn), where Hn ≈

(U/2)n(n − 1), β = 1/kBT , µ is the local chemical potential and Q =
∑
n e
−β(Hn−µn) is the

grand partition function. The mean occupancy is then n̄ =
∑
nPn and the loss is modeled as

∆n̄ = n̄−
∑

Pn(n mod 3). (6.3)

Calculations for kBT/U = 1, 0.5, 0.3, 0.2 and 0 are plotted in Fig. 6.3(d). For n̄ < 2.5, all curves

show smaller loss than does the Poisson model. An insulator at lower temperature experiences

fewer losses because thermal fluctuation is reduced. At zero temperature, loss only occurs at
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Figure 6.3: Evolution of the on-site statistics in a Mott insulator. (N = 1.6 × 104, τc = 300 ms,
Vf = 13 ER). Upper figures show the density profiles of the samples held in the final depth
Vf = 13 ER for τhold = (a) 0 ms, (b) 200 ms, (c) 600 ms and then imaged with (triangles) and
without (circles) the recombination pulse. Shaded areas mark the loss fractions. (d) shows the loss
∆n̄ versus mean occupancy n̄ measured after different hold times (filled symbols): 0 ms (squares),
200 ms (circles), 400 ms (upward triangles), 600 ms (downward triangles) and 800 ms (diamonds).
Gray lines are the loss derived from an insulator model, see text, assuming kBT/U=1 (higher
curve), 0.5, 0.3, 0.2 and 0 (lower curve). The black line, derived from the Poisson distribution,
is in good agreement with an ideal gas measurement (open circles). The inset shows an extended
view.
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n̄ > 2, where the occupancy n ≥ 3 is unavoidable.

Surprisingly, our loss measurements do not follow the model with a uniform temperature for

up to 800 ms hold time. Using U = kB × 26 nK and describing the deviation from a constant

temperature contour by an effective local temperature Teff(r), we find the center of the cloud has

a lower Teff ∼ 6 nK, while for the wing Teff ∼ 20 nK even after 800 ms of hold time. This

persistent temperature variation across the sample suggests that the heat flow is insufficient to

establish a global thermal equilibrium even after 800 ms hold time. This may be aggravated by a

large heat capacity of the atoms in the wing.

6.5 Conclusion

Both the slow mass and heat flows observed in this work raise the issue of describing quantum

gases in optical lattices using a thermodynamic model. We suspect that the slow dynamics is

partially due to our large sample size of (100 sites)2 and the dimensionality of our system, and

partially associated with the critical behavior of the system. Across the SF-MI transition, the

sample enters the quantum critical regime, where long equilibration times are expected [148, 152].

Other interesting mechanisms include the long lifetime of the excited doublon [145], which could

slow down statistical redistribution of occupancies while supporting mass transport. Moreover, the

slow recombination loss preferentially removes atoms at the center of the sample, creating ∼ 20%

observed reduction in the mean occupancy during 800 ms of hold time, which could lead to a radial

temperature gradient assuming sufficient local rethermalization.

In summary, we show that the in situ density profiles of atoms in a 2D optical lattice provide

a viable tool for investigating dynamic processes induced by chemical potential and temperature

imbalance. In both cases, we find equilibration times much longer than the microscopic tunneling

time scale. Further investigation into these processes and the relevance of our observation to the

quantum dynamics in the critical regime will be reported in the future.
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CHAPTER 7

OBSERVATION OF SCALE INVARIANCE AND UNIVERSALITY IN

TWO-DIMENSIONAL BOSE GASES

The collective behavior of a many-body system near a continuous phase transition is insensitive to

the details of its microscopic physics[50]. Characteristic features near the phase transition are that

the thermodynamic observables follow generalized scaling laws[50]. The Berezinskii-Kosterlitz-

Thouless (BKT) phase transition[16, 17] in two-dimensional (2D) Bose gases presents a partic-

ularly interesting case because the marginal dimensionality and intrinsic scaling symmetry[153]

result in a broad fluctuation regime which manifests itself in an extended range of universal scal-

ing behavior. Studies on BKT transition in cold atoms have stimulated great interest in recent

years[18, 154, 19, 20, 155, 156], clear demonstration of a critical behavior near the phase transi-

tion, however, has remained an elusive goal. Here we report the observation of a scale-invariant,

universal behavior of 2D gases through in-situ density and density fluctuation measurements at

different temperatures and interaction strengths. The extracted thermodynamic functions confirm

a wide universal region near the BKT phase transition, provide a sensitive test to the universality

prediction by classical-field theory [103, 107] and quantum Monte Carlo (MC) calculations[108],

and point toward growing density-density correlations in the fluctuation region. Our assay raises

new perspectives to explore further universal phenomena in the realm of classical and quantum

critical physics.

This is a published work by C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin in Nature 470, 239

(2011).
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7.1 Introduction

In 2D Bose gases, critical behavior develops in the BKT transition regime, where an ordered

phase with finite-ranged coherence competes with thermal fluctuations and induces a continuous

phase transition from normal gas to superfluid with quasi-long range order[17]. In this fluctuation

region, a universal and scale-invariant description for the system is expected through the power-

law scaling of thermodynamic quantities with respect to the coupling strength and a characteristic

length scale[107, 100], e.g., thermal de Broglie wavelength (Fig. 7.1a). For weakly interacting

gases at finite temperatures, in particular, the scale invariance prevails over the normal, fluctuation,

and superfluid regions because of the density-independent coupling constant[96] and the symmetry

of underlying Hamiltonian[153].

In this chapter, we experimentally verify the scale invariance and universality of interacting

2D Bose gases, and identify BKT critical points. We test scale invariance of in situ density and

density fluctuations of 133Cs 2D gases at various temperatures. We study the universality near the

BKT transition by tuning the atomic scattering length using a magnetic Feshbach resonance[6] and

observing a universal scaling behavior of the equation of state and the quasi-condensate density.

Finally, by comparing the local density fluctuations and the compressibility derived from the den-

sity profiles, we provide strong evidence of a growing density-density correlation in the fluctuation

regime.

7.2 Experiment

We begin the experiment by loading a nearly pure 133Cs Bose condensate of N = 2 × 104 atoms

into a single pancake-like optical potential with strong confinement in the vertical (z-) direction

and weak radial confinement in the horizontal (r-) direction[149, 157]. The trapping potential,

V (r, z) = mω2
rr

2/2 + mω2
zz

2/2, has mean harmonic trapping frequencies ωr = 2π × 10 Hz and

ωz = 2π × 1900 Hz. Here, r denotes the radial distance to the trap center and m is the cesium
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Figure 7.1: Illustration of scale invariance and universality in 2D quantum gases. (a) Scale invari-
ance links any thermodynamic observable at different µ and T via a simple power-law scaling. In
a 2D Bose gas with coupling constant g � 1, atomic density n measured at different temperatures
(red lines) can be scaled through constant µ/T and n/T contours (dashed lines). Near the BKT
phase transition boundary (green plane), systems with different g = g1, g2... (blue planes) scale
universally. (b) In situ density measurements of trapped 2D gases provide crucial information
to test the hypotheses of scale invariance and universality. Sample images at different scattering
lengths a are obtained from single shot.
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atomic mass. In this trap, we reach temperatures as low as T = 15 nK and moderate peak chemical

potential µ0 < kBT . The ratio ~ωz/µ0 > ~ωz/kBT ∼ 6 indicates that the sample is deeply in the

2D regime with < 1% population in the vertical excited states. Here, ~ = h/2π, h is the Planck

constant, and kB is the Boltzmann constant. The 2D coupling constant is evaluated according

to g =
√

8πa/lz [96], where a is the atomic scattering length and lz = 200 nm is the vertical

harmonic oscillator length. We control the scattering length a in the range of 2 ∼ 10 nm� lz ,

resulting in weak coupling strengths g = 0.05 ∼ 0.26. Here, the density-dependent correction to

g[96, 158] is expected to be small and negligible (< 2%).

We obtain in situ density distributions of 2D gases by performing absorption imaging perpen-

dicular to the horizontal plane with a commercial microscope objective and a CCD camera[157]

(see Fig. 7.1b for sample images). About 50 images are collected for each experiment condition,

and the average density n and the density variance δn2 are evaluated pixel-wise (see Section 7.7).

We obtain the radial density n(r) and variance δn2(r) profiles (Fig. 7.2 insets) by accounting for

the cloud anisotropy and performing azimuthal averaging[149].

We obtain the equation of state n(µ, T ) from the averaged density profile by assigning a local

chemical potential µ(r) = µ0 − V (r, 0) to each point according to local density approximation.

Both T and µ0 can be determined from the low density wing where the sample is assumed normal

and the density profile can be fit to a mean-field formula n(µ, T ) = −λ−2
dB ln[1 − exp(µ/kBT −

gnλ2
dB/π)][155], where λdB = h/

√
2πmkBT is the thermal de Broglie wavelength.

