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ABSTRACT

Ultracold atoms provide a versatile platform for quantum simulation, offering a great deal

of control on system parameters. The potential landscape experienced by the atoms can

be precisely controlled with the optical dipole force, especially with the help of a digital

micromirror device (DMD). The kinetic property of the atoms can be altered with optical

lattices that create band structures with tunable dispersion. The interatomic interaction can

also be controlled by magnetic field through Feshbach resonances. One popular method to

leverage this high degree of tunability is Floquet engineering, where one periodically drives

the system to realize Hamiltonians inaccessible to static systems. On the other hand, Bose-

Einstein condensates provide a scalable and clean venue to study many-body physics, where

tens of thousands of atoms share the same quantum state while interacting with each other.

With driven Bose-Einstein condensates, we study two novel many-body phenomena.

First, we create domain walls in the condensate, which are stable topological defects that

behave as emergent particle-like excitations. The domain walls are found to display emergent

dynamical properties drastically different from the constituent atoms. Second, we study the

time reversal of a many-body system coupled to a continuum. The dynamics of such systems

typically exhibit rapidly growing subsystem entropy, which according to classical thermo-

dynamics appears irreversible. We are able to achieve significant reversal of the complex

many-body dynamics by devising a technique inspired by the famous ‘spin echo’, which we

call the ‘many-body echo’. Our work addresses two major standing questions in quantum

many-body physics: emergence and thermalization.
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CHAPTER 1

INTRODUCTION

The quantum world is mysterious. At microscopic scales, each particle behaves as an en-

semble of many. Even more mysterious is when many quantum particles come together and

interact. Quantum many-body physics is notoriously difficult to tackle, primarily due to

the exponentially large space of states as the system size grows, manifesting as large scale

entanglement. Computational efforts are thus generally limited to prohibitively small system

sizes. As an alternative approach, quantum simulation aims to simulate one quantum system

with another one, where we have better control and detection tools. Ultracold atoms offer an

ideal platform for quantum simulation, thanks to the expansive toolbox developed over the

past three decades. We have learned to manipulate atoms using lasers and magnetic fields,

not just their internal state, but their motional degrees of freedom, and even inter-particle

interaction. Time-dependent driving provides further flexibility in controlling the system,

allowing the creation of exotic Hamiltonians otherwise inaccessible through Floquet engi-

neering. Over the years, ultracold atom quantum simulators have simulated a wide range of

topics, including Abrikosov lattice of superfluid vortices [1], topological physics of solids in

extreme magnetic fields [2], lattice gauge theory [3] and quantum turbulence [4].

Ultracold bosonic atoms, such as 133Cs used in our experiments, form a Bose-Einstein

condensate (BEC) at low enough temperatures [5]. In a BEC, a macroscopic number of atoms

occupy the same quantum state, providing a particularly pristine environment for studying

quantum many-body physics. The particle number can reach 50,000 in our systems, whereas

defects and decoherence are suppressed since all atoms occupy the same quantum state.

In this thesis, we use driven BECs to study two general quantum many-body phenomena:

emergence and thermalization. We create domain walls in our BEC, which are topological

defects, and find that they display emergent dynamical properties distinct from that of the

constituent atoms. We also study ’many-body echo’, time reversal of quantum many-body

1



dynamics, and find that quantum excitation that appear to be thermal can be reversed,

demonstrating the reversibility of thermalization in the quantum world.

This thesis is structured as follows. In chapter 2, we describe the experimental system,

including the general setup for preparing ultracold 133Cs BECs, experimental implementa-

tion of control on the atoms, and some details on collecting and extracting information from

the system. In chapter 3, we discuss the necessary theoretical and numerical background

knowledge for describing and understanding our experiments, as well as original analytical

derivations related to the experiments. In Chapter 4, we experimentally study the dynamics

of domain walls in a BEC driven by density-dependent gauge field. We find that the domain

walls, which are topological defects that behave as elementary excitations, exhibit drastically

different properties from that of the constituent atoms, a manifestation of emergence. In

Chapter 5, we study the time reversal of many-body quantum dynamics. We propose and

implement a new scheme called ’many-body echo’ which significantly improves the efficiency

of reversal of Bose fireworks dynamics. The experiment realizes an instance of Loschmidt

echo, which connects the reversal of quantum many-body dynamics to concepts such as

chaos. We also utilize the many-body echo to realize a multi-mode SU(1,1) interferometer.

In Chapter 6, we present theoretical derivations and analysis procedures which contribute

to other projects in the lab, as well as theoretical investigations into new proposals. Finally,

in Chapter 7, we present an outlook of future directions of quantum simulation using our

driven BEC experiment platform.
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CHAPTER 2

SYSTEM

2.1 General setup

Our experiments are performed on Bose-Einstein condensates of 133Cs atoms. Atomic vapor

in the vacuum chamber is collected, trapped and cooled with a Zeeman slower and a three

dimensional (3D) magneto-opticla trap (MOT). The MOT produces ∼40 million atoms at

a temperature of ∼10 mK after 3 seconds of loading. The atoms are further cooled with

degenerate Raman sideband cooling (dRSC) to ∼1.5 µK, with a typical atom number of

8 million. Afterwards, the atoms are trapped in a crossed 1064 nm dipole trap and evap-

oratively cooled deep into degeneracy by ramping down the levitating magnetic gradient,

which reduces the trap depth. We end up with an almost pure Bose-Einstein condensate of

∼50,000 atoms at a temperature of ∼10 nK.

After producing the condensate in the crossed diple trap, we adiabatically load it into

a vertical lattice with a lattice spacing of ∼4 µm formed by two 1064 nm laser beams at

a shallow angle. The condensate is shaped carefully in the vertical direction such that it

is loaded into the ground state in a single site of the vertical lattice. This setup allows as

to have a much higher trap frequency in the vertical direction than in the horizontal plane,

allowing us to restrict the dynamics in the vertical direction. We then adiabatically transfer

the condensate to optical traps of the desired final configuration, for example a 2D harmonic

trap or a box trap. The box trap is formed by a ring of 780 nm blue detuned light projected

by a digital micromirror device (DMD) through a high numerical aperture (NA) microscope

objective, allowing us to prepare a condensate with uniform density in the horizontal plane.

A diagram of the optical setup that produces the trapping potentials is shown in Fig. 2.1.

3
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Figure 2.1: Optical setup of the experiment. The diagram shows the optical paths of
beams used to trap the atoms. The ’OFR beam’ is no longer used in this work. This figure
is reproduced from [6].

