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ABSTRACT

This thesis reports on in situ probing of two-dimensional (2D) quantum gases of 33Cs atoms
with tunable inter-atomic interactions. With spatially resolved in situ density measurements, the
experimental work described in this thesis presents detailed studies on local equilibrium proper-
ties, near-equilibrium fluctuations and correlations, and non-equilibrium transport in 2D samples
prepared near the critical points of continuous phase transitions. Specifically, we investigated the
Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition in the bulk and the superfluid-to-Mott
insulator transition in an optical lattice.

The enabling experimental techniques include a new vacuum chamber design which permits
a large numerical aperture for high resolution microscopy, a new approach of implementing all-
optical cooling of cesium atoms to Bose-Einstein condensation (BEC), and the fabrication of a
novel 2D optical trap. In particular, a fast and runaway evaporative cooling is realized using a
tilted optical potential, allowing the production of a large atom number BEC in only 2~4 s. A
novel two-dimensional “pancake”-like optical trap is subsequently employed to convert a BEC
into a monolayer of 2D quantum gas. This trap can be smoothly transformed into a 2D square
lattice potential, simulating the paradigmatic Bose-Hubbard model.

Using this 2D trapping potential, we realize the superfluid-to-Mott insulator quantum phase
transition in two dimensions and report the direct observation of incompressible Mott-insulating
domains in deep lattices. Investigations on dynamics across the superfluid-insulator transition
are presented, in which we observed anomalously slow mass transport and statistical evolution,
indicating prolonged global many-body time scales across the insulator quantum phase transition.

For weakly interacting 2D Bose gases without the 2D lattice potential, we report on the ob-
servation of universal scaling behaviors in samples prepared at different temperatures and various
interaction strengths. We confirm the scale invariance due to the intrinsic scaling symmetry of 2D

gases and the universality near the BKT superfluid transition. A growing density-density corre-
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lation in the BKT critical region was observed and analyzed, and the static structure factors were
extracted.

The experimental schemes and analysis methods we developed in this thesis to determine the
universal scaling behaviors, fluctuations, correlations, and transport properties can be applied to
other strongly correlated many-body atomic systems near a continuous phase transition. They form
an important set of tools for our future objectives to study both the static and dynamic properties

of quantum critical gases in optical lattices.
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CHAPTER 1
INTRODUCTION

1.1 Toward universal quantum simulation

Cold alkali atoms, with their internal structures and collisional properties known to high accuracy,
offer a clean and highly controllable platform boosting tremendous advances in areas of metrology,
quantum information science, and precision measurements [1]. The realization of Bose-Einstein
condensation (BEC) [2, 3, 4] further opened up a new era of ultracold atomic physics, offering
unprecedented opportunities in studying novel quantum many-body phenomena, many of which
were traditionally studied in the context of condensed matter physics, nuclear physics, or were
proposed without real wold analogy.

The appealing features in an ultracold atomic system are that the atoms are well isolated from
the environment, yet can be coherently manipulated by means of electromagnetic fields; the dilute-
ness of the sample permits a simple and universal description in the two-body interacting potential
[5], while the strength of the interaction parameter can acquire great tunability via, e.g., the mag-
netic Feshbach resonances [6]. The size of the system can vary from just a few particles to a large
number (typically 10° atoms) approaching the thermodynamic limit; the constituent particles can
be chosen to be bosons, fermions or even heterogeneous mixtures. At ultracold temperatures, both
quantum and thermal fluctuations manifest at low enough energy scales that near-equilibrium dy-
namics can potentially be monitored with enhanced spatial and temporal resolutions. Building on
these features, one can assemble complex many-body or few-body Hamiltonians from bottom (sin-
gle particle level) to top (many-body level) with great tunability and even adjustable dimensional-
ity. The behavior of quantum gases can be studied with great detail in well controlled experimental
conditions and be directly compared to results derived from analytical theories or first principle

(ab initio) calculations, providing benchmarks or even challenges to our understanding of complex



quantum many-body or few-body systems.