7.3 Observation of scale invariance

We confirm the scale invariance of a 2D gas by first introducing the dimensionless, scaled form

of density ñ = nλ2
dB (phase space density), fluctuation δñ2 = δn2λ4

dB , and chemical potential
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Figure 7.2: Scale invariance of density and its fluctuation. (a) Scaled density (phase space density)
ñ = nλ2

dB as a function of the scaled chemical potential µ̃ = µ/kBT measured at five different
temperatures: T = 21 nK (black circles), 37 nK (red squares), 42 nK (green triangles), 49 nK (blue
diamonds), and 60 nK (magenta stars), and coupling strength g = 0.26. Mean-field expectations
for normal gas (dashed line) and superfluid (solid line) are shown for comparison. Inset shows the
radial density profiles before scaling. (b) Scaled fluctuation δñ2 = δn2λ4

dB at different temper-
atures. Dashed line is the mean-field calculation based on the fluctuation-dissipation theorem20.
Solid line is an empirical fit to the crossover feature from which the critical chemical potential µ̃c
is determined. Inset shows the radial fluctuation profiles before scaling. The shaded area marks
the fluctuation region 0 < µ̃ < µ̃c. Error bars show standard deviation of the measurement.
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µ̃ = µ/kBT , and showing that the equation of state and the fluctuation satisfy the following forms:

ñ = F (µ̃) (7.1)

δñ2 = G(µ̃), (7.2)

where F and G are generic functions. This suggests both energy and length scales are set solely

by the thermal energy and the de Broglie wavelength, respectively. An example at g = 0.26

(a = 10 nm) is shown in Fig. 7.2. Here we show that while the original density and fluctuation

profiles are temperature dependent (see Fig. 7.2 insets), all profiles collapse to a single curve in the

scaled units. At negative chemical potential µ̃ < 0, the system is normal and can be described by

a mean-field model (dashed lines). In the range of 0 < µ̃ < 0.3, the system enters the fluctuation

regime and deviation from the mean-field calculation becomes evident. Crossing from normal gas

to this regime, however, we do not observe sharp transition feature in the equation of state. At

even higher µ̃ > 0.3, the system becomes a superfluid and the density closely follows a mean-field

prediction[107] ñ = 2πµ̃/g + ln(2ñg/π − 2µ̃). We notice that the mean-field theory in the su-

perfluid limit also cannot accurately describe the system in the fluctuation regime. Transition into

the BKT superfluid phase is most easily seen in the scaled fluctuation δñ2, which crosses over to

a nearly constant value due to the suppression of fluctuation in the superfluid regime[159]. In the

density profile ñ, a corresponding transition feature can be found when one computes the deriva-

tive ∂ñ/∂µ̃, i.e., the scaled compressibility κ̃, as suggested by the fluctuation-dissipation theorem

discussed in later paragraphs and Fig. 7.4. Finally, our measurement suggests that the validity of

scale invariance extends to all thermal, fluctuation and superfluid regimes, a special feature for

weakly-interacting 2D gases[153] which guided the analysis of a recent experiment[109].
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7.3.1 Determination of the BKT critical points

We associate the crossover feature in the density fluctuations δñ2 and the scaled compressibil-

ity κ̃ with the BKT transition[159, 160]. To estimate the location of the transition point, we

apply an empirical fit to this feature and determine the critical chemical potential µ̃c and the

critical phase space density ñc (see Section 7.7). Results at different g in the range of 0.05 to

0.26 are shown in Fig. 7.3c-d and compared to the theoretical prediction of ñc = ln(ξ/g) and

µ̃c = (g/π) ln(ξµ/g)[102], where ξ = 380 and ξµ = 13.2 are determined from a classical-field

MC calculation[103]. Our results show good agreement with the theory, apart from a potential

systematic error from the choice of the fit function, which can account for a down shift of 10% in

the fit values of µ̃c and ñc.

7.4 Observation of universality

Further comparison between profiles at different interaction strengths allows us to test the univer-

sality of 2D Bose gases. Sufficiently close to the BKT critical point with |µ̃− µ̃c| < g, one expects

the phase space density shows a universal behavior[107],

ñ− ñc = H(
µ̃− µ̃c
g

), (7.3)

where H is a generic function. Here, density and chemical potential are offset from the critical

values ñc and µ̃c, which remove the non-universal dependence on the microscopic details of the

interaction[100, 107].

To test the universality hypothesis, we rescale µ̃ to µ̃/g and look for critical values ñc and µ̃c

such that the equations of state at all values of g display a universal curve in the phase transition

regime (see Section 7.7). Indeed, we find that all rescaled profiles can collapse to a single curve

in the fluctuation region −1 < (µ̃ − µ̃c)/g < 0 and remain overlapped in an extended range of
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|µ̃− µ̃c|/g ≤ 2 (see Fig. 7.3a), which contrasts the very different equations of state ñ(µ̃) at various

g shown in the inset of Fig. 7.3a. Our result closely follows the classical-field prediction[107]

and quantum MC calculations[108] assuming strictly 2D mean-field contribution, and the fitting

parameters: critical density ñc and chemical potential µ̃c show proper dependence on g and are in

fair agreement with the theory prediction[103] (see Fig. 7.3c-d). We emphasize that critical values

determined from the density fluctuations (see Fig. 7.3c-d) match well with those determined from

the universal behavior, indicating that universality is a powerful tool to determine the critical point

from a continuous and smooth density profile. Similar agreement with the theory on the critical

densities has also been reported based on different experiment techniques[154, 20, 156].

Further universal features near the phase transition can be revealed in the growth of the quasi-

condensate (QC) density nq =
√
n2 − δn2 across the phase transition[103, 107, 161]. QC is a

measure of the non-thermal population in a degenerate Bose gas. A finite QC density does not

necessarily imply superfluidity, but can be responsible for a non-Gaussian distribution observed in

the momentum space[20]. QC is predicted to be universal near the critical point following[107]

ñq = Q(
µ̃− µ̃c
g

), (7.4)

where Q is a generic function and ñq = nqλ
2
dB .

We employ both of our density and fluctuation measurements to evaluate ñq at various g.

Adopting µ̃c determined from the universal behavior of the density profile, we immediately find

that all measurements collapse to a single curve in the range of |µ̃ − µ̃c|/g ≤ 2 with apparent

growth of QC density entering the fluctuation region (Fig. 7.3b). The generic function Q we deter-

mined is in good agreement with the classical-field[107] and quantum MC[108] calculations with

no fitting parameters. Both our density and fluctuation measurements show universal behaviors

throughout the fluctuation region where a mean-field description fails and confirm universality in

a 2D Bose gas near the BKT phase transition[107, 108].
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Figure 7.3: Universal behavior near the BKT critical point. (a) Rescaled density profiles ñ − ñc
measured at various coupling strengths, g = 0.05 (green triangles), 0.13 (blue diamonds), 0.19 (red
circles), and 0.26 (magenta squares). Inset shows the original equations of state ñ(µ̃). (b) scaled
quasi-condensate density ñq =

√
ñ2 − δñ2 at different interaction strengths. In both plots, MC

calculations from Ref. [107] (open circles) and Ref. [108] ((a)open squares for g = 0.07 and open
triangles for g = 0.14; (b) open squares) are plotted for comparison. The shaded area marks the
superfluid regime and the solid line in (b) shows the superfluid phase space density calculation12.
(c-d) critical values µ̃c and ñc determined from the following methods: universal scaling as shown
in (a) (see Section 7.7, red squares), density fluctuation crossover (see text, black circles), and MC
calculation from Ref. [103] (solid line). Experiment values coincide at g = 0.05 identically, as a
result of our analysis (see Section 7.7). Error bars show the standard deviation of the measurement.
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7.5 Observation of growing density-density correlations in the critical

fluctuation region

The generic functions we described in the previous paragraphs offer new avenues to investigate the

critical behavior of the 2D gas. Following the framework of scale invariance, we compare the di-

mensionless compressibility κ̃ = ∂ñ/∂µ̃ = F ′(µ̃) and the fluctuation δñ2 = G(µ̃) extracted from

the measurements at g = 0.05 and 0.26 (see Fig. 7.4). In the normal gas regime at low phase space

density (G(µ̃), F ′(µ̃) < 3), a simple equalityG = F ′ is observed. This result is consistent with the

fluctuation-dissipation theorem (FDT) for a classical grand canonical ensemble[162], which gives

kBT
∂N
∂µ = δN2, where N is the particle number in a detection cell. In the fluctuation and the

superfluid regimes at higher phase space density, our measurement shows that density fluctuations

drop below the compressibility G < F ′.

Natural explanations for the observed deviation include non-vanishing dynamic density suscep-

tibility at low temperature[163] and the emergence of correlations in the fluctuation region[164].

While the former scenario is outside the scope of this article, we show that the correlation alone

can explain our observation. Including correlation, the compressibility conforms to[165, 164]

κ̃(r) = λ−2
dB

∫
〈δñ(r)δñ(r + r′)〉d2r′ (7.5)

= δñ2(r)(1 + z), (7.6)

where 〈...〉 denotes ensemble average and z =
1+n(r)

∫
[g(2)(r,r+r′)−1]d2r′

1+n(r)
∫
v[g(2)(r,r+r′)−1]d2r′

− 1 is the relative

strength of correlation to local fluctuation δñ2 [164]. Here g(2) is the normalized second-order

correlation function[94] and v denotes the effective area of the resolution limited spot. When the

sample is uncorrelated, we have z = 0; non-zero z suggests finite correlations in the sample. In

the fluctuation region shown in Fig. 7.4, observing a lower fluctuation than would be indicated
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Figure 7.4: Fluctuation versus compressibility. Scaled compressibility κ̃ = F ′(µ̃) and scaled
density fluctuation δñ2 = G(µ̃) are derived from measurements at two interaction strengths, g =
0.05 (squares) and g = 0.26 (circles), each containing two different temperatures between 20 and
40 nK (solid and open symbols, respectively). Diagonal line shows the expectation of G = F ′ in
the normal gas region. Solid line shows suppressed fluctuation G = F ′/(1 + z) with z = 2.
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by the compressibility, with z approaching 2, suggests that the correlation length approaches or

even exceeds our imaging cell dimension
√
v ∼ 2 µm. This observation is in agreement with

the expected growth of correlation when the system enters the fluctuation region. Similar length

scales were also observed in the first-order coherence near the BKT phase transition using an

interferometric method[20] and near the superfluid phase transition in three dimensions[117].