2.2 Controlling the atomic interaction

In ultracold atom experiments, Feshbach resonances allow us to tune the interaction strength

between atoms by controlling the magnetic field [7]. At ultracold temperatures, atoms pri-

marily interact through s−wave scattering, with strength characterized by the scattering

length. A positive scattering length means repulsive interaction, and negative means attrac-

tive, with zero scattering length meaning non-interacting. The atomic species we use, 133Cs,

has particularly convenient Feshbach resonances. We perform the experiments with magnetic

field near 17.2 G, where the scattering length crosses zero. A low scattering length allow

for low chemical potential for the condensate even at high densities. Applying an oscillating

magnetic field allows us to modulate the scattering length, and we can achieve modulation

4



amplitudes much larger than the time-average, meaning the interaction alternates between

repulsive and attractive.

2.3 Optical lattice

We have the capability create a 2D square optical lattice by retroreflecting two perpendicu-

lar 1064 nm diple trap beams. In our experiments we only retroreflect one of the beams to

form a 1D lattice. The lattice spacing is 532 nm. The retroreflected beam double-passes two

acoustic-optical modulators (AOMs), which allows us to control the phase of the retrore-

flected beam through the phase of the radio-frequency (RF) signal sent to the AOMs, and

in turn control the displacement of the lattice. The intensity of the RF signal also con-

trols the lattice depth. We can phase modulate (PM) the RF signal to modulate the lattice

displacement, which forms the basis of our shaken lattice experiments.

The lattice depth is experimentally calibrated by jumping the lattice displacement to

excite the BEC to the first excited band. The interference of different band eigenstates results

in an oscillation in the strength of Bragg diffraction orders, which allows us to measure the

transition frequency between the ground and first excited bands at zero momentum. This

band oscillation frequency corresponds uniquely to a lattice depth, which can be obtained

from lattice band calculations. An example is shown in Fig. 2.2.

Another effect of turning on the retroreflected beam to form the optical lattice is a shift in

the trap center. This is because our lattice is red detuned, and the constructive interference

causes the trap potential at the lattice sites to be deeper than without the retroreflected

beam. Since our trap center results from the balance of several dipole trap beams as well

as the magnetic potential, the trap center moves as a function of the retroreflected beam

intensity.

5
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Figure 2.2: Calibration of the optical lattice depth. The band oscillation frequency of
7.11 kHz implies a lattice depth of 8.77 ER, where ER = h× 1326 Hz is the recoil energy of
the 532 nm lattice.

2.4 Imaging and detection

2.4.1 Absorption imaging of atomic density

The primary form of data in our experiments is absorption images of the atomic density. We

shine a beam of coherent light resonant with the atomic cycling transition |F = 4,mF =

5⟩ → |F ′ = 4,mF ′ = 5⟩, with high intensity compared to the saturation intensity Isat [8].

The atoms during the experiment reside in the state |F = 3,mF = 3⟩. Therefore, before

imaging the atoms are optically pumped into the bright state.

The atoms absorb the resonant light and cast a shadow, which is collected by a high NA

objective with NA = 0.5. The atomic density n, column integrated along the imaging beam,

is obtained from the collected light intensity with (Iin) and without (Iout) atoms as [9]

nσ0 = − ln
Iout
Iin

+
Iin − Iout
Isat

, (2.1)
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where σ0 is the resonant scattering cross section.

2.4.2 Heterodyne detection of matter-wave

In our experiments, we often create two-mode squeezed states in the atomic momentum

modes. An important observable is the quadrature of the bosonic modes. If the condensate

is uniform, the in situ atomic density profile provides a heterodyne detection of the atomic

modes, since the excited atoms interfere with the condensate and form density waves.

The structure factor is defined from the in situ density as

Ŝk = N−1
∫
dr1dr2e

−ik(r1−r2)n̂(r1)n̂(r2)

= N−1|Âk|2,
(2.2)

where N is the total atom number and Âk =
∫
drn̂(r)e−ikr is the Fourier transform of

density. The density is given by the operator

n̂(r) = a†(r)a(r), (2.3)

where a(r) is the annihilation operator at position r. The real space annihilation operator

can be expressed by the momentum space operators ak as

a(r) =
∫
dkake

ikr. (2.4)

Substituting in, we have

Âk =

∫
drdk1dk2ei(k1−k2−k)ra†k2

ak1

=

∫
dk2a

†
k2
ak2+k

(2.5)
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and

Ŝk = N−1
∫
dr1dr2dk1dk2dk3dk4e−i((k1+k−k2)r1+(k3−k4−k)r2)a†k1

ak2
a
†
k3
ak4

= N−1
∫
dk1dk4a

†
k1
ak1+ka

†
k4+kak4

(2.6)

If the condensate is uniform and excitation population is small compared to the condensate,

we can apply Bogoliubov approximation a0 =
√
N , obtaining for k ̸= 0

Âk =
√
N(ak + a

†
−k) (2.7)

and

Ŝk = (ak + a
†
−k)(a−k + a

†
k). (2.8)

Therefore, the structure factor measures the quadrature of the bosonic modes ±k. Usually

our systems have reflection symmetry, which means that the modes ±k have the same

states. Note that here we treat single shot as one measurement of the observables, and the

expectation value of the observables is the ensemble average over experiment repetitions.

In practice, the observed atomic density is distorted by our finite imaging resolution,

captured by the modulation transfer function (MTF) [10]. The modulation transfer func-

tion can be calibrated from the density fluctuations of a thermal gas. However, the MTF

calibrated from low density thermal gas gives me a structure factor much smaller than 1

for a uniform high density BEC with low chemical potential, where the structure factor is

predicted to be 1. Therefore, in practice I use the structure factor measured in the BEC as

calibration, see Fig. 2.3. The experimentally measured structure factor is smoothed using

the MATLAB denoiseimage, and used as the baseline. Measured structure factor of excited

condensates are divided by this baseline to calibrate out the distortion.

The advantage of using denoiseimage, which is based on neural networks, instead of

more traditional methods such as kernel smoothing, is that it removes the noise without
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visibly introducing bias. Typical smoothing methods such as a low-pass filter also reduces

the magnitude of peak features. Apparently this problem does not occur with denoiseimage,

as can be seen in Fig. 2.3.

To give direct evidence that the measured atomic density saturates at high OD, we

perform a trap expansion test. We first load the atoms into a smaller box trap, then expand

the box trap. Supposedly we can never gain particle number during this process. However,

we measure a higher particle number in the larger trap, where the OD is smaller. This proves

that the atomic density is underestimated at high OD. See Fig. 2.4.