For many years, condensed matter systems were the sole laboratory test ground of modern
field theories. Now with the realization of bosonic and fermionic matter wave fields, ultracold
atomic systems are among the strongest candidates toward the realization of a universal quantum
simulator, envisioned by Richard Feynman almost 30 years ago [7]: “It’s been noted time and
time again that the phenomena of field theory (if the world is made in a discrete lattice) are well
imitated by many phenomena in solid state theory (which is simply the analysis of a latticework
of crystal atoms, and in the case of the kind of solid state I mean each atom is just a point which
has numbers associated with it, with quantum-mechanical rules). For example, the spin waves in
a spin lattice imitating Bose-particles in the field theory. I therefore believe it’s true that with a
suitable class of quantum machines you could imitate any quantum system, including the physical
world.”

The past decade has presented astonishing advancements toward this goal. Interacting Bose
condensates were loaded into a periodic lattice potential formed by crossing and interfering laser
beams [8] to simulate the paradigmatic Bose-Hubbard model [9, 10]; clean signatures of superfluid-
to-Mott insulator quantum phase transitions in one-, two-, and three-dimensional lattice geometries
have been observed through drastic changes of coherence properties in thr time-of-flight momen-
tum distributions [8, 11, 12, 13]. The use of optical lattice potentials has since triggered many
research activities [14], particularly on low-dimensional systems, which often exhibit intriguing
quantum many-body phenomena. A one dimensional lattice potential is used to form a series of
quasi-two dimensional traps, which slice a condensate into multiple copies of two-dimensional
quantum gases [15]. The Berezinskii-Kosterlitz-Thouless transition [16, 17] of ultracold Bose
gases was studied using matter wave interference [18], vortex counting [19], and interferometric
measurements [20]. On the other hand, a two-dimensional lattice potential can fragment the con-
densate into multiple independent one-dimensional clouds, each realizing a system of 1D bosons.
Fermionization of bosons in the Tonks-Girardeau limit [21, 22], has been observed in the strong
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interaction regime through measurements of momentum distributions [23], thermalization proper-
ties [24], and photo-association rates [25]; the quantum phase transition from a Luttinger liquid to
a Mott insulator in one dimension has recently been observed through measurements of transport

properties and excitation spectra of 1D Bose gases [26].

1.2 Current technical limitations

Despite demonstrations of various paradigmatic condensed matter models, current experiments
mostly concentrate on bulk measurements after time-of-flight (TOF) expansions. Although ex-
cellent in revealing phase coherence and momentum distribution in quantum gases, time-of-flight
measurements present bulk properties of atomic samples and suffer from the inhomogeneity of
external trapping potentials. Interpretations of these results often require close comparison with
theoretical calculations. From TOF images, extracting information about the homogeneous model
systems is a challenging task in current ultracold atomic experiments, especially for systems pre-
pared in strongly-correlated regimes, where thorough theoretical understandings remain elusive.

Probing atomic samples in situ presents an ideal way to offer complementary information to
TOF measurements, as the in-trap atomic density distribution is preserved during the time of detec-
tion. This is implemented by shining a short laser pulse, and imaging the shadow or fluorescence
photons emitted by trapped atoms [27].

There are, however, difficulties for imaging bulk gases in situ. The first strong limitation is
that one can only obtain column density distributions when imaging a three-dimensional object. A
column density measurement again suffers from the trap inhomogeneity, as it presents an integrated
property along one of the trap axes. The second difficulty is that degenerate quantum gases are
optically dense. Therefore, standard absorption imaging yields a very limited dynamic range in
the atomic density detection. Only light atomic species, such as lithium atoms, which become

quantum degenerate at lower densities permit in situ measurements in the bulk. Phase contrast



imaging is often the only solution to image heavier and optically dense samples [27].

Many innovative methods attempted to overcome the above limitations, notably microwave
tomographic imaging [28] and density reconstruction using inverse Abel transformation [29, 30,
31]. Since many useful local information is lost in an averaged measurement, investigating near
equilibrium fluctuations and non-equilibrium dynamics using these methods also remains non-

trivial.

1.3 Our approach —in situ imaging of two-dimensional quantum gases

We aim at resolving the aforementioned difficulties by in situ imaging in a new configuration. Our
approach, accomplished in this thesis, is to realize a tunable many-body system in a monolayer
of two-dimensional (2D) quantum gas, in which the atomic motional degree of freedom along the
imaging axis is frozen to its quantum zero-point motion. Interesting thermodynamics and quantum
physics therefore only manifest themselves in the 2D plane. Images of such 2D samples do not
suffer from the axial inhomogeneity. The optical density is reasonably close to the order of unity,
permitting large dynamic range for density detection. It would allow a single snapshot, revealing
a precise in-trap density distribution (see Fig .1.1). We perform in situ absorption imaging with
a high resolution microscope objective1 to obtain images of atomic samples with a micron-sized
resolution, retaining the resolving power of many-body correlations.