7.6 Conclusion

In summary, based on in situ density measurements at different chemical potential, temperature,

and scattering length, we have explored and confirmed the global scale invariance of a weakly-

interacting 2D gas, as well as the universal behavior near the critical point. Our results provide

detailed description of critical thermodynamics near the BKT transition and offer new prospects

to investigate other critical phenomena near classical or quantum phase transitions. In particular,

we present experimental evidence of the growing correlations in the fluctuation region through the

application of the fluctuation-dissipation theorem. Further investigations into the correlations will

provide new insights into the rich critical phenomena near the transition point, for instance, critical

opalescence and critical slowing.

7.7 Methods Summary

Preparation and detection of cesium 2D Bose gases are similar to those described in Ref. [157]

. We adjust the temperature of the sample by applying magnetic field pulses near a Feshbach

resonance to excite the atoms. We then tune the scattering length to a designated value, followed

by 800 ms wait time to ensure full thermalization of the sample.

Absorption imaging is performed in situ using a strong resonant laser beam, saturating the

sample to reduce the optical thickness. Atom-photon resonant cross-section and atomic density

are independently calibrated. Averaged atom number Ni and number fluctuation δN2
i at i-th CCD
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pixel are evaluated pixel-wise based on images taken under identical experiment conditions. The

photon shot-noise, weakly depending on the sample’s optical thickness, is calibrated and removed

from the measured number variance. We correct the effect of finite imaging resolution on the

remaining number variance using calibration from dilute thermal gas measurements. The density

fluctuation δn2
i is obtained from the recovered atom number variance using δn2

iλ
2
dB = δN2

i /A,

which replaces the dependence on the CCD pixel area A by a proper area scale λ2
dB .

7.7.1 Calibration of the atomic surface density and the atom number

fluctuation.

The atomic surface density n of the 2D gas is evaluated with similar schemes discussed in Ref. [128]

, where the resonant cross-section σ0 is independently calibrated using a thin 3D Bose condensate

with similar optical thickness and the known atom number-to-Thomas-Fermi radius conversion.

The resulting value can be compared to that determined from the atom shot-noise amplitude in

dilute 2D thermal gases, where the noise is evaluated using binned CCD pixels to remove finite

resolution effects. For dilute thermal gases, we expect δN2 = N , where N is the mean atom num-

ber; we compare the fluctuation amplitude to the mean and extract the value of σ0. Two results

agree to within 10% and the residual non-linearity in the density calibration is negligible.

We evaluate the atom number variance δN2 pixel-wise based on images taken under identical

experiment conditions. The photon shot-noise contribution δN2
p , which weakly depends on the

sample’s optical thickness nσ0, is calibrated and removed from the atom number fluctuation using

δN2
p = (δN2

0/2)[1+
(1+γe−nσ0)2

(1+γ)2
enσ0 ], where δN2

0 is the photon shot-noise without atoms and γ is

the ratio of the imaging beam intensity to the saturation intensity. Both δN2
0 and γ are experimen-

tally calibrated. We then correct for the effect of finite resolution on the number fluctuation[149]

by comparing the atom number variance in a dilute thermal cloud to its mean atom number, using

δN2 = N , and applying this calibration to all fluctuations measured at lower temperatures and
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higher densities.

7.7.2 Density-density correlation in the fluctuation measurement.

In the fluctuation measurement, we determine δn2 from the pixel-wise atom number variance using

the formula δn2λ2
dB = δN2/A, which replaces the dependence on the pixel area A by a natural

area scale λ2
dB . This definition, however, does not fully eliminate the dependence on the imaging

resolution spot size v ∼ (2 µm)2. In particular, when the density-density correlation length ξ

approaches or exceeds the resolution, the measured fluctuation can depend on the fixed length

scale
√
v, which can complicate the scaling behavior. However, we do not see clear deviation of

scale invariance and universality within our measurement uncertainties (Fig. 7.2b and 3b). We

attribute this to the small variation of the non-scale invariant contribution within our limited range

of sample temperature. Further analysis on the correlations and fluctuations is in progress and the

result will be published elsewhere.

7.7.3 Determination of the BKT critical values from the fluctuation data.

We use a hyperbolic function y(µ̃) = s(µ̃ − µ̃c) −
√
s2(µ̃− µ̃c)2 + w2 to empirically fit the

crossover feature of the density fluctuation near the transition region, assuming δñ2(µ̃) = Dey(µ̃),

where the critical chemical potential µ̃c, the fluctuation in the superfluid regime D, the slope of

the exponential rise s, and the width of the transition region w are fitting parameters. The critical

phase space density is then determined from the density profile as ñc = ñ(µ̃c). Other choices of

fit functions give similar results, contributing only small systematics from the choice of different

models.
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7.7.4 Obtaining the universal function H(x).

We use the density profiles in the inset of Fig. 7.3a to look for critical values ñc and µ̃c such that

the equations of state at all values of g collapse to a single universal curve H(x) = ñ(µ̃) − ñc,

where x = (µ̃− µ̃c)/g is the rescaled chemical potential. To do this, we take the profile measured

at g = 0.05 ≡ gr as the reference, evaluate Hr(x) = ñ(grx + µ̃c,r) − ñc,r using the critical

values ñc,r and µ̃c,r determined from the fluctuation crossover feature, and smoothly interpolate

the data to make a continuous reference curve Hr(x) in the range of |x| ≤ 1. Using this model,

we perform minimum chi-square fit to the profiles measured at all other values of g according to

ñ(µ̃) = ñc + Hr(
µ̃−µ̃c
g ), with only ñc and µ̃c as free parameters. This procedure successfully

collapses all density profiles (see Fig. 7.3a), and is independent of any theoretical model. The

resulting critical values ñc and µ̃c are plotted in Fig. 7.3c-d.
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CHAPTER 8

EXTRACTING DENSITY-DENSITY CORRELATIONS FROM IN SITU

IMAGES OF ATOMIC QUANTUM GASES

In this chapter, we present a complete recipe to extract the density-density correlations and the

static structure factor of a two-dimensional (2D) atomic quantum gas from in situ imaging. Using

images of non-interacting thermal gases, we characterize and remove the systematic contributions

of imaging aberrations to the measured density-density correlations of atomic samples. We deter-

mine the static structure factor and report results on weakly interacting 2D Bose gases, as well as

strongly interacting gases in a 2D optical lattice. In the strongly interacting regime, we observe a

strong suppression of the static structure factor at long wavelengths.

The is a published work by C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke, and C. Chin

in New J. Phys. 13, 075019 (2011) in a focus issue on Quantum simulation.

8.1 Introduction

Fluctuations and correlations result from the transient dynamics of a many-body system deviat-

ing away from its equilibrium state. Generally, fluctuations are stronger at higher temperatures

and when the system is more susceptible to the external forces (as governed by the fluctuation-

dissipation theorem, see [162, 34]). Local fluctuations and their correlations can thus be a powerful

tool to probe thermodynamics, and to identify phase transition of a many-body system due to the

sudden change of the susceptibility to the thermodynamic forces.

Measurement of fluctuations and correlations on degenerate atomic gases can reveal much

information about their quantum nature [166]. Experiment examples include the quantum statistics

of the atoms [167, 131, 168, 169, 170], pairing correlations [171] and quantum phases in reduced

dimensions [172, 173]. In these experiments, images of the sample are taken after the time-of-flight
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expansion in free space, from which the momentum-space correlations are extracted.

In situ imaging provides a new and powerful tool to examine the density fluctuations in real

space [137, 149, 174, 175, 176, 121, 33, 177, 178], offering a complimentary description of the

quantum state. This new tool has been used to resolve spatially separated thermodynamic phases

in inhomogeneous samples. From in situ measurements, both Mott insulator density plateaus and a

reduction of local density fluctuations were observed [149, 121, 33, 157]. Furthermore, a universal

scaling behavior was observed in the density fluctuations of 2D Bose gases [179].

Precise measurements of spatial correlations, however, present significant technical challenges.

In in situ imaging, one typically divides the density images into small unit cells or pixels and

then evaluates the statistical correlation of the signals in the cells. If both the dimension of the

cell and the imaging resolution are much smaller than the correlation length of the sample, the

interpretation of the result is straightforward. In practice, because the correlation length of quantum

gases is typically on the order of 1 µm, comparable to the optical wavelength that limits the image

resolution, interpreting experimental data is often more difficult. Finite image resolution, due

to either diffraction, aberrations or both, contributes to systematic errors and uncertainties in the

fluctuation and correlation measurements.