As first realized in [11], measuring the structure factor in a BEC can provide evidence

of entanglement of phonon modes. In our system with low chemical potential, high energy

phonon modes are equivalent to atomic modes. Therefore, we can employ similar techniques

to prove entanglement of counter-propagating jets from Bose fireworks. Furthermore, since

we can engineer higher order collisions of the jets [12; 13] in our system, we can potentially

create multi-mode entanglement in the jets, which can also be detected through quadrature

measurements such as the structure factor [14]. For this purpose, careful understanding and

characterization of the MTF as well as any imaging distortions is required.
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Figure 2.3: Calibrating MTF using experimentally measured structure factor in a
BEC. Top: experimentally measured structure factor in a uniform BEC with low chemical
potential, raw and after smoothing. The horizontal axes are momentum space coordinates.
The two plots have different colorbar scales. Middle: a line cut showing low bias caused by
smoothing. Bottom: the rescaled raw structure factor, which is noisy around 1, showing low
bias of the calibration.
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Figure 2.4: Trap expansion shows saturation of atomic density measurement. Top:
measured atomic density before and after trap expansion. Colorbar shows density in µm−1.
Bottom: scatter plot of total atom number during trap expansion, showing an increase in
measured atom number.
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CHAPTER 3

SHAKEN LATTICE AND BOSE FIREWORKS IN

BOSE-EINSTEIN CONDENSATES

3.1 Floquet theory of shaken lattice

Shaken optical lattice has become a powerful tool for engineering novel quantum systems,

from artificial gauge fields to topological bands [15]. This technique plays an important role

in this thesis. I will give an introduction to the theoretical and numerical treatment, which

enables us to engineer desirable properties of atomic dispersion.

3.1.1 Single particle in optical lattice

Floquet systems are typically treated on the single particle level. We start with a single

particle trapped in a one-dimensional (1D) optical lattice, described by the Hamiltonian

H =
p2

2m
+
U

2
cos(k0x+ ϕ), (3.1)

where p is the momentum operator, m is the atomic mass, U is the lattice depth, k0 is the

lattice wavenumber and ϕ is the lattice phase.

In the context of Floquet engineering, the lattice depth U and phase ϕ may be time-

dependent. The system is most easily solved in the momentum space basis |k⟩. The transition

elements of the Hamiltonian is

⟨k′|H|k⟩ = ℏ2k2

2m
δk,k′ +

U

4
(eiϕδk,k′+k0 + e−iϕδk,k′−k0). (3.2)

It is clear that the Hamiltonian only couples states with momentum differing by integer

multiples of k0. Therefore, the system factorizes into decoupled subsystems labeled by k

modulo k0, which we call the quasimomentum. For each quasimomentum k, the subsystem
12



Hamiltonian is a matrix of the form

Hk =



. . .

ℏ2(k + k0)
2

2m

U

4
e−iϕ

U

4
eiϕ

ℏ2k2

2m

U

4
e−iϕ

U

4
eiϕ

ℏ2(k − k0)
2

2m
. . .


. (3.3)

The system is solved by finding the eigenvectors and eigenvalues,

Hk|n, k⟩ = ϵn,k|n, k⟩ (3.4)

The dispersion of the n-th band is given by ϵn,k. The components of |n, k⟩ give the

Fourier components of the Bloch states. The Wannier function of each band can be obtained

as well.

3.1.2 High-frequency expansion

In this section I briefly outline a general method for treating Floquet systems, the high-

frequency expansion [16]. Consider a time-periodic Hamiltonian,

H(t+ T ) = H(t). (3.5)

The periodicity implies a spectral decomposition,

H(t) =
∑
m

Hme
imωt, (3.6)

where Hm are time-independent, and ω = 2π/T . The Hermitianity implies Hm = H
†
−m.

The evolution of the system is governed by the unitary
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U(t1, t2) = e
−i
∫ t2
t1
H(t′)dt′

. (3.7)

Since the Hamiltonian is periodic, we have U(T, 2T ) = U(0, T ). Therefore we have the

decomposition

U(0, nT + t) = Ũ(0, t)UnT , (3.8)

where UT = e−i
∫ T
0 H(t′)dt′ is the stroboscopic evolution, and Ũ(0, t) = e−i

∫ t
0 H(t′)dt′ is

the micromotion with t < T . The stroboscopic evolution and the micromotion together

completely characterizes a Floquet system.

The stroboscopic evolution can be reformulated in terms of an effective Hamiltonian Heff,

often simply called the Floquet Hamiltonian,

UT = e−iHeffT . (3.9)

On timescales longer than T , the system behaves like a time-independent system governed

by the Hamiltonian Heff, apart from the micromotion.

The high-frequency expansion gives an expansion for the effective Hamiltonian Heff in

terms of the spectral components Hm, in orders of the inverse driving frequency 1/ω.

Heff = H0 +
∑
m ̸=0

HmH−m
mℏω

+O(
1

ω2
) (3.10)

The expansion works best when the driving frequency is higher than the energy scale of

the static Hamiltonian. It doesn’t work well for near resonant driving. However, it provides

a theoretical way of understanding how the driving dresses the static system.
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3.1.3 Numerical calculation of Floquet bands

In this thesis lattice shaking is used to engineer the atomic dispersion, and it is important

to predict the Floquet bands resulting from each driving scheme. For this purpose, we

combine the previous two chapters into a numerical method that first calculates the effective

Hamiltonian Heff directly from the time-dependent driving, then from which calculates the

band structure.

Each quasimomentum is treated in terms of the subsystem Hamiltonian Hk Eq. (3.3),

with the time-dependent driving encoded into U(t) and ϕ(t). Since the Hamiltonian matrix

is infinite-dimensional, the Hilbert space is truncated to include only a finite number of

momentum states, typically between ±7k0. The truncation is chosen such that including

even more states does not significantly alter the result. The stroboscopic evolution operator

UT (k) Eq. (3.9) is numerically integrated from the time-dependent Hamiltonian.

The Floquet Hamiltonian Heff(k) is the logarithm of the stroboscopic evolution operator

UT (k). As a result, diagonalizing the Hamiltonian Heff(k) can be achieved by diagonalizing

UT (k). Given

UT (k) =
∑
j

e−iϵj(k)T/ℏ|ψj(k)⟩⟨ψj(k)|, (3.11)

we have

Heff(k) =
∑
j

ϵj(k)|ψj(k)⟩⟨ψj(k)|. (3.12)

A caveat here is that we need to carefully choose the branch cut for the logarithm, since

the quasienergy ϵj(k) is only defined modulo ℏω. One approach is to manually place the cut

in a Floquet band gap, which can only be done with trial and error as the gap’s location is

not known a priori. Alternatively, one can modify the energy continuity condition for the

definition of bands to use the periodic distance for measure of closeness, to allow for bands
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to ’wrap around the torus’. Another issue is the numbering of bands, since the ordering

based on energy into the ground, first excited, etc. bands is no longer applicable. One

heuristic approach is to count the number of nodes (zeros) in the real-space wavefunction

of the eigenstates. Alternatively one can order based on overlap with the eigenstates of the

static band in the absence of driving. In any case, one needs to manually inspect the band

labeling, to ensure that avoided crossings are treated properly. Some avoided crossings are

essential to the qualitative features of the engineered dispersion, whereas others are due to

weak coupling to very high lying bands, which should be ignored. Properly distinguishing

the two is the root of the difficulty here.