In the 2D configuration, a spatially resolved in situ density measurement offers tremendous
advantages in studying both equilibrium and non-equilibrium dynamics of many-body systems.
In equilibrium, assuming the local density approximation, a weakly trapped atomic sample can
be divided into many locally homogeneous subsystems. We can assign a local chemical potential

to each subsystem according to its trap potential energy and turn the remaining 2D trap inhomo-

1. Experiment groups in Harvard [32] and MPQ [33] explored single-site resolved 2D quantum gas microscopy
based on fluorescence imaging inside a 2D lattice formed by optical molasses. This technique yields binary detection
due to radiative loss.



Figure 1.1: Illustration of in situ imaging of a 2D quantum gas. Due to the 2D geometry, the atomic
distribution can be fully captured in a single snapshot image.

geneity into a great advantage: performing spatially resolved local density measurements reveal
a wealth of information on the many-body phase diagram with many values of local chemical
potentials. Moreover, a spatially resolved in situ probe also allows sensitive detection of near-
equilibrium density fluctuations and their spatial or even non-equal time correlations,? which is
crucial in revealing collective and statistical behaviors of a many-body system [34, 35, 36, 37].
We also gain the opportunity to monitor non-equilibrium dynamics by applying controlled local-
perturbations to the sample to extract local transport properties of underlying many-body phases
[38], which is a rarely explored territory in ultracold gases.

We use cesium-133 bosonic atoms to form highly tunable 2D quantum gases. Cesium has very
rich collisional properties [39] and is ideal for studies that requires tunable atomic interactions.
We use the lowest energy hyperfine spin state to produce a highly stable quantum fluid [40]. Its
atomic interaction strength can be smoothly adjusted from strongly attractive to strongly repulsive,

over three orders of magnitude, using a broad Feshbach resonance at low magnetic fields [39].

2. This would require an implementation of phase contrast imaging.
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Moreover, there are narrow Feshbach channels convenient for efficient creation of molecules [41,
42, 43]. There exist universal three- [44] and four-body [45, 46] bound states near an Efimov

resonance [44], forming a nice testbed for universal few-body physics.

1.4 Physical phenomena of interest

Our aim is to study many-body physics in strongly correlated systems which could not be resolved
in the time-of-flight bulk measurements. Some of these systems can be found near critical regions
of continuous quantum or classical phase transitions where competing orders lose their dominance
over the many-body state and the system develops strong fluctuations and correlations. A quantum
phase transition, driven by quantum fluctuations, happens at zero temperature, whereas a clas-
sical phase transition happens at a finite temperature and is driven by thermal fluctuations. We
are particularly interested in finite temperature quantum and classical critical fluctuation regimes,
where both static and dynamic behaviors of thermodynamic observables near their critical values
can develop universal dependence on the thermal energy or the thermal de Broglie wavelength
with proper scalings [47, 48, 49, 50]. The universal behavior, classical or quantum, is expected to
be described by the Ginzburg-Landau type of effective field theories which capture physics of an
emerging order parameter as well as its critical fluctuations and spatial correlations. While both
classical and quantum criticality might be studied in a unified view, a quantum field model often
carries intriguing time evolution dynamics in addition to the spatial correlations in its classical
counterpart [51, 49, 52]. Studying these critical behaviors has been a challenging topic and is cur-
rently heavily investigated in various systems such as heavy fermion metals [53, 54] or high-Tc

superconductors [55, 56].
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Figure 1.2: Illustration of the phase diagram of the superfluid-to-Mott insulator quantum phase
transition in two dimensions, shown as a function of the temperature 7" and a tuning parameter
g. The tuning parameter can either be chosen as chemical potential ;2 or the ratio between the
tunneling energy ¢ and the on-site interaction U. At zero temperature, the transition happens at
g = ge. At finite temperatures, the system shows quantum critical behavior in the 1/-shape region
bounded by the two dashed lines. The BKT phase boundary is shown as a solid line, separating the
superfluid phase and the normal gas (thermal disorder) phase. Classical criticality exists within a
finite region near the BKT transition boundary.