In this paper, we present a general method to determine density-density correlations and static

structure factors of quantum gases by carefully investigating and removing systematics due to

imaging imperfections. In Section 2, we review the static structure factor and its relation to the real

space density fluctuations. In Section 3, we describe how the density fluctuation power spectrum of

a non-interacting thermal gas can be used to calibrate systematics in an imperfect imaging system,

and show that the measurement can be explained by aberration theory. In Section 4, we present

measurements of density fluctuations in weakly interacting 2D Bose gases and strongly interacting

gases in a 2D optical lattice, and extract their static structure factors from the density-density

correlations.
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8.2 The density-density correlation function and the static structure factor

We start by considering a 2D, homogeneous sample at a mean density n̄. The density-density

correlation depends on the separation r1−r2 between two points, and the static correlation function

ν(r) is defined as [180]

ν(r1 − r2) = n̄−1〈δn(r1)δn(r2)〉

= δ(r1 − r2) + n̄−1〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r1)Ψ̂(r2)〉 − n̄ (8.1)

where 〈...〉 denotes the ensemble average, and δn(r) = n(r) − n̄ is the local density fluctuation

around its mean value n̄. The Dirac delta function δ(r1 − r2) represents the autocorrelation of

individual atoms, and 〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r1)Ψ̂(r2)〉 = G(2)(r1−r2) is the second-order correlation

function [94]. When the sample is completely uncorrelated, only atomic shot noise is present

and ν(r1 − r2) = δ(r1 − r2). At sufficiently high phase space density, when the inter-particle

separation becomes comparable to the thermal de Broglie wavelength λdB or the healing length,

density-density correlation becomes non-zero near this characteristic correlation length scale and

ν(r) deviates from the simple shot noise behavior.

The static structure factor is the Fourier transform of the static correlation function [180, 35]

S(k) =

∫
ν(r)e−ik·rdr, (8.2)

where k is the spatial frequency wave vector. We can rewrite the static structure factor in terms of

the density fluctuation in the reciprocal space as [35]

S(k) =
〈δn(k)δn(−k)〉

N
=
〈|δn(k)|2〉

N
, (8.3)

where δn(k) =
∫
δn(r)e−ik·rdr, and N is the total particle number. Here, δn(−k) = δn∗(k)
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since the density fluctuation δn(r) is real. The static structure factor is therefore equal to the

density fluctuation power spectrum, normalized to the total particle number N . A non-correlated

gas possesses a structureless, flat spectrum S(k) = 1 while a correlated gas shows a non-trivial

S(k) for k near or smaller than inverse of the correlation length ξ−1.

The static structure factor reveals essential information on the collective and the statistical

behavior of thermodynamic phases [34, 35, 36, 37]. It has been shown that, through the generalized

fluctuation-dissipation theorem [163], the static structure factor of a Bose condensate is directly

related to the elementary excitation energy ε(k) as [35, 181]

S(k) =
~2k2

2mε(k)
coth

ε(k)

2kBT
, (8.4)

where m is the atomic mass, T is the temperature, ~ is the Planck constant h divided by 2π, and

kB is the Boltzmann constant. See references [35, 36, 37] on the static structure factor of a general

system with complex dynamic density response in the frequency domain.

Previous experimental determinations of the static structure factor in the zero-temperature limit,

based on two-photon Bragg spectroscopy, have been reported for weakly interacting Bose gases

[182, 183] and strongly interacting Fermi gases [184]. Here, we show that S(k) at finite tempera-

tures can be directly determined from in situ density fluctuation and correlation measurements.

Experimental determination of S(k) from density fluctuations is complicated by artificial length

scales introduced by the measurement, including, for example, finite image resolution and size of

the pixels in the charge-coupled device (CCD). Figure 8.1 shows a comparison between the mea-

surement length scales (the resolution limited spot size and CCD pixel size), the correlation length

ξ, and the thermal de Broglie wavelength λdB . Ideally, a density measurement should count the

atom number inside a detection cell (pixel) with sufficiently high image resolution, and the dimen-

sion of the cell should be small compared to the atomic correlation length. In our experiment, the

image resolution is determined by the imaging beam wavelength λ = 852 nm, the numerical aper-
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Figure 8.1: A comparison between physical length scales and measurement length scales. In
(a), each atom is represented by a color circle with its diameter equal to the thermal de Broglie
wavelength, λdB . ξ is the correlation length. An ideal measurement detects atom with perfect
resolution. (b) shows the experimental condition where the image resolution is larger than the
other length scales. Here, the image of an atom forms a resolution limited spot (dashed circles),
and is large compared to the correlated area ξ2 and the CCD pixel area. The grid lines represent
the CCD pixel array.

ture N.A. = 0.28, and the aberrations of the imaging system. The image of a single atom on the

CCD chip would form an Airy-disk like pattern with a radius comparable to or larger than λdB or

ξ. The imaging magnification was chosen such that the CCD pixel size
√
A = 0.66 µm in the ob-

ject plane is small compared to the diffraction limited spot radius ∼ 1.8 µm. The atom number Nj

recorded on the j-th CCD pixel is related to the atom number density
∫
drn(r)P(rj−r), assuming

the point spread function P(r) is approximately flat over the length scale of a single pixel,

nexp(rj) ≡
Nj
A
≈
∫
drn(r)P(rj − r), (8.5)

where rj is the center position of the j-th pixel in the object plane, n(r) is the atom number

density distribution, and the integration runs over the entire x − y coordinate space. The atom
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number fluctuation measured at the j-th pixel is related to the density-density correlation as

〈δN2
j 〉 ≈ A2

∫
dr

∫
dr′〈δn(r)δn(r′)〉P(rj − r)P(rj − r′), (8.6)

where δNj = Nj − 〈Nj〉 is the atom number fluctuation around its mean value 〈Nj〉.

In the Fourier space, Eq. (8.5) can be written as

δnexp(kl) ≈ δn(kl)P(kl), (8.7)

where δnexp(kl) ≡
∑
j δNje

−ikl·rj is the discrete Fourier transform of δNj , approximating the

continuous Fourier transform. Here, kl = 2π
L (lx, ly), L is the linear size of the image, lx and ly are

integer indices in k-space. From Eq. (8.3) and (8.7), the power spectrum of the density fluctuation

is related to the static structure factor as

〈|δnexp(kl)|2〉 ≈ NS(kl)M2(kl), (8.8)

where the modulation transfer functionM(k) = |P(k)| accounts for the imaging system’s sensi-

tivity at a given spatial frequency k, and is determined by the point spread function. Also, from

Eq. (8.6), the pixel-wise atom number fluctuation is related to the weighted static structure factor

integrated over the k-space,

〈δN2
j 〉 ≈

〈Nj〉A
4π2

∫
dkS(k)M2(k). (8.9)

Generalization of the above calculations to arbitrary image resolution and detection cell size is

straightforward. In addition to convolving with the point spread function, the measured atom num-

ber density must also be convolved with the detection cell geometry. Equation (8.5) can therefore

be written asNj/A =
∫
dkn(k)P(k)H(k)eik·rj , whereH(k) =

∫
A e

ik·rdr/A and the integration
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goes over the areaA of the detection cell. This suggests simply replacingM2(k) byM2(k)H2(k)

to generalize Eq. (8.8) and (8.9). Finally, in all cases, the discrete Fourier transform defined in

Eq. (8.7) should well approximate the continuous Fourier transform for spatial frequencies smaller

than the sampling frequency 1/
√
A.

We view the factor M2(k)H2(k) as the general imaging response function, describing how

the imaging apparatus responds to density fluctuations occurring at various spatial frequencies.

To extract the static structure factor from in situ density correlation measurements, one therefore

needs to characterize the imaging response function at all spatial frequencies to high precision.

Since our pixel-size is much smaller than the diffraction and aberration limited spot size, we will

from here forward assume H2(k) = 1; H2(k) decays around k ∼ 4/
√
A = 6 µm−1 (1/e radius),

which is much larger than k = 2πN.A./λ = 2.1 µm−1, whereM2(k) terminates.

8.3 Measuring the imaging response functionM2(k)

In this section, we show how to use density fluctuations of thermal atomic gases to determine the

imaging response functionM2(k). Other approaches based on imaging individual atoms can be

found, for example, in Refs. [185, 186].

8.3.1 Experiment

Measuring density fluctuations in low density thermal gases provides an easy way to precisely

determine the imaging response function. An ideal thermal gas at low phase-space density has an

almost constant static structure factor up to k = λ−1
dB [94] which, in our case, is larger than the

sampling frequency 1/
√
A. Therefore, the density fluctuation power spectrum derived from an

ideal thermal gas reveals the square of the modulation transfer function, as indicated by Eq. (8.8).

We prepare a 2D thermal gas by first loading a three-dimensional 133Cs Bose-Einstein con-

densate with 2 × 104 atoms into a 2D pancake-like optical potential with trap frequencies ωz =
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Figure 8.2: Determination of the imaging response function M2(k) from in situ images of 2D
thermal gases. (a) Image noise of a 2D thermal gas, obtained by subtracting the averaged density
image from a single-shot image. The dashed ellipse encircles the location of thermal atoms. (b)
Noise power spectrum evaluated from 60 images, using discrete Fourier transform defined follow-
ing Eq. (8.7). Zero spatial frequency is shifted to the image center. (c) Fit to the image noise power
spectrum using imaging response function defined in Eq. (8.12) and aberration parameters defined
in Eqs. (8.10) and (8.11). (d) Sample line-cuts of experiment (circles) and fit (solid lines), with
cutting angle θ indicated in the graph. The profiles are plotted with offset for clarity. Image size:
L2 = 256× 256 pixels.
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2π× 2000 Hz (vertical) and ωr = 2π× 10 Hz (horizontal) [157, 179]. We then heat the sample by

applying magnetic field pulses near a Feshbach resonance. After sufficient thermalization time, we

ramp the magnetic field to 17 G where the scattering length is nearly zero. The resulting thermal

gas is non-interacting at a temperature T = 90 nK and its density distribution is then recorded

through in situ absorption imaging [179].