So far the discussion is restricted to a simple sinusoidal lattice in 1D, as it is sufficient

for the work in this thesis. Extensions to higher dimensions and more complicated lattice

structures is straightforward.

3.2 Bose fireworks and the SU(1,1) representation

When a uniform disk shaped BEC is subject to oscillating interaction strength, jets of atoms

emit in all directions in the plane. This phenomenon is called Bose fireworks [17]. Since its

discovery in 2017, numerous followup experiments have been done [13; 18; 12]. Meanwhile,

the theoretical aspect of this phenomenon has also attracted much attention [19; 20], and

one result is a description in terms of the SU(1,1) algebra [21]. This description has greatly

simplified our theoretical and numerical understanding of our experiments based on Bose

fireworks, and inspired us to find a few-dimensional matrix representation of the physical

states in infinite-dimensional Hilbert spaces. In this section, I will describe the theoretical

framework for Bose fireworks, the description in terms of SU(1,1), and a resulting simple

numerical method for simulating the system, which allows for application of pulse engineering

techniques.
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3.2.1 Bogoliubov approximation and two-mode squeezing

The physical system is a BEC subject to oscillating interaction strength, which is fundamen-

tally described by the Hamiltonian

H =

∫
dx

(
Ψ(x)†

p̂2

2m
Ψ(x) +

g(t)

2
Ψ(x)†Ψ(x)†Ψ(x)Ψ(x)

)
, (3.13)

where Ψ(x) is the creation operator of a boson at position x (in any dimension), p̂ is the

momentum operator, m is atomic mass and g(t) is the interaction strength. The system

forms a BEC with condensate wavefunction ψ0(x). After Bogoliubov approximation [5] and

going to momentum space, the Hamiltonian becomes

H =
∑
k

(
ϵka

†
kak +

g(t)

2
(a

†
ka

†
−k + aka−k + 2a

†
kak)

)
, (3.14)

where g(t) is redefined to absorb the condensate density, ϵk = ℏ2k2
2m is the kinetic energy and

ak =
∫
e−ikxΨ(x) is the creation operator of a boson with momentum k. Rearranging the

terms, we have

H =
1

2

∑
k

(
(ϵk + g(t))(a

†
kak + a

†
−ka−k) + g(t)(a

†
ka

†
−k + aka−k)

)
. (3.15)

Under single frequency drive g(t) = 2(geiωt + g∗e−iωt), one can perform rotating wave

approximation (RWA), arriving at

H =
1

2

∑
k

(
(ϵk − ℏω/2)(a†kak + a

†
−ka−k) + (g∗a†ka

†
−k + gaka−k)

)
(3.16)

Considering only one pair of resonant modes with ϵk = ℏω/2, we have

H = g∗a†ka
†
−k + gaka−k. (3.17)
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This Hamiltonian describes two-mode squeezing. Starting from vacuum (no excitations),

the system evolves into a two-mode squeezed state

|f⟩ = e−iHt|0⟩ = 1√
1− z2

∑
n

zn|n, n⟩, (3.18)

where z = g
|g| tanh |g|t is the squeezing parameter and |n, n⟩ denotes the state with n particles

each in k and −k mode.

The two-mode squeezed state is of wide interest and applications. It is a thermofield

double state of two harmonic oscillators [22], which becomes a mixed state with Boltzman

distribution when one subsystem is traced out. Thermofield double states are of central

interest in quantum information theory, connecting to black holes and quantum chaos [23].

It also carries EPR entanglement, and experimental verification of the entanglement remains

an important experimental goal in our lab.

3.2.2 Finite chemical potential and phonon fireworks

The above treatment assumes zero mean (DC) chemical potential. It turns out that the

situation remains largely the same when the mean chemical potential is nonzero. Taking one

pair of modes, we now have the Hamiltonian

H = (ϵk + g(t))(a
†
kak + a

†
−ka−k) + g(t)(a

†
ka

†
−k + aka−k) (3.19)

with g(t) = g0+2(geiωt+g∗e−iωt). We can no longer directly apply RWA, as the DC chemical

potential would be a problem. However, we can first apply a Bogoliubov transformation to

the phonon basis,

αk =

√
ϵk + g0 + ϵ̃k

2ϵ̃k
ak +

√
ϵk + g0 − ϵ̃k

2ϵ̃k
a
†
−k, (3.20)
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where ϵ̃k =
√
ϵ2k + 2ϵkg0 is the phonon energy.

The Hamiltonian is rewritten as

H = (ϵ̃k + g̃(t)
ϵk
ϵ̃k
)(α

†
kαk + α

†
−kα−k) + g̃(t)

ϵk
ϵ̃k
(α

†
kα

†
−k + αkα−k), (3.21)

where g̃(t) = g(t) − g0. Comparing with Eq. (3.15), we can see that the effect of finite

DC chemical potential is simply a change to the phonon basis and a scaling factor ϵk/ϵ̃k on

the interaction driving amplitude. Therefore, in this case we would have Bose fireworks of

phonons.

A caveat is that this derivation assumes a uniform BEC with infinite size. In reality for

BECs with boundaries, the phonons would be reflected by the boundary which introduces

complicated coupling between all momentum modes. The free bosons, on the otherhand,

would not be reflected by the BEC boundary.

3.2.3 SU(1,1) representation and the Poincare disk

In this section we describe the SU(1,1) representation of the Bose fireworks, as detailed in

[21].

Consider the RWA Hamiltonian Eq. (3.16). Since different pairs of momentum modes

are decoupled, consider one pair k and −k.

H = (ϵk − ℏω/2)(a†kak + a
†
−ka−k) + g∗a†ka

†
−k + gaka−k (3.22)

Define K0 = (a
†
kak+a−ka

†
−k)/2, K1 = (a

†
ka

†
−k+aka−k)/2, K2 = (a

†
ka

†
−k−aka−k)/(2i),

K+ = K1 + iK2 and K− = K1 − iK2. The Hamiltonian is rewritten as

H = 2∆K0 + g∗K+ + gK−, (3.23)

19



where ∆ = (ϵk − ℏω/2) is the detuning. The operators K0,1,2 form the su(1, 1) algebra,

defined by the commutation relations

[K0, K1] = iK2

[K2, K0] = iK1

[K1, K2] = −iK0

(3.24)

Therefore the Hamiltonian H is an element of the su(1, 1) algebra, the time evolution

operator U = e−iHt is an element of the SU(1,1) group, and the dynamics it generates is a

representation of the SU(1,1) group.