1.4.1 The Berezinskii-Kosterlitz-Thouless superfluid transition and the Mott

insulator-to-superfluid transition in a 2D quantum gas

A tunable 2D quantum gas should provide us great opportunities to realize both classical and
quantum phase transitions as well as to investigate their critical behaviors. The classical phase
transition in the proposed 2D system is the Berezinskii-Kosterlitz-Thouless superfluid transition
(BKT-transition) [16, 17], where a superfluid with quasi-long range order emerges from thermal
disorder. The quantum phase transition is the superfluid-to-Mott insulator transition predicted by
the Bose-Hubbard model [9], where a superfluid (SF) with long range order competes with a Mott
insulator (MI) of localized commensurate boson density. A SF-MI transition can be realized by
loading a 2D quantum gas into a 2D square optical lattice. Inside the lattice, both the classical
and the quantum criticality can coexist. The homogeneous phase diagram of SF-MI transition
is illustrated in Fig. 1.2, where a BKT transition boundary also departs from a zero temperature
SF-MI quantum critical point and extends to the high temperature region. Developing a thorough
understanding on criticality of the BKT transition and the SF-MI transition in two dimensions is

one of the major scientific goals of our experiment.

1.5 Overview of the thesis

The work of this thesis started with building a new cesium apparatus toward a partial realization of
its scientific goal. We realized the SF-MI transition in a 2D quantum gas and observed the emer-
gence of an incompressible MI domain. We then developed experimental tools to study dynamics
of mass transport and statistical evolution across the SF-MI phase boundary. We further diverged
our research focuses separately into studying classical as well as quantum criticality. I studied the
BKT transition and its classical critical phenomena, where we confirmed the universal description
of a classical Ginzburg-Landau field theory and observed growing correlations in the critical fluc-

tuation region. I then developed analysis tools to study density-density correlations and the static
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structure factors of 2D quantum gases. Investigation on quantum criticality near the SF-MI tran-
sition as well as quantum critical dynamics are ongoing projects and some of the discussions will

appear as an outlook of this thesis. Below, we briefly summarize topics covered in each chapter.

* Chapter 2 will be a review of the cesium apparatus. Descriptions on laser cooling to high

phase space density will be given.

* Chapter 3 describes the realization of a tilted-evaporation scheme, with which we achieve
fast and runaway evaporative cooling to BEC. In this research, we overcome the speed limi-
tation in conventional dipole trap cooling techniques, and reach BEC in as few as 2 seconds

by using only a large volume crossed dipole trap.

* Chapter 4 describes the experimental scheme of making and probing 2D quantum gases,
with an introduction on properties of 2D Bose gases. Our method of producing a monolayer
of 2D gas, implementation of a 2D square optical lattice, as well as techniques of in situ

absorption imaging of 2D gases will be introduced.

* The first in-situ observation of an incompressible Mott insulating domain will be presented
in Chapter 5. We observed the SF-MI transition by identifying a “wedding cake” density
structure in a 2D gas after turning on a deep optical lattice. We extract local properties such
as compressibility and density fluctuations in both the SF and MI regimes. We also found

qualitative validation on the fluctuation-dissipation theorem.

* Investigations on dynamics across the SF-MI transition is described in Chapter 6. Through
ramping on the lattice potential fast enough to violate global adiabaticity, we studied mass
transport and statistical evolution of an atomic gas crossing the SF-MI transition. We identi-
fied very long global equilibration time scales as compared to local tunneling and interaction

time scales.



» Chapter 7 presents the observation of scale invariance and universality in 2D Bose gases,
where we confirmed that the equation of states and the density fluctuations measured at dif-
ferent temperature, chemical potential, and interaction strength can be rescaled and mapped
to four universal behaviors. Through these measurements, we also detect the growing density-
density correlations in the fluctuation region and the superfluid region across the BKT phase
boundary, which is deeply related to the fundamental fluctuation-dissipation theorem, form-

ing the topic of the next chapter.

* In Chapter 8, we present an analysis on density-density correlations and static structure
factors of 2D quantum gases. At long length scales, our measurements agree with the
fluctuation-dissipation theorem; at shorter length scales, our measurements reveal the cor-
relation lengths of interacting 2D quantum gases and possibly their collective excitation
spectrum. The presented work and the analysis tool should make in sifu imaging technique a

desirable tool to study the finite temperature density response of interacting quantum gases.