We evaluate the density fluctuation power spectrumM2
exp(kl) = 〈|δnexp(kl)|2〉 using 60 ther-

mal gas images (size: 256× 256 pixels). Figure 8.2(a) shows a sample of the noise recorded in the

images. Outside the cloud (whose boundary roughly follows the dashed line), the noise is domi-

nated by the optical shot noise, and is therefore uncorrelated and independent of spatial frequency.

In the presence of thermal atoms, we observe excess noise due to fluctuations in the thermal atom

density. The noise power spectrum is shown as an image in Fig. 8.2(b), with line-cuts shown in

Fig. 8.2(d). We note that the power spectrum acquires a flat offset extending to the highest spatial

frequency, due to the photon shot noise in the imaging beam. Above the offset, the contribution

from atomic density fluctuations is non-uniform and has a hard edge corresponding to the finite

range of the imaging response function. Close to the edge, ripples in the noise power spectrum

appears because of aberrations of the imaging optics, discussed in later paragraphs. Finally, the

bright peak at the center corresponds to the large scale density variation due to the finite extent of

the trapped atoms, and is masked out in our following analysis.

To fully understand the imaging response function with imaging imperfections, we compare

our result with calculations based on Fraunhofer diffraction and aberration theory [187] as de-

scribed in the following paragraphs.

8.3.2 Point spread function in absorption imaging

We consider a single atom illuminated by an imaging beam, the latter is assumed to be a plane

wave with a constant phase across both the object and the image planes. The atom, driven by
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the imaging electric field, scatters a spherical wave (dark field) which interferes destructively with

the incident plane wave [27]. The dark field is clipped by the limiting aperture of the imaging

optics and is distorted by the imaging aberrations. An exit pupil function p is used to describe the

aberrated dark field at the exit of the imaging optics [187], and its Fourier transform p(k) with

k ∝ R describes the dark field distribution on the CCD chip, where R is the position in the image

plane. The image of a single atom is then an absorptive feature formed by the interference between

the dark field and the incident plane wave in the image plane.

We extend this to absorption imaging of many atoms with density n(r) =
∑
i δ(r− ri), where

ri is the location of the i-th atom in the object plane. The total scattered field in the image plane

is1 ∆E =
∑
i εp(k − ki), with each atom contributing a dark field amplitude ε, and k relates to

the position r in the object plane through k = r/ad, where a is the radius of the limiting aperture

and d = λ/(2πN.A.). The dark field ε ∝ eiδsE0 is proportional to the incident field E0, and

carries with a phase shift δs associated with the laser beam detuning from atomic resonance. For

a thin sample illuminated by an incident beam with intensity I0, the beam transmission is t2 =

|E0 + ∆E|2/|E0|2 ≈ 1 + 2<[∆E/E0] and the atomic density nexp ∝ − ln(t2) + (1− t2)I0/Isat

[128, 179] leads to nexp ∝ −2(1 + I0/Isat)<[∆E/E0] ∝
∑
i<[eiδsp(k− ki)]. Here, <[.] refers

to the real part and Isat is the saturation intensity for the imaging transition. Comparing the above

expression to Eq. (8.5), we derive the point spread function as P(r) ∝ <[eiδsp(k)]|k=r/ad, in

contrast to the form |p(k)|2 in the case of fluorescence or incoherent imaging.

When the dark field passes through aberrated optics, neither the amplitude nor the phase at

the exit pupil is uniform, but is distorted by imperfections of the imaging system. To account for

attenuation and phase distortion, We can modify the exit pupil function as

p(rp, θp) = U(rp/a, θp)e
iΘ(rp/a,θp), (8.10)

1. We consider the density n of the 2D gas in a range that the photon scattering cross section remains density-
independent [109].
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where rp and θp are polar coordinates on the exit pupil, U(ρ, θ) is the transmittance function, and

Θ(ρ, θ) is the wavefront aberration function. We assume U to be azimuthally symmetric and model

it as U(ρ) = H(1 − ρ)e−ρ
2/τ2 , where H(x) is the Heaviside step function setting a sharp cutoff

when rp reaches the radius a of the limiting aperture. The factor e−ρ
2/τ2 , with 1/e radius rp = aτ ,

is used to model the weaker transmittance at large incident angle due to, e.g., finite acceptance

angle of optical coatings. For the commercial objective used in the experiment, we need only to

include a few terms in the wavefront aberration function

Θ(ρ, θ) ≈ S0ρ
4 + αρ2 cos(2θ − 2φ) + βρ2, (8.11)

where the parameters used to quantify the aberrations are: S0 for spherical aberration, α for astig-

matism (with φ the azimuthal angle of the misaligned optical axis), and β for defocusing due to

atoms not in or leaving the focal plane during the imaging.

Using the exit pupil function in Eq. (8.10), we can evaluate the point spread function via

P(r) ∝ <[eiδsp(k)]|k=r/ad with proper normalization. We can also calculate the modulation

transfer function M(k) = |P(k)| . In fact, determination of any one of p(rp), P(r), or M(k)

leads to a complete characterization of the imaging system including its imperfections.

8.3.3 Modeling the imaging response function

We fit the exit pupil function p in the form of Eq. (8.10), using a discrete Fourier transform, by

comparing

M2
fit = |FT (<[eiδsFT (p)])|2 (8.12)

to the thermal gas noise power spectrum M2
exp shown in Fig. 8.2(b). Here, FT (.) denotes the

discrete Fourier transform. Figure 8.2(c) shows the best fit to the measurement, which captures

most of the relevant features in the experiment data. Sample line-cuts with uniform angular spacing
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are shown in Fig. 8.2(d). This experimental method can in principle be applied to general coherent

imaging systems, provided the signal-to-noise ratio of the power spectrum image is sufficiently

good to resolve all features contributed by the aberrations. Moreover, one can obtain analytic

expressions for the point spread function and the modulation transfer function once the exit pupil

function is known (see Section 8.5).

Having determined the imaging response function, one can remove systematic contributions

from imaging imperfections to the static structure factor as extracted from the power spectrum of

atomic density fluctuations, see Eq.(8.8).

8.4 Measuring density-density correlations and static structure factors of

interacting 2D Bose gases

We measure the density-density correlations of interacting 2D Bose gases based on the method pre-

sented in the previous sections. This study is partially motivated by a finding in our earlier work

that the local density fluctuation of a 2D Bose gas is suppressed when it enters the Berezinskii-

Kosterlitz-Thouless (BKT) fluctuation and the superfluid regions [179]. We attributed this phe-

nomenon to the emergence of long density-density correlation length exceeding the size of the

imaging cell and the resolution. This results in a smaller pixel-wise fluctuation δN2/A than the

simple product of the thermal energy kBT and the compressibility κ, as is expected from the clas-

sical fluctuation-dissipation theorem (FDT) [162]. Below, we present a careful analysis of the

density-density correlations of interacting 2D Bose gases and discuss the role of correlations in the

FDT.

To extract local properties from a trapped sample, we limit our analysis to a small central area

of the sample where the density is nearly flat. In addition, the area is chosen to be large enough

to offer sufficient resolution in the Fourier space. We choose the patch size to be 32×32 pixels.

Figure 8.3 shows a typical image and the density fluctuations inside the patch.
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Figure 8.3: Illustration of the patch selected for the static structure factor analysis. (a) shows a
typical cloud image of 200 × 200 pixels. The selected patch is located at the center of the cloud,
bounded by a box with an area of 32 × 32 pixels. (b) shows the density fluctuations inside the
patch.

To ensure that we obtain an accurate static structure factor using the small patch, we perform

a measurement on a non-interacting 2D thermal gas at a phase space density nλ2
dB = 0.5 and

compare the measured static structure factor to the theory prediction [94]. We first calculate the

imaging response functionM2(k) for a patch size of 32×32 pixels and divide the thermal gas noise

power spectrum byM2(k). The resulting spectrum should represent the static structure factor of

an ideal 2D thermal gas. In Fig. 8.4, we plot the azimuthally averaged static structure factor with

data points uniformly spaced in k, up to the resolution limited spatial frequency k = 2πN.A./λ.

The measured static structure factor is flat and agrees with the expected value of S(k) ≈ 1.3 for

k < λ−1
dB = 2 µm−12.