It is known that one representation of the SU(1,1) group is the Poincare disk, which is a

2D unit disk equipped with a hyperbolic metric. On the Poincare disk, geodesics are circular

arcs that perpendicularly intersect with the boundary circle. The distance of a point to the

origin goes to infinity as it approaches the boundary. In fact, there is a simple correspondence

between the dynamically accessible states and the Poincare disk. Starting from the vacuum,

the Hamiltonian Eq. (3.23) generates two-mode squeezed states Eq. (3.18). The squeezing

parameter z, which is a complex number with ||z|| < 1, gives the coordinate on the Poincare

disk as its real and imaginary parts. The vacuum is at the origin of the Poincare disk. The

polar angle of z gives the phase of the two-mode squeezed state. Operator K0 generates

rotation around the origin, which corresponds to phase winding. Operator K1,2 generates

boost along two different directions. The population is n = ⟨a†kak⟩ =
||z||2

1−||z||2 . The structure

factor is S = ⟨(ak + a
†
−k)(a−k + a

†
k)⟩ = 1 + 2n

(
1 + Re1z

)
.

In the Poincare disk representation of SU(1,1), elements of SU(1,1) acts on the Poincare

disk as Mobius transformations written as 2× 2 complex matrices,

a b

c d

 : z → az + b

cz + d
. (3.25)
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Writing the generators K0,1,2 in terms of 2× 2 matrices, we have

K0 =
1

2

1 0

0 −1

 =
1

2
σz, (3.26)

K1 =
1

2

 0 1

−1 0

 =
i

2
σy, (3.27)

K2 =
1

2

 0 −i

−i 0

 = − i

2
σx, (3.28)

where σ denotes Pauli matrices. The time evolution operator U = e−iHt is then written as

U =

coshκt− i∆
κ sinhκt − ig∗

κ sinhκt

ig
κ sinhκt coshκt+ i∆

κ sinhκt

 , (3.29)

where κ =
√
|g|2 −∆2.

This means that the dynamics of the system can be represented by two-dimensional ma-

trices instead of a infinite-dimensional Hilbert space, although the 2D matrices are no longer

Hermitian or unitary. As we will see in the section below, there is actually a much simpler

way to represent the system by few-dimensional matrices, which proves very convenient for

numerical simulations.

Since the mean population of a two-mode squeezed state |z⟩ is ||z||2/(1−||z||2), states with

significant excitation population are very close to the boundary, making the Poincare disk

a poor visualization. Alternatively, one can parameterize the state |z⟩ with the expectation

values of K1,2, similar to how spin-1/2 states are parameterized by expectation values of

Pauli matrices, forming the Bloch sphere.
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3.2.4 Numerical simulation of the Heisenberg equation

Consider a quadratic Hamiltonian of two bosonic modes ak and a−k,

H = A†TFA+
1

2
A†TGA† +

1

2
ATG∗A, (3.30)

where A =

 ak
a−k

 is a vector of the bosonic annihilation operators and F,G are coefficient

matrices. In the case of Hamiltonian Eq. (3.22), we would have

F =

ϵk − ℏω/2 0

0 ϵk − ℏω/2



G =

0 g

g 0

 .
The Heisenberg equations are

Ȧ = −iFA− iGA†

Ȧ† = iF ∗A† + iG∗A
(3.31)

Constructing vector V =

A
A†

 and matrix M =

 F G

−F ∗ G∗

, the equations are rewrit-

ten as

V̇ = −iMV, (3.32)

which is solved as

V (t) = e−iMtV (0). (3.33)
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This solution expresses the operators a±k(t) as a function of the initial operators a±k(0).

From here the correlation functions as a function of time can be readily computed, as the

expectation values of the initial operators are evaluated in the vacuum.

In particular, expressing the solution as a(t) = u(t)A(0) + v(t)A†(0), where a(t) is the

annihilation operator of a particular mode, and u(t), v(t) are coefficient vectors, we have

⟨a†(t)a(t)⟩ = ||v(t)||2. (3.34)

The coefficient vectors u(t), v(t) are slices of the matrix U = e−iMt. It is straightforward

to obtain all correlators from the matrix U . Therefore, numerically the system can be

solved through a matrix exponentiation. Time dependent Hamiltonian can be solved through

Trotterization.

This method can be applied to solve any quadratic Hamiltonian, not only ones in SU(1,1).

For example, it can deal with terms like a†ka−k, generated by for example Bragg diffraction

with an optical lattice of wavevector 2k. In addition, the system can involve more than two

modes. Solving m modes coupled together by a quadratic Hamiltonian becomes 2m × 2m

matrix algebra.

3.2.5 Pulse engineering with JAX

During the many-body echo project, one research objective was to reverse the excitation as

much as possible by changing the reversal driving pulse. This can be formulated as a pulse

engineering problem. A pulse engineering problem is generally formulated as the following.

Given an initial state |i⟩, a tunable Hamiltonian H(λ) and a target state |t⟩, find an optimal

time series of λ(t) (a pulse), such that the final state |f⟩ = e−i
∫
Hdt|i⟩ is as close to the

target |t⟩ as possible. In our case, the target state is the vacuum |0⟩, the Hamiltonian is

Eq. (3.15), and the pulse is g(t). The initial state is obtained by driving the system with

a sinusoidal pulse. A more convenient formulation is to have both the initial state and the
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Figure 3.1: Optimal reversal pulse found by pulse engineering. Blue curve is the
optimized pulse g(t). Yellow dotted curve is the heuristic initial guess, which is shifting the
fixed sinusoidal excitation pulse by half a period.

target state be the vacuum, and have the first part of the pulse be fixed as sinusoidal.

Pulse engineering see wide applications in quantum optimal control, for optimizing gate

pulses for qubit operations in the quantum information processing context [24]. Many tech-

niques have been introduced for efficient optimization of a continuous time series [25]. With

recent advances in the machine learning community, particularly in the area of automatic

differentiation [26], gradient optimization in high dimensional parameter spaces has become

easier than ever. One toolbox for easy implementation of automatic differentiation is JAX,

developed by Google [27]. It also has the added benefit of enabling parallel computation

with both CPUs and GPUs.

Computationally carrying out the pulse engineering optimization with JAX requires sev-

eral modules. First, a module needs to carry out the numerical simulation of the system

dynamics, given a specific pulse. This is achieved by the matrix algebra described in the

previous section. Since the total system contains many independent pairs of momentum

modes, each pair is computed separately, where parallelization can significantly improve effi-

ciency. Second, another module needs to evaluate the objective function given the final state
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Figure 3.2: Evolution of excitation population for each momentum as a function of time.

produced by the previous module. The objective function can be the overlap with the target

state, or more heuristic like the total excitation population of the final state, along with reg-

ularization constraints such as strength and smoothness of the pulse. The two modules need

to be wrapped together to evaluate the objective function for each trial pulse. For gradient

based optimizers, normally gradients of the objective function also need to be computed.