I will finally discuss in Chapter 9 the outlook of this experiment. With an apparatus capable
of studying quantum gas with high spacial resolution, there are many possibilities opened up

for future investigations, notably quantum critical scaling and quantum critical dynamics.
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CHAPTER 2
EXPERIMENTAL SETUP

In this chapter, we describe details of the cesium apparatus. We will give a brief overview on prop-
erties of cesium atoms, followed by technical descriptions of the vacuum system, the diode laser
system, the computer control, the imaging system, and the magnetic field control. Based on these
apparatuses, we perform conventional laser cooling and trapping, as well as degenerate Raman
sideband cooling, magnetic levitation, and dipole trapping of ultracold cesium gases, discussed in

the second half of this chapter following the actual experimental order.

2.1 Cesium-133 atom

Cesium-133 is the only stable bosonic isotope of the cesium atomic species. It has a nuclear spin
I = 7/2 and an unpaired electron at the outermost shell. The electronic ground state 625, /2 of the
unpaired electron has two hyperfine levels /' = 3 and F' = 4 with an energy splitting corresponding
to an exact frequency of 9.192631770 GHz (the clock transition). The first excited states in the
6 P-orbital are the fine structure doublets 62P3 /2 and 62P1 /21 separated by a frequency splitting
of 16.6 THz. Hyperfine splittings in the excited states are smaller at 150~250 MHz between the
62P3 /2 hyperfine states (denoted by I/ = 2,3,4,5) and 1 GHz between the 62P1 /2 hyperfine
states (F' = 3, 4). The optical transitions from the ground state to the 6P fine structure doublets,
625, /2 = 62 Py /2 and 625, /2 = 62 P, /2 are abbreviated as the Dy and D line transitions,
respectively. The Do line has the strongest cycling transition, and is the leading option for optical
cooling of cesium atoms. The Dy line will only be discussed in optical trapping using far off
resonant lasers. Figure 2.1 shows the detailed D line hyperfine structure as well as the central

frequencies of the diode lasers, which we built for laser cooling experiments.
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Figure 2.1: Cesium-133 ground state and Dy line hyperfine structure. I and F’ denote the total
spin quantum number of the 625 1/2 and 62P3 /2 states, respectively. g is the Landé g-factor. The
black arrow marks the main optical transition for laser cooling and imaging; red arrows mark the
central frequencies of the diode lasers (discussed in Section 2.3).

2.1.1 Cesium collisional properties

Throughout the thesis work, we produce cesium quantum gases using the absolute lowest energy
ground state, |F' = 3, mp = 3) (abbreviated as |3, 3)), of which the inelastic two-body processes
are fully suppressed at low temperatures [57, 39]. Atomic two-body elastic collisions can be fully
described by the s-wave scattering length a [S], which is known to vary smoothly at low magnetic
fields [39] due to a wide Feshbach resonance located at B ~ —12 G [39, 6].

A Feshbach resonance occurs when the energy of two colliding free atoms is tuned very close
to a molecular bound state. The scattering length of free atoms can therefore be modified through
resonant coupling to the bound state [6]. A Feshbach resonance can be induced through adjust-
ing the background magnetic field, since the molecular states typically have different magnetic

moments from that of the free atoms and the energy difference can be adjusted by the magnetic
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Zeeman shift.

Cesium has a very rich bound state structure near the scattering continuum, and its scattering
length is highly adjustable even at very low magnetic fields [39]. The weakly bound molecular
structure near the scattering continuum has been pinned down using high resolution Feshbach
spectroscopy [57, 39], or directly measured using magnetic moment [42], microwave frequency
[42], and radio frequency spectroscopy [58]. These measurements enabled precise calculations of
cesium collisional properties [59, 60, 39, 58]. Figure 2.2 shows |3, 3) + |3, 3) scattering length and
bound state energies at low fields [39]. For B = 0 ~ 150 G, the smooth variation of scattering

length a can be well fit using a formula [39, 44]

a 28.72

where ag = 0.53 Ais the Bohr radius. In particular, Eq. (2.1) characterizes well the scattering
length near the zero crossing at 17.1 G [39, 61], and is used in our experiment to calculate a for
B =0 ~ 50 G. Note that Eq. (2.1) does not include features from other low field narrow Feshbach
resonances, notably a g-wave resonance around 19.84 G and a d-wave resonance around 47.8 G.