Applying the same analysis to interacting 2D Bose gases, we observe very different strengths

and length scales for the density fluctuations. In Fig. 8.4(a-c), we present the single-shot image

noise of samples prepared under three different conditions: weakly interacting gases at the temper-

2. Following the calculation in Ref. [94], we find the static correlation function of an ideal 2D thermal gas is ν(r) =

δ(r) + |g1(z, e−πr
2/λ2

dB )|2/g1(z, 1)λ2
dB , where z = eµ/kBT is the local fugacity and gγ(x, y) =

∑∞
k=1 x

ky1/k/kγ is
the generalized Bose function. Fourier transforming ν(r) to obtain the static structure factor S(k), we find S(k) ≈ 1.3
remains flat for kλdB < 1.
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ature T = 40 nK (below the BKT critical point), with dimensionless interaction strength1 g = 0.05

and 0.26 (phase space density nλ2
dB = 9 and 7); and a strongly interacting 2D gas at the temper-

ature T = 8 nK, prepared in a 2D optical lattice at a mean site occupancy number of 2.6, and a

depth of 7 ER, where ER = h × 1.3 kHz is the recoil energy. Due to the tight confinement, the

sample in the optical lattice has a high effective interaction strength1 geff = 1.0 [38]. Details on

the preparation of the 2D gases in the bulk and in an optical lattice can be found in Refs. [179] and

[38], respectively.

The difference in the density fluctuations shown in Fig. 8.4(a-c) can be characterized in their

static structure factors shown in Fig. 8.4(d). We observe positive correlations above the shot noise

level S(k) = 1 in the two weakly interacting samples. The one at g = 0.05 shows stronger den-

sity correlations at small k than does the sample at g = 0.26. The enhanced density correlations

S(k) > 1 at low momenta are expected since the thermally induced phonon excitations can popu-

late states with length scale 1/k longer than the healing length ξ = 1/
√
ng. For gases with stronger

interactions, excitations cost more energy and the excited states are less populated. At smaller g,

the correlation length is longer and, therefore, the static structure factor decays at a smaller k.

The most intriguing observation is the negative correlations S(k) < 1 in the strongly inter-

acting gas with geff = 1.0. We observe a below-shot-noise spectrum at low momentum k, show-

ing that long wave-length excitations are strongly suppressed due to a stronger interaction energy

n~2geff/m = kB × 34 nK compared to the thermal energy kB × 8 nK. As the momentum k

increases, the excitation populations gradually return to the shot noise level. Our observation is

consistent with the prediction in Ref. [181] that when the thermal energy drops below the interac-

tion energy, global density fluctuations in a superfluid are suppressed.

Finally, we discuss the contribution of finite density-density correlations in the FDT. Including

1. The dimensionless interaction strength of a weakly interacting 2D Bose gas is g =
√

8πas/lz , where as is the
atomic scattering length and lz =

√
~/mωz is the vertical harmonic oscillator length. For a 2D gas in a 2D optical

lattice, the effective interaction strength is geff = mUl2/~2 [38], where U is the on-site interaction and l is the lattice
constant.
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Figure 8.4: Density fluctuations and the static structure factors of 2D Bose gases. (a) and (b) Image
noise of weakly interacting 2D Bose gases in the superfluid phase at dimensionless interaction
strength g = 0.05 and 0.26. (c) Image noise of a strongly interacting 2D Bose gas at geff = 1.0
prepared in a 2D optical lattice at a depth of 7 ER. (d) shows the static structure factors extracted
from the noise power spectra of interacting 2D gases as shown in (a) (black circles), (b) (red
squares), and (c) (blue triangles). The static structure factor of an ideal thermal gas at phase space
density nλ2

dB = 0.5 (open circles) and the expected value of S(k) ≈ 1.3 (gray dashed line) are
plotted for comparison. Solid lines are the guides to the eye. Vertical dashed line indicates the
resolution limited spatial frequency k = 2πN.A./λ = 2.1 µm−1.

170



correlations, we can write the FDT as kBTκ(r) =
∫
〈δn(r)δn(r′)〉dr′ = n(r)S(0) [181]. We

compare the measured static structure factor, extrapolated to zero-k, to the value of kBTκ/n, where

κ = ∂n/∂µ is the experimentally determined compressibility [179], and indeed find that nS(0)

equals to kBTκ to within our experimental uncertainties of 10 ∼ 20% for all three interacting

samples. This agreement shows that the measured correlations and thus the static structure factor

can be linked to the thermodynamic quantities via the FDT. Our ability to determine S(0) and κ

from in situ images also suggests a new scheme to determine temperature of the sample from local

observables as kBT = nS(0)/κ.

8.5 Full analysis of the point spread function and the modulation transfer

function

8.5.1 Point spread function

Here, we describe our approach to characterize imaging imperfections using extended Nijboer-

Zernike diffraction theory [188]. To obtain the point spread function from the exit pupil function

p(rp, θp), it is convenient to first decompose the exit pupil function using a complete set of orthog-

onal functions on the unit disk in the polar coordinates

p(rp, θp) =
∞∑
n=0

n∑
m=−n

βmn Z
m
n (

rp
a
, θp), (8.13)

where Zmn (ρ, θ) = R
|m|
n (ρ)eimθ is a Zernike polynomial, the radial function

Rmn (ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)!

k![(n+m)/2− k]![(n−m)/2− k]!
ρn−2k (8.14)

171



terminates at ρ = 1, and Rmn = 0 when n−m is odd. The expansion coefficient βmn is given by

βmn =
n+ 1

πa2

∫ a

0

∫ 2π

0
p(rp, θp)Z

−m
n (rp/a, θp)rpdrpdθp. (8.15)

If we then apply the expansion Eq. (8.13) to the Fourier transform of the exit pupil function

p(k, θ) =
∫ a

0

∫ 2π
0 p(rp, θp)e

−ikrp cos(θ−θp)rpdrpdθp and carry out the integration using the Zernike-

Bessel relation
∫ 1

0 R
m
n (ρ)Jm(ξρ)ρdρ = (−1)(n−m)/2Jn+1(ξ)/ξ, we arrive at the following for-

mula

p(k, θ) = 2πa2
∞∑
n=0

n∑
m=−n

inβmn e
im(θ+π)Jn+1(ka)

ka
, (8.16)

where Jn(z) is the n-th order Bessel function of the first kind. The point spread function P(r, θ)

is the real part of eiδsp(k, θ)|k=r/ad with proper normalization

P(r, θ) =
1

N

∞∑
n=0

n∑
m=−n

<[inβmn e
im(θ+π)+iδs ]

Jn+1(r/d)

r/d
, (8.17)

whereN = 2πd2<[eiδsp(rp)]|rp=0 = 2πd2 cos δs is the normalizing factor such that
∫
P(r)d2r =

1. For a non-aberrated system, only β0
0 is non-zero and the above equation reduces to the form

J1(z)/z, as expected.

Using the above equations, we can derive the point spread function from the fitted exit pupil

function shown in Fig. 8.5(a). We calculate the expansion coefficients βmn and evaluate the corre-

sponding point spread function, see Fig. 8.5(b-c).

8.5.2 Modulation transfer function

It is straightforward to evaluate the modulation transfer functionM(k) = |P(k)| and the imaging

response function M2(k) = |P(k)|2 directly from the exit pupil function p(rp, θp). Since the
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Figure 8.5: Analysis of the imaging aberrations and the point spread function. (a) shows the wave-
front aberration (the phase of the exit pupil function) determined from the fit to the experiment. (b)
shows the expansion coefficients |βmn | determined from Eq. (8.15), using the exit pupil function in
(a). (c) shows a line-cut of the derived point spread function (solid line). The unaberrated point
spread function is plotted for comparison (dashed line). Inset shows the 2D distribution of the
aberrated point spread function and red line indicates the direction of the line-cut. Image size is
(33 µm)2.

point spread function can be written asP(r) = [eiδsp(k)+e−iδsp∗(k)]/4πa2N|k=r/ad, its Fourier

transform is

P(k) =
πd2

N
[eiδsp(rp, θ + π) + e−iδsp∗(rp, θ)]|rp=kad, (8.18)

where k = |k| is the spatial frequency and θ is the polar angle of k in the image plane. From

Eq. (8.18), the imaging response function isM2(k) ∝ |p(kad, θ + π) + e−2iδsp∗(kad, θ)|2. This

result shows that the phase shift δs is important sinceM2(k) depends on the interference between

p(kad, θ + π) and p∗(kad, θ). The transmittance U , defined in the exit pupil function Eq. (8.10),

accounts for the radial envelope inM2(k), leading to the sharp edge at k = d−1 = 2πN.A./λ.

Either the continuous function Eq. (8.18) or the discrete Fourier model Eq. (8.12) can be used to

calculate the imaging response function.
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8.6 Conclusion

In this chapter, we demonstrated the extraction of density-density correlations and static structure

factors from in situ images of 2D Bose gases. Careful analysis and modeling of the imaging

response function allow us to fully eliminate the systematic effect of imaging imperfections on

our measurements of density-density correlations. For thermal gases, our measurement of the

static structure factor agrees well with theory. For interacting 2D gases below the BKT critical

temperature, intriguingly, we observe positive density-density correlations in weakly interacting

samples (g � 1) and negative correlations in the strong interaction regime (geff = 1.0). For

all interacting gases, our static structure factor measurements agree with the prediction of the

FDT as S(0) = kBTκ/n. Extension of our 2D measurement can further test the prediction of

anomalous density fluctuations in a condensate [180, 189, 190, 191] and strong correlations in the

quantum critical region [116, 192]. Finally, our analysis can be applied to perform precise local

thermometry [165] and can potentially be used to extract the local excitation energy spectrum

through the application of the generalized fluctuation-dissipation theorem [35, 163].
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CHAPTER 9

OUTLOOK

We discuss some prospects of studying quantum critical dynamics using cold atoms in optical

lattices. Prominent dynamic phenomena include quantum critical transport of mass and entropy,

and dynamics of defect generation across the quantum critical point as described by the Kibble-

Zurek mechanism [193, 148].