With auto-differentiation with JAX, the gradient can be computed automatically using the

chain rule on each elementary operation carried out by the function, such as addition and

multiplication. This can be achieved by building the function using only JAX-compatible

operations. The objective function and gradient evaluations can then be fed into a gradient

based optimizer which is prevalent in machine learning, which produces an optimal pulse.

In my attempt, the final total population over a range of momentum modes is minimized.

The optimal pulse is shown in Fig. 3.1, along with the heuristic initial guess. The evolution

of excitation population for each momentum as a function of time is shown in Fig. 3.2. The

final population as a function of momentum is plotted against the initial population (after the

fixed sinusoidal pulse) in Fig. 3.3. The objective function is the sum of population between

momentum 0.95 and 1.05, and we can see that the optimal pulse pushes the excitation
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Figure 3.3: Initial and final population as a function of momentum. The blue curve
shows the initial population as a function of momentum, after the fixed sinusoidal driving.
Yellow curve shows the final population. Excitation within the optimization window of
momentum, 0.95 to 1.05, is reversed, whereas outside the window the excitation grows.

outside of the target momentum window. This result, on one hand, shows the ability of

the optimizer to produce effective and nontrivial pulse shapes. On the other hand, it also

suggests that by controlling the interaction strength g(t) alone, it is impossible to reverse

the excitation for all momentum modes. Indeed, in the many-body echo project described

in section 5, we can achieve the reversal of all momentum modes only by additional means

of controlling the system.

3.3 Reconstruction of condensate wavefunction from Bose

fireworks

In the experiment, we typically observe Bose fireworks emitted from a uniform ground state

condensate. Theoretically we often consider the condensate as occupying the k = 0 state.

However, in some experiments we observe Bose fireworks emitted from excited condensates,

for example ones hosting solitons or vortices. The pattern in the jets differ significantly

from that emitted by a ground state condensate. In the study of the patterns of emitted
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jets from various excited condensates [28], I derived a theoretical correspondence between

the condensate wavefunction and correlations in jets. This section presents the derivation in

further detail.

3.3.1 Introduction

To first order in Bogoliubov approximation, a condensate with wavefunction Ψ with modu-

lated interaction undergoes firework described by Hamiltonian

H =
1

2

∑
jl

Fjlajal + h.c. (3.35)

Here aj annihilates a particle in the plane wave state ψj = eikjr, and Fjl =
∫
drψjψlΨ

∗2(r) =∫
drei(kj+kl)rΨ∗2(r) is the overlap function. By measuring the distribution of particle num-

ber in the momentum space nj , we hope to gain information of Ψ(r).

Below, we will prove that if we knew, instead of the particle number nj , correlations such

as ⟨ajak⟩ and ⟨a†jak⟩, we would be able to fully reconstruct Ψ(r). But more importantly,

even only knowing nj , we will show that we still can reconstruct |Fjl|, which is the fourier

space power spectrum of Ψ2. The phases of Fjl, however, will be shown to be impossible to

recover from nj only.

3.3.2 Reconstructing squeezing Hamiltonian from final state correlations

Result

Consider a system of N bosonic modes aj , j = 1, 2, 3, ..., N . Consider the squeezing Hamil-

tonian

H =
1

2

∑
jk

Fjkajak + h.c. (3.36)
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Choose Fjk be symmetric. Let A = (a1, a
†
1, ..., aN , a

†
N )T .

As the vector space for A is 2N dimensional, where each mode has two degrees of freedom,

there is a natural decomposition for any matrix K acting on A, into K = K̂⊗σ, where K̂ is

an N ×N matrix describing the mixing of different modes and σ is a 2×2 matrix describing

mixing of a and a† within each mode.

Define G = −(ReF ) ⊗ σx − (ImF ) ⊗ σy, where σi are the Pauli matrices. Then the

Hamiltonian can be written as

H = −1

2
A†GAT (3.37)

Define matrix S.

S = IN ⊗ 1√
2

 1 1

−i i

 (3.38)

Let gjk = ⟨AjAk + AkAj⟩, which are correlations like ⟨ajak⟩ and ⟨a†jak⟩. Define K,

K =
1

2
ln SgST (3.39)

From experimental measurements of correlations g (assuming this is possible for the

moment), the coefficients F can be obtained through

ReF = −1

2
TrσK(I ⊗ σx) (3.40)

ImF = −1

2
TrσK(I ⊗ σz) (3.41)

where Trσ means trace over the Pauli matrices (tracing over each 2-by-2 block).

Previously we have been able to predict correlations given the form of F , but not the other
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way around. Here is the solution to the inverse problem, solving for F given correlations g.

Example

As a simple example, let N = 2, and

F =

0 f

f 0

 (3.42)

H = f∗a†1a
†
2 + h.c. (3.43)

Heisenberg equations of motion:

ȧ1 = i[H, a1] = −if∗a†2 (3.44)

ȧ2 = i[H, a2] = −if∗a†1 (3.45)

Solution:

a1(t) = cosh |f |t a1(0)− i

√
f∗

f
sinh |f |t a†2(0) (3.46)

a2(t) = cosh |f |t a2(0)− i

√
f∗

f
sinh |f |t a†1(0) (3.47)

Let t = 1. Correlation matrix
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g =



0 cosh 2|f | −i
√

f∗
f sinh 2|f | 0

cosh 2|f | 0 0 i
√

f
f∗ sinh 2|f |

−i
√

f∗
f sinh 2|f | 0 0 cosh 2|f |

0 i
√

f
f∗ sinh 2|f | cosh 2|f | 0


(3.48)

Mathematica tells me

K =
1

2
lnSgST =



0 0 −Imf −Ref

0 0 −Ref Imf

−Imf −Ref 0 0

−Ref Imf 0 0


= −ImF ⊗ σz − ReF ⊗ σx

(3.49)

K(I ⊗ σx) =



0 0 −Ref −Imf

0 0 Imf −Ref

−Ref −Imf 0 0

Imf −Ref 0 0


(3.50)

K(I ⊗ σz) =



0 0 −Imf Ref

0 0 −Ref −Imf

−Imf Ref 0 0

−Ref −Imf 0 0


(3.51)

Therefore

−1

2
TrσK(I ⊗ σx) =

 0 Ref

Ref 0

 = ReF (3.52)
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−1

2
TrσK(I ⊗ σz) =

 0 Imf

Imf 0

 = ImF (3.53)

Derivations

With vacuum as the initial state, the system evolves to

ρ = Uρ0U
† (3.54)

, where U = e−iHT . Rescale Fjk such that T = 1.

Since the Hamiltonian is quadratic and the initial state is the vacuum, it is convenient

to use the formalism of Gaussian states. Here we follow the treatment described in [29]. In

particular section 1.2 contains many important concepts.