Near these narrow resonances, the scattering length can be described by a generalized form

a A
—=1- 2.2
Pl e (22)

where ay, is the background scattering length at the location of resonance, A is the effective
resonance width, and By is the resonance position. For example, an analysis of experiment data
[58] determined that the d-wave resonance at By = 47.78(1) G has an effective width of A =

0.16(1) G.
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Figure 2.2: Scattering length and bound state energies for |3, 3) + |3, 3) atoms as functions of the
background magnetic field. Reprinted figure with permission from Ref. [6]. Copyright 2010 by
the American Physical Society.

2.1.2 Inelastic collision loss

For experiments at high densities, inelastic collisions can create a loss of atoms and release energy
into the sample. Since all two-body inelastic processes are forbidden in collisions between atoms
polarized in the |3, 3) state, the dominant collisional loss process is three-body recombination.
Ultracold three-body recombination loss is itself an interesting property of cesium atoms.
When three-body recombination occurs, two out of the three colliding atoms form a molecule,
releasing its binding energy, which causes the third atom and the molecule to be lost from the trap.
The rate of three body recombination is characterized by the loss equation % = L3n2, where L3
is the loss coefficient and n is the atomic density. In the low temperature limit, the recombination
molecules are weakly bound near the continuum, and their binding energy follows the universal

form Ej, = h? /ma? . Here, h is the Plank constant divide by 27 and m is the cesium atomic mass.
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Figure 2.3: Three-body recombination length p3 = (%Lg)l/ 1 = 1.36CY4a; of the |3,3) state.
Reprinted by permission from Macmillan Publishers Ltd: Nature Ref. [44], copyright 2006.

It can be shown that the loss coefficient L3 follows the universal a4-scaling relation [62, 63, 64]
with Ly = 3Cha* /m, where C'(a) is a coefficient showing additional oscillatory dependence on a.
The coefficient C has an upper bound C* for a > 0 and a lower bound C~ for a < 0. At negative
a, C is larger than for positive a [64, 44]. For positive scattering lengths, C ~ 70 is theoretically
predicted [63, 64, 65] and experimentally measured [66, 44].

The oscillatory behavior of C'(a) originates from quantum interference with a set of universal
three body bound states. These bound states were first predicted by Vitaly Efimov [67, 68] in
the context of nuclear physics. The value of C' is expected to oscillate at multiples of scattering
lengths a— < 0 and a4 > 0. Here, a— denotes the scattering length at which the first Efimov trimer
resonantly couples to the free atomic state, while a4 denotes the smallest positive scattering length
at which Efimov trimers destructively interfere in the atom-dimer decay channels [63, 64, 65].
Universal Efimov bound states appear whenever a/a+ = 22.7!, Vi € N, and there will be a strong
enhancement or suppression in the three-body recombination rate.

The universal a* scaling behavior in L3, as well as the Efimov resonant maximum and interfer-
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ence minimum in C'(a) have been observed in cesium ultracold gases polarized in the |3, 3) state
[66, 44]. The measured loss rates are plotted in Fig. 2.3, where we see that L3 can be adjusted
remarkably by over six orders of magnitude. The three-body loss minimum at a = 210 ag ren-
ders a loss coefficient similar to other alkali species, and has been identified as an ideal place for
evaporative cooling to Bose-Einstein condensation [40]. Moreover, in later chapters we shall see
that fast three-body losses due to an Efimov resonance can be converted into experimental probes
inside optical lattices. Note also that, in Fig. 2.3, the data are taken from thermal gas experiments.
For condensate atoms, we expect the loss coefficient to be % times smaller than the values shown

here.

2.2 Vacuum system

For BEC experiments, it is necessary to operate under an ultra high vacuum (UHV) environment.
Nevertheless, we also need a bright atomic source, which inevitably requires a high background
vapor pressure, to reach a sufficient number of trapped atoms within an experimentally accessible
time. In order to maintain the pressure difference between the two regions, it is standard to design a
UHV cell (the science chamber) connected to a differential pumping region, and then to the atomic
source (the oven). In our setup, a Zeeman slower tube connects the oven and the science chamber,
which not only serves as a differential pump but also provides a region for laser slowing of the
axial velocity of the atomic flux, which increases the loading efficiency of the magneto-optical
trap (MOT) in the science chamber. It then becomes fairly easy to maintain UHV pressure in the
science chamber using an ion pump and a titanium sublamation pump. Our vacuum system is

illustrated in Fig. 2.4.
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Figure 2.4: Schematic of the vacuum system.