This chapter contains a proposal and an experiment by X. Zhang, C.-L. Hung, S.-K. Tung, N.

Gemelke, and C. Chin published in part of New J. Phys. 13, 045011 (2011) in a focus issue on

Strongly correlated quantum fluids: From ultracold quantum gases to QCD plasmas.

9.1 Quantum critical transport

Mass and heat transport across the quantum critical regime provide important tests for quantum

critical theory [49]. Sufficiently close to the critical point, one expects that transport coefficients

obey universal scaling relations independent of microscopic physics [49, 194]. In two dimensions,

in particular, we expect that the static mass transport exhibits a universal behavior, in analogous

to the prediction on the electrical conductivity [195, 196], and the static mass conductivity at the

critical point is given by

σ =
m

~
Φσ, (9.1)

which only depends on the fundamental constants m/~ and a dimensionless, universal number Φσ

determined from the universality class of the underlying phase transition. Here ~ is the reduced

Planck constant, and m is the atomic mass. Analytic predictions on the transport coefficients in the

quantum critical regime were recently reported on the basis of the anti-de Sitter/conformal field

theory duality [196, 197]. Measurements of transport coefficients in general can be of fundamental

interest in quantum field theory [196]; the relation between mass and thermal conductivities is in
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close analogy to the Wiedemann-Franz relation between charge and thermal transport coefficients

in electronic systems, which is shown to break down near the quantum critical point in a recent

experiment [198].

Mass and heat transport are induced by generalized forces such as chemical potential gradient

and temperature gradient. A natural approach to study dynamics of atoms in optical lattices is to

first create non-equilibrium density distributions in the sample and then measure the subsequent

evolution of density profiles.

Non-equilibrium density distributions can be induced in various ways. For example, one can

create a controlled perturbation in the local chemical potential and induce transport by dynami-

cally changing the envelope trapping potential in an equilibrated system or changing the on-site

interaction U near a Feshbach resonance [6]. On the other hand, applying lattice ramps slow com-

pared to local microscopic time scales can still violate global adiabaticity and induce macroscopic

mass and heat flow [157]. This is aggravated by the pronounced difference in the equilibrium

density and entropy profiles between superfluid and Mott insulator phases, as shown in Fig. 9.1.

In a non-equilibrated system, we expect quantum critical dynamics to take place near integer site

occupation numbers.

While measuring the evolution of the density profile is straightforward using our in situ imag-

ing technique [149, 157], heat or entropy measurement in the quantum critical regime remains

a challenging task. Nevertheless, the entropy profile is readily measurable deeply in the Mott-

insulating regime by counting occupancy statistics using single-site resolved florescence imaging

in combination with on-site number filtering [33, 121], or can be extracted from counting average

site occupancies before and after on-site number filtering processes [157]. Since the local equili-

bration time scale (on the order of ~/U [121]) is sufficiently decoupled from the global dynamics

[199], a locally isentropic projection from the quantum critical regime deeply into the MI regime

can be achieved and the local entropy profile measured.

From the density and entropy profile measurements, we can determine their current densities
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through the application of a generic continuity equation ∂ρ
∂τ +∇· ~Jρ = Γρ. Here ρ(~x, τ) represents

experimentally measured mass or entropy density, ~Jρ is the corresponding current density, and Γρ

is a source term which characterizes, for example, particle loss (Γρ < 0) or entropy generation

(Γρ > 0).

Mass conductivity σ and thermal conductivity κ can be determined by relating the mass and en-

tropy current densities, ~Jn and ~Js, as functions of position ~x and time τ , to the generalized forces:

the local chemical potential gradient ~∇µ, the potential energy gradient ~∇V , and the temperature

gradient ~∇T . They obey the following transport equations [200]

~Jn(~x, τ) = −σ~∇[µ(~x, τ) + V (~x, τ)]−
mLnq
kB

~∇T (~x, τ) (9.2)

~Js(~x, τ) = −
Lqn
kB

~∇[µ(~x, τ) + V (~x, τ)]− κ

T
~∇T (~x, τ). (9.3)

HereLnq andLqn are phenomenological coefficients similar to the Seebeck and Peltier coefficients

in the thermoelectric effect and can be related via the Onsager reciprocity relation [201].

Finally, to obtain precise information of spatially resolved chemical potential gradient and tem-

perature gradient, we resort to the equilibrium properties of the sample which can be determined

from measurements of the equilibrium density and density fluctuation. The complementary knowl-

edge of the equation of state n(µ, T ) and its fluctuation δn2(µ, T ) in equilibrium can be inverted

to obtain µ(n, δn2) and T (n, δn2). We propose that, in a sample driven out of equilibrium globally

but remaining locally equilibrated, local density and fluctuation measurements can still be used to

extract its local chemical potential and temperature. This assumption can be further examined by

comparing local compressibility to density fluctuation and extracting local temperature through the

application of the fluctuation-dissipation theorem [165].

177



Figure 9.1: Sketch of density and entropy profiles of a trapped, finite-temperature gas in the
tunneling-dominated regime where the center of the cloud is a superfluid (SF), and in the
interaction-dominated regime where the cloud shows a Mott-insulating domain (MI) with unit
occupation number. The calculation is done with the same particle number and total entropy for
the two regimes. The gray shaded area marks an extended region near unit site occupation number
(nd2 = 1) where quantum critical transport can take place when global adiabaticity breaks down
during the lattice loading process. d = 532 nm is the lattice constant.

9.1.1 Experiment - Dynamics of mass flow

Our recent experiment studied global mass transport and statistical evolution in a 2D sample across

the SF-MI phase boundary [157]. We discovered slow equilibration dynamics with time scales

more than 100 times longer than the microscopic time scales for the on-site interaction and tunnel-

ing energy. This suggests that transport can limit the global equilibration process inside a sample

traversing a quantum critical point.

In Fig. 9.2 (a-c), we plot the evolution of density profiles of a 2D gas containing N = 2× 104

atoms after a short 50 ms ramp from zero to a final lattice depth of 10 ER. At this lattice depth,

U/t = 11 is below the critical point U/t = 17 for the Mott insulator state with unit occupation

number [202]. We record density profiles after holding the sample at the final lattice depth for

various hold times τ . With an equilibration time scale around 180 ms, the cloud gently expands

and the peak density slowly decreases due to the increase of repulsive atomic interaction during the

lattice ramp. This equilibration time scale can depend on the sample size and the local properties
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Figure 9.2: Evolution of the density profile and the atom number current density after a short 50 ms
lattice ramp from zero depth to a final depth of 10 ER (U/t = 11). Upper figure shows the density
profile after holding the sample at a constant final depth for hold times τ =(a) 10, (b) 150, and
(c) 350 ms (black circles). In each figure (a-c), the near-equilibrated density profile measured at
long hold time τ = 500 ms (gray triangles) is plotted for comparison. Each profile is based on an
average of 20 to 30 in situ images. (d) shows the atom number current density at hold time τ = 10
(black squares), 150 (red circles), and 350 (blue triangles) ms, derived from the density profiles
measured near hold times shown in (a-c) using Eq. (9.2).
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of the coexisting phases in an inhomogeneous sample.

We further extract the evolution of local mass current density, leading to detailed local transport

properties beyond a single equilibration time scale. We compute the mass current density ~Jn by

comparing density profiles taken at adjacent hold times (∆τ = 10 ∼ 50 ms) and applying the

continuity equation, m∆n
∆τ +∇· ~Jn(r, τ) = 0, to evaluate ~Jn(r, τ). Here, we assume no atom loss

in the analyses for short hold times τ < 500 ms. Assuming that mass flow only occurs in the

radial direction (r̂) due to azimuthal symmetry of the sample, we write the mass current density as

~Jn(r, τ) = mj(r, τ)r̂. The number current density j(r, τ) is computed according to

j(r, τ) = − 1

2πr

N(r, τ + ∆τ)−N(r, τ)

∆τ
, (9.4)

where N(r, τ) =
∫ r

0 n(r′, τ)2πr′dr′ is the number of atoms located inside a circle of radius r at

hold time τ . Positive j means a current flowing toward larger radius r, and vice versa.

In Fig. 9.2(d), we show j(r, τ) computed from density profiles measured near hold times shown

in Fig. 9.2 (a-c). We observe overall positive mass flow, which is consistent with the picture of

an expanding sample inside the optical lattice. The mass current density varies across the sample.

Shortly after the lattice ramp at τ = 10 ms, mass transport is most apparent inside a radius r = 40d,

where the occupation number nd2 > 1 and the atoms respond to the increase of on-site repulsion.

The current density peaks around an annular area 20d < r < 30d when the occupation number is

in the range 2 < nd2 < 3; outside this annular area, the current density is suppressed when the

occupation number is in the range nd2 > 3 or nd2 < 2. At a larger hold time τ = 150 ms, similar

transport continues to take place but with smaller amplitude. At a long hold time τ = 350 ms when

the sample is closer to equilibration, the current density j becomes smaller than our measurement

noise.