Any Gaussian states can be fully described by a displacement d and a covariance matrix

γ. It is straight forward to see that the displacement d = 0 for all states concerned here.

According to Theorem 3, Eq (3.54) implies a relationship between the covariance matrices

of the vacuum state and the final state,

γ =Mγ0M
T (3.55)

where M is given by

U†RU =MR (3.56)

and R = (x1, p1, ..., xN , pN )T , xj = (aj + a
†
j)/

√
2, pj = (aj − a

†
j)/

√
2i. Note that R = SA.

Our goal is to derive the coefficients Fjk from the correlation functions. The covariance

matrix can be obtained from the correlation functions, which is related to the time evolution

operator U by Eq (3.55) and Eq (3.56), which in turn gives Fjk.

Step 1: From M to F
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We can solve Eq (3.56) with the BCH formula,

eiHRe−iH = R + [iH,R] +
1

2
[iH, [iH,R]] + ... (3.57)

We need commutators [H,R].

We have

[A,A] = IN ⊗ iσy (3.58)

[A,A†] = IN ⊗ σz (3.59)

Therefore we have

[H,A] =
1

2

(
(I ⊗ σz)G+ (I ⊗ iσy)G

T (I ⊗ σx)
)
A = −i(ReF ⊗ σy − ImF ⊗ σx))A (3.60)

And

[H,R] = −iℏṘ = −iℏSȦ = S[H,A] (3.61)

S[H,A] = −iS(ReF ⊗ σy − ImF ⊗ σx)S
−1R = i(ReF ⊗ σx + ImF ⊗ σz)R (3.62)

Therefore, let K = −ReF ⊗ σx − ImF ⊗ σz,

[iH,R] = KR (3.63)

Eq (3.57) becomes

32



R +KR +
1

2
KKR + ... = eKR =MR (3.64)

Therefore

M = eK (3.65)

Step 2: From γ to M

As K is obviously symmetric, we have

γ = eKγ0e
K (3.66)

The covariance matrix for vacuum is just the identity, γ0 = I.

γ = e2K (3.67)

Therefore

K =
1

2
ln γ (3.68)

The covariance matrix is given by

γjk = ⟨RjRk +RkRj⟩ (3.69)

R = SA (3.70)

where A = (a1, a
†
1, ..., aN , a

†
N )T and
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S = I ⊗ 1√
2

 1 1

−i i

 (3.71)

Therefore,

γjk =
∑
pq

SjpSkq⟨ApAq + AqAp⟩ (3.72)

Writing gjk = ⟨AjAk + AkAj⟩, which are correlations like ⟨ajak⟩ and ⟨a†jak⟩,

γ = SgST (3.73)

Finally,

K =
1

2
ln SgST (3.74)

From which we have

ReF = −1

2
TrσK(I ⊗ σx) (3.75)

ImF = −1

2
TrσK(I ⊗ σz) (3.76)

3.3.3 Two point correlator from population measurements

Suppose we have a Gaussian state, and measurements of nj and its correlators. Can we

figure out what g is? If not, what can we tell about Fjl?

Let me argue first that, unfortunately, we cannot fully reconstruct g. Consider basis

transformation a′j = eiθjaj , where θj is different for different j. Under this transformation,

obviously nj is invariant. However, g is not. It’s more obvious to see how Fjl transforms.
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The basis transformation transforms the state ψ′j = eiθjψj , and thus the overlap function

transforms as F ′
jl = ei(θj+θl)Fjl. Therefore the magnitude |Fjl| is invariant under this

transformation, but the phase is not.

This means that from observations of nj , it’s impossible to determine the phase of F .

However, this also means that we can choose arbitrary θj when trying to obtain |F | from

nj . Below I show how this is done.

For the rest of this section I will make a change of notation. Let gjk = ⟨a†jak⟩ be the

normal correlator, and hjk = ⟨ajak⟩ be the anomolous correlator. Note that gjk = g∗kj and

hjk = hkj . Then we have

⟨nj⟩ = gjj = nj (3.77)

where I denote the expection value as nj when it’s not in an operator expression.

Let’s do some Wick contraction:

⟨njnk⟩ = njnk + |gjk|2 + |hjk|2 (3.78)

⟨njnj⟩ = 2n2j + |hjj |2 (3.79)

Since we can make an arbitrary basis transformation of the form a′j = eiθjaj , we can

choose θj such that all hjj ∈ R. Then we have

hjj =
√

⟨njnj⟩ − 2n2j (3.80)

Define connected correlators

⟨njnk⟩c = ⟨njnk⟩ − njnk (3.81)
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⟨n2jnk⟩c = ⟨n2jnk⟩ − 2nj⟨njnk⟩c − nk⟨n2j⟩c − n2jnk (3.82)

Then we have

⟨n2jnk⟩c = 2nj⟨njnk⟩c + 2hjj

(
gjkh

∗
jk + c.c.

)
(3.83)

⟨n2knj⟩c = 2nk⟨njnk⟩c + 2hkk
(
gjkhjk + c.c.

)
(3.84)

⟨n2jn
2
k⟩ = 4nj⟨njn2k⟩c + 4nk⟨nkn2j⟩c + 4⟨njnk⟩2c

+ ⟨n2j⟩c⟨n
2
k⟩c + n2j⟨n

2
k⟩c + n2k⟨n

2
j⟩c + 5n2jn

2
k

+ 8|gjk|2|hjk|2 + 2hjjhkk

(
g2jk + h2jk + c.c.

) (3.85)

Therefore, for each pair of modes aj , ak, we have the following set of equations.

gjj = ⟨nj⟩ = nj (3.86)

hjj =
√

⟨njnj⟩c − n2j (3.87)

|gjk|2 + |hjk|2 = ⟨njnk⟩c = A (3.88)

gjkh
∗
jk + c.c. =

1

2hjj

(
⟨n2jnk⟩c − 2nj⟨njnk⟩c

)
= B (3.89)

gjkhjk + c.c. =
1

2hkk

(
⟨n2knj⟩c − 2nk⟨njnk⟩c

)
= C (3.90)
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8|gjk|2|hjk|2 + 2hjjhkk

(
g2jk + h2jk + c.c.

)
=⟨n2jn

2
k⟩ − 4nj⟨njn2k⟩c − 4nk⟨nkn2j⟩c

− 4⟨njnk⟩2c − ⟨n2j⟩c⟨n
2
k⟩c

− n2j⟨n
2
k⟩c − n2k⟨n

2
j⟩c − 5n2jn

2
k

=D

(3.91)

Eq (3.86) gives gjj and gkk. Eq (3.87) gives hjj and hkk. Eq (3.88) to (3.91) can be

solved to give gjk and hjk. Here’s how.

Let gjk = geiθ and hjk = heiϕ. Let κ = hjjhkk. Then we have

g2 + h2 = A (3.92)

gh cos(θ − ϕ) = B (3.93)

gh cos(θ + ϕ) = C (3.94)

8g2h2 + 2κ
(
2g2 cos 2θ + 2h2 cos 2ϕ

)
= D (3.95)

This set of equations can be reduced to a nonlinear equation of g, which is readily solved

by numerical methods. The only remaining question is how many roots there are. I don’t

know yet.

The above equations give all correlations between all pairs aj and ak in terms of nj and

nk, up to a phase choice θj . From this correlation matrix, using Eq (3.74), we can reconstruct

an F̃ . From previous arguments, it’s guaranteed that |F̃jk| = |Fjk|. However, the phase of

Fjk cannot be reconstructed.
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3.4 Gross-Pitaevskii equation simulation of driven Bose-Einstein

condensates

The time-dependent Gross-Pitaevskii equation describes the dynamics of a Bose-Einstein

condensate [5],

i∂tψ =

(
ℏ2∇2

2m
+ V + g|ψ|2

)
ψ, (3.96)

where ψ is the condensate wavefunction, m is the atomic mass, V is the external potential,

g = 4πℏ2a/m is the interaction strength, and a is the scattering length.

The Gross-Pitaevskii equation is a powerful tool to theoretically and numerically describe

our experimental systems, since we work mostly with Bose-Einstein condensates. It is capable

of not only describing the ground state wavefunctions, but also dynamically driven states,

and even non-condensed systems through the truncated Wigner method. In this chapter

I will describe an efficient numerical method for simulating the Gross-Pitaevskii equation,

which allows us to microscopically directly simulate Floquet driven condensates, its extension

in the presence of a density-dependent gauge field, and the truncated Wigner method which

simulates quantum fluctuation using classical noise.

3.4.1 Efficient numerical simulation based on GPU-accelerated fast Fourier

Transform

Numerically, the Gross-Pitaevskii equation Eq. (3.96) is discretized on a spatial-temporal

grid, ψ(xi, tj) 7→ ψi,j . Here a 1D case is used as an example, but generalization to 2D and

3D is straightforward. The temporal discretization is performed through Trotterization,

ψ(t+ dt) = e−iHdtψ(t), (3.97)
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where H = ℏ2∇2

2m + V + g|ψ|2 is the nonlinear ’Hamiltonian’ and dt is the temporal stepsize.

In principle, from here one can express the discretized wavefunction as a vector, and the

Hamiltonian as a matrix. Then one need to exponentiate the Hamiltonian to solve for the

dynamics. However, matrix exponentiation is computationally intensive, and the matrix size

scales as the square of the grid size.

In our algorithm we overcome this challenge by utilizing the split-step Fourier method

[30]. The Hamiltonian has three terms. The kinetic term ℏ2∇2

2m is diagonal in the Fourier

space, as its eigenvectors are momentum states. The external potential V and the interaction

term g|ψ|2 are diagonal in the real space. We perform another Trotterization,

e−iHdt 7→ e−i
ℏ2∇2

2m dte−i(V+g|ψ|2)dt, (3.98)

splitting the Hamiltonian exponentiation into a step diagonal in real space and a step diag-

onal in Fourier space. Exponentiation of a diagonal matrix is simply the exponentiation of

each diagonal element, so the operation no longer requires matrix exponentiation, but rather

reduces to element-wise exponentiation, which allows for parallelization and is computation-

ally efficient. In each time step, we now need to Fourier transform the wavefunction into

the Fourier space, and inverse Fourier transform back to real space. Denoting the Fourier

transform operation as F , the time step becomes

e−iHdt 7→ F−1e−i
ℏ2k2
2m dtFe−i(V+g|ψ|2)dt, (3.99)

where k is the momentum space coordinate.

Since element-wise exponentiation is computationally cheap, the efficiency bottleneck

is now the Fourier transform. Fast Fourier transform (FFT) algorithms enjoy significant

speedup from GPU acceleration, for example through the CUDA toolkit cuFFT package,

which we can access through Python cupy module. We can therefore easily write efficient

39



code in Python to simulate the Gross-Pitaevskii equation.

It is suggested that the simulation error can be further reduced by splitting the real space

step into two, and put one before and one after the Fourier space step [31]. In practice the

improvement I observe is not significant enough to warrant the additional complications.

The high efficiency of the algorithm allows us to perform the simulation on a large spatial

grid, for a large number of temporal steps. As a result, we can directly microscopically

simulate driven condensates. We can directly include the sinusoidal optical lattice in V by

resolving the lattice sites with the spatial grid. We typically place 16 spatial grid steps

for each lattice site. We can also directly include the interaction modulation in the time

dependence of g. We typically resolve each interaction modulation period by 100 time steps.

From the time dependent Gross-Pitaevskii equation Eq. (3.96), we can also numerically

obtain the ground state wavefuction, through simulated annealing. The ground state wave-

function is described by the time independent Gross-Pitaevskii equation,

µψ =

(
ℏ2∇2

2m
+ V + g|ψ|2

)
ψ, (3.100)

where µ is the chemical potential. The ground state minimizes the chemical potential µ.

Simulated annealing performs imaginary time evolution,

ψ 7→ e−Hτψ, (3.101)

where τ is the imaginary time. The wavefunction is renormalized after each imaginary time

step to preserve the norm. If the system were linear, it is clear that any excited state decays

faster than the ground state, and after long enough imaginary time we arrive at the ground

state. For our nonlinear system, this still holds in practicality.

In practice, the annealing may be ’stuck’ by topological defects such as vortices, since

they cannot be eliminated continuously. We ’shake’ the solution out of these local minimum
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by adding noise to the wavefunction before each time step. We start the annealing process

with either a random initial wavefunction, or a uniform initial wavefunction. Starting with a

uniform initial wavefunction results in less topological defects that need to be eliminated, but

in some cases the ground state actually does contain topological defects, making a uniform

initial wavefunction unsuitable.

3.4.2 Density-dependent gauge field

The Gross-Pitaevskii equation can be extended to describe condensates subject to gauge

fields. We know that the Hamiltonian of a charged particle in a vector potential is

H =
(p− A)2

2m
, (3.102)

where p is the momentum, A is the vector potential andm is the particle mass. We absorb the

charge into the vector potential. Therefore, the energy density of a Bose-Einstein condensate

in a vector potential is

E = ψ∗
(p− A)2

2m
ψ + V |ψ|2 + 1

2
g|ψ|4, (3.103)

where ψ is the condensate wavefunction, V is the external potential, g is the interaction

strength and p is the momentum operator. The Gross-Pitaevskii equation is obtained from

the energy density by applying the variational principle to the Lagrangian.

Since the vector potential A is local in real space, the kinetic term is no longer diagonal

in either real space or Fourier space, and the split step Fourier method cannot be directly