2.2.1 Cesium oven

Our cesium oven design employs the combination of a hot vapor cell and a cold trap that offers
high cesium atomic flux while maintaining a low partial vapor pressure. Our cesium vapor cell
contains five grams of cesium metal stored in a glass tube (Pyrex). The cesium metal is heated
to 60°C, producing a vapor pressure of 3 X 107 torr. The temperature throughout other parts
of the vapor cell is kept slightly higher than that of the glass tube to prevent unnecessary transfer
of cesium metal inside the cell. Hot cesium atoms are only allowed to leave the cell through two
apertures (1 mm radius, heated to > 80°C) attached to both ends of a 3” long nipple tube, resulting
in a collimated atomic beam ejecting from the oven and traveling along the Zeeman slower tube
toward the center region of the science chamber. The nipple tube is thermal-electrically cooled to
0°C, forming a cold trap which absorbs background cesium vapors and reduces the vapor pressure
to below 10~7 torr. The oven is connected to an intermediate chamber (2.75 cubic inch) through
a gate valve that can seal the vacuum for future maintenance in the cesium oven. A motor-driven
wobble stick, fed through a flexible bellow, can be used to block the atomic beam during the
experiment. The pressure inside the intermediate chamber is < 10~ torr, maintained by an ion

pump (Gamma Vacuum: 40S-CV-2D-SC-N-N) at a pumping rate of 40 L/s.
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2.2.2 Zeeman slower

Following the intermediate chamber is the Zeeman slower. The Zeeman slower is a long, thin tube
surrounded by tapered magnetic coils, connecting the science chamber and the cesium oven. The
Zeeman slower tube offers differential pumping to UHV in the science chamber; the tapered coils
generate a spatially varying magnetic field for laser cooling, discussed in Section 2.7.1. The tube
is 7 mm in diameter and is 40 cm long, supporting a low vacuum conductance of 0.06 L/s. The
gas throughput, from the cesium oven to the science chamber, is less than 6 x 10~ torr-L/s. The

slower tube connects to the science chamber through a 1-1/3” conflat flange (CF) bellow.

2.2.3  Science chamber

The schematic of the science chamber is shown in Fig. 2.5. The main chamber is a stainless steel
spherical octagon (Kimball Physics MCF600-SO200800). Eight 2.75” CF side ports are mounted
with six broadband coated viewports (MDC: fused silica, 1.5 clear aperture) and two ZnSe view-
ports mounted at opposite sides of the chamber for dipole trapping using a CO» laser. The top and
bottom ports are mounted with recessed viewports (Special Techniques Group: 4 mm thick Spec-
trosil 2000 fused quartz) with a 30 mm clear aperture; both inner surfaces of the top and bottom
viewports are 0.5” from the center of the chamber. Eight additional 1-1/3” CF ports are custom
milled between the 2.75” CF ports for additional optical access, with +13° tilt angles. Seven ports
are mounted with 0.75” clear aperture viewports (MDC: fused silica) and one is counted to the
Zeeman slower tube through a flexible bellow.

All 17 viewports are reserved for optical access. The connection to an additional UHV pump
region is through an elbow-tube-viewport assembly; see Fig. 2.5. The bottom viewport is welded
onto a vacuum tube, which is inserted into a 90 degree elbow and is shaped and welded onto a hole
at the outer radius of the elbow (see Fig. 2.5 for detail). One end of the elbow is mounted to the

bottom port of the science chamber and the other end is mounted to a 100 L/s ion pump (Gamma
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Figure 2.5: Cross section of the science chamber and the vacuum conducting elbow.

Vacuum: 100L-DI-6D-SC-US110-N). This assembly still permits a large cylindrical region con-
ducting vacuum between the chamber and the ion pump. The bottom viewport is accessible from
inside the tube, whose open end is conveniently located at 4.5 above the optical table. An addi-
tional advantage of this design is that the elbow, together with two other supporting pillars, lifts the

chamber above the UHV pump region, permitting a full 360° optical access around the chamber.

2.2.4 UHYV pump region

A titanium sublimation pump (TSP) is attached to the end of the 100 L/s ion pump, offering further
UHYV pumping capability. A large 6” CF tube is mounted to the ion pump, providing large pumping
surface area. Three titanium filaments (Gamma Vacuum) are inserted for sublimation coating of
the tube. A separate ionization gauge (Varian Vacuum Technology: UHV-24P Extended Range,

dual thoria-iridium filaments) is used to measure the pressure.
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2.2.5 Preparation of vacuum system

All stainless steel components of the science chamber are ultrasonically cleaned, assembled, and
then baked at a high temperature (350°C) for two weeks to remove deeply trapped molecules
under the surface of the stainless steel (with gases pumped out using a turbo pump). Before high
temperature baking, the CF ports are sealed with blank flanges and the permanent magnets in the
ion pumps are removed. After the baking, we remove the blank flanges and put on the fused silica
viewports. The Zeeman slower assembly (which was pre-baked at a lower temperature 180 °C),
the science chamber, and all optical viewports are separately prepared and are put together after
the high temperature baking. The whole system is leak-checked using a helium leak detector
(Adixen ASM 142) to ensure all components are sealed for UHV. We then bake the entire system
under 180°C for another two weeks. During the baking, the roughing port is shut off and the ion
pumps are activated. The filaments of the TSP are then activated several times during the baking
to help pump the vacuum. After the system is cooled down, the pressure of the ionization gauge
reads < 3 x 10712 torr. Considering the finite vacuum conductance of the elbow, we expect the
background pressure in the science chamber is ~ 10711 torr. The UHV has lasted for five years

without significant degradation.

2.3 Diode laser system

In this section, we describe the diode laser systems for driving cooling and imaging transitions.
The relevant experiment stages are Zeeman slowing, MOT/molasses cooling, degenerate Raman
sideband cooling (dRSC), and absorption imaging. In each stage, we need one main beam driving
the cooling or imaging transition, and one repump beam to empty the atomic population accumu-
lating in the unwanted hyperfine ground state. During the stage of dRSC, an additional laser beam
is needed to form a near-detuned optical lattice. In Table 2.1, we summarize all atomic transitions

driven in each individual stage.
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Table 2.1: D9 line cooling and imaging transitions

Experiment stage Main Repump Detuning
Zeeman slowing F=4—F =5 F=3—F =4 -100 MHz
MOT and molasses F=4—F' =5 F=3—+F =4 -15~-80 MHz
dRSC F=3—-F =2 F=4—F =4 <1MHz
dRSC (optical lattice) F' =3 — F =4 -22 GHz
Imaging F=4—F =5 F=3—-F=4 0

Five diode lasers are built to drive the optical transitions listed in Table 2.1. Four exter-
nal cavity-feedback diode lasers (ECDLs) deliver laser beams at stable frequencies with narrow
linewidths. One free running diode laser offers high power at 150 mW, and is injection-locked by
one ECDL laser to narrower linewidth.

The ECDLs are set up according to the Littrow configuration. The part number of the laser
diodes is JDS Uniphase SDL-5411-G1. The diode temperature and injection current are feedback-
locked to provide a stable lasing frequency. The temperature is fixed at around 18°C, two degrees
below the room temperature. At the output of each ECDL, beam ellipticity and astigmatism is
corrected by an anamorphic prism pair (Thorlabs) to an 1/ ¢? beam diameter of ~1 mm. A dual
stage optical isolator (Isowave: 1-80-U4) is placed closely after the prism pairs to block possi-
bly retro-reflected beams back to the diode. The nominal output power of the ECDLs are set to
20~40 mW and the free running wavelengths are tuned to desired values near 852.335 nm (Re-
pumper), 852.356 nm (MOT and Reference), and 852.390 nm (dRSC master). Reference, MOT and
Repumper frequencies are feedback-stabilized to within MHz linewidth using different schemes.

The free running diode laser (dRSC slave) is built using a JDS Uniphase SDL-5420-G1 diode,
capable of generating 150 mW maximum output power. Except for the grating feedback, the setup
follows those implemented in an ECDL. A tunable dual stage optical isolator (Isowave: [-80-T4-
H) with escape ports is used, with which we couple a few microwatt of the dRSC mas