In this section, we have shown that spatially resolved mass current density is readily mea-

surable using our in situ imaging technique. We expect that local transport coefficients can be
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extracted using Eq. (9.2), from further measurements of local temperature gradients and chemical

potential gradients. Our interest lies in mass transport in the quantum critical regimes near integer

occupation numbers, where the static mass conductivity is predicted to be universal (Eq. (9.1)).

Measurements of local entropy density are under future investigations, with details outlined in

Section 9.1.

9.2 The Kibble-Zurek mechanism (KZM)

Based on general critical scaling arguments, the KZM predicts the formation of topological defects

after a system dynamically crosses through a second-order thermodynamic [203, 204] or quantum

phase transition [193, 148]. For optical lattice experiments, the KZM applies when the system is

quenched from a gapped Mott insulator state to a gapless superfluid phase, and predicts that the

density of defects scales with the ramp rate of the coupling strength g [148].

The scaling behavior can reveal critical exponents of the underlying quantum phase transition

[148, 205, 206]. When the coupling strength g is adiabatically ramped close to gc, the many-

body gap ∆ scales as ∆ ∝ |g − gc|zν = |λ(τ)|zν , where λ(τ) = g(τ) − gc characterizes the

time dependence of the ramp. The adiabaticity criterion breaks down at a time τ = τa when the

gap ∆ becomes small enough and the ramp rate violates d∆
dτ

~
∆ ≤ ∆, yielding excitations with a

characteristic energy scale ∆a ∝ |λ′(τa)|zν/(zν+1) or length scale ξa ∝ ∆
−1/z
a . The density of

defects nex should therefore scale universally as [148, 205]

nex ∝ ξ−Da ∝ γ
Dν/(zν+1)
a , (9.5)

where γa = |λ′(τa)| is the magnitude of the ramp rate at which adiabaticity fails.

In a two-dimensional superfluid, topological defects are vortices. Observing vortices in an opti-

cal lattice using in situ imaging is challenging, largely due to the smallness of a typical vortex core
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size (< 1 µm) compared to the imaging resolution (≥ 5 µm) available in most experiments. While

the latter can be technically improved, increasing the vortex core size by reducing the atomic inter-

action can also be achieved experimentally either through tuning a magnetic Feshbach resonance

[6] or releasing atoms for a short time-of-flight time [207, 208].

Further extensions of the KZM consider finite-temperature and finite-size effects [206]. In

general, the scaling of excitations also depends on the pathway of quenching [148, 206, 209], and

the system can enter the Landau-Zener regime in nearly defect-free processes [193]. Detailed

experiments could reveal the wealth in the dynamics of quantum critical phenomena as well as

the intriguing connection between quantum mechanics and thermodynamics in genuine quantum

systems [210, 211].
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APPENDIX B

UNIT CONVERSION

Tracking units of measurement is often a tedious process in calculating physical quantities involv-

ing multiple physical constants, units, and variables. Similar to the units of electron volt often used

in high energy physics, all units of measurement in our experiment can be converted into Hz by

setting the Plank constant h = 1, the Boltzmann constant kB = 1, the Bohr magneton µB = 1,

and the cesium mass m = 1 Hz. I used this set of cesium units, listed in Tables B.1 and B.2, to

conveniently calculate all physical quantities in my thesis work. Conversion from and to SI units

can be done using Table B.2.

Name of constant symbol cesium units
Planck constant h 1
Boltzmann constant kB 1
Bohr magneton µB 1
Cesium-133 atomic mass m 1 Hz

Table B.1: Cesium units.

Name of constant symbol cesium units
Lattice constant d = 532 nm 0.009709/Hz
Recoil energy ER 1326 Hz
Nano Kelvin nK 20.84 Hz
Gauss G 1.400 MHz

Table B.2: Useful constants in cesium units.
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V  5;lattice depth in Er
s  V  4;V4Er
q_, n_ : q  Signq 1^n  n  Modn, 2;
characteristic exponent
BandEq_, n_, s_ : MathieuCharacteristicAq, n, s  2 s;
E^n_q as a function of qd where d2 is the lattice constand
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Bloch wave
BlochReq_, n_, x_, s_ :

MathieuCMathieuCharacteristicAq, n, s, s, x;
BlochImq_, n_, x_, s_ : Ifq  0,

Signq MathieuSMathieuCharacteristicAq, n, s, s, x,
MathieuSMathieuCharacteristicAq, n, s, s, x;

Real and imaginary parts of Bloh wave as functions of xd
PlotBlochRe0., 0,   x, s^2  BlochIm0., 0,   x, s^2,

BlochRe0.0000001, 1,   x, s^2  BlochIm0.0000001, 1,   x, s^2,
x, 1, 1plot the probability density

- 1.0 - 0.5 0.5 1.0

0.5

1.0

1.5

2.0

APPENDIX C
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We only calculate Wannier wave function in the ground band
L  1  Sqrt4;Normalizing factor, making the integration

TotalTableWannier1,x,0^2,x,,,dxdx  1
d  1;lattice constant
WannierVlat_, x_, xi_ :
2  L  NIntegrateCosq  xi MathieuCMathieuCharacteristicA

q, Vlat  4, Vlat  4,   x  d  Sinq  xi
MathieuSMathieuCharacteristicAq, Vlat  4, Vlat  4,   x  d,

q, 0, 0.999999999, AccuracyGoal  9
Wannier wave function Wkx
PlotWannierV, x, 0, x, 1.5  d, 1.5  d
wannier is real and symetric around xi since BlochImq,x
BlcohImq,x

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

0.5

1.0

1.5

Calculate onsite interaction U and tunneling t
dx  0.1;sufficient for integration, good to 50ppm
infty  6 d;
Ud2ovgVLat_ :
TotalTableWannierVLat, x, 0^4, x, infty, infty, dx  dx^2

Onsite interaction Ud^2g as a function of lattice depth
t1Vlat_ : NMathieuCharacteristicA0.9999, Vlat  4 

MathieuCharacteristicA0, Vlat  4  4
nearest site tunneling in the unit of Er, Eq  2 t_n Cosnqd,
EdE04 t_1  t_3  ....
Ud2ovgV
t1V
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deeply bound ground state molecules. Science, 321(5892):1062–1066, 2008.

[44] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange,
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of molecules from a cesium Bose-Einstein condensate. Europhys. Lett., 69(5):706–712,
2005.

[73] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral
sodium atoms with radiation pressure. Phys. Rev. Lett., 59(23):2631–2634, 1987.

[74] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization
gradients: simple theoretical models. J. Opt. Soc. Am. B, 6(11):2023–2045, 1989.

[75] H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Springer, New York,
1999.
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K. Pilch, A. Jaakkola, H. C. Nägerl, and R. Grimm. Evidence for efimov quantum states in
an ultracold gas of caesium atoms. Nature, 440(7082):315–318, 2006.
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[132] Fabrice Gerbier, Simon Fölling, Artur Widera, Olaf Mandel, and Immanuel Bloch. Probing
number squeezing of ultracold atoms across the superfluid-Mott insulator transition. Phys.
Rev. Lett., 96(9):090401, Mar 2006.

[133] M. I. Kaganov and A. V. Chubukov. Interacting magnons. Uspekhi Fizicheskikh Nauk.,
153:537–578, 1987.

[134] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov. Phase diagram and thermo-
dynamics of the three-dimensional Bose-Hubbard model. Phys. Rev. B, 75(13):134302, Apr
2007.

[135] C. L. Hung, X. Zhang, N. Gemelke, and C. Chin. Accelerating evaporative cooling of atoms
into Bose-Einstein condensation in optical traps. Phys. Rev. A, 78:011604, 2008.

[136] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer,
and M. Troyer. Mott domains of bosons confined on optical lattices. Phys. Rev. Lett.,
89(11):117203, Aug 2002.

[137] J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook, and I. Bouchoule. Ob-
servations of density fluctuations in an elongated Bose gas: Ideal gas and quasicondensate
regimes. Phys. Rev. Lett., 96(13):130403, Apr 2006.

[138] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen. Ultracold atomic
gases in optical lattices: Mimicking condensed matter physics and beyond. Advances in
Physics, 56(2):243–379, 2007.

196



[139] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N. V. Prokof/’ev, B. Svistunov,
and M. Troyer. Suppression of the critical temperature for superfluidity near the Mott tran-
sition. Nature Physics, 6(12):998–1004, 2010.
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Fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice.
Nature, 444(7120):733–736, 2006.

[169] T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens,
A. Perrin, H. Chang, D. Boiron, A. Aspect, and C. I. Westbrook. Comparison of the hanbury
brown-twiss effect for bosons and Fermions. Nature, 445(7126):402–405, 2007.

[170] Christian Sanner, Edward J. Su, Aviv Keshet, Ralf Gommers, Yong-il Shin, Wujie Huang,
and Wolfgang Ketterle. Suppression of density fluctuations in a quantum degenerate Fermi
gas. Phys. Rev. Lett., 105(4):040402, Jul 2010.

[171] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin. Probing pair-correlated Fermionic
atoms through correlations in atom shot noise. Phys. Rev. Lett., 94(11):110401, Mar 2005.

[172] S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, and
J. Schmiedmayer. Probing quantum and thermal noise in an interacting many-body sys-
tem. Nature Physics, 4(6):489–495, 2008.
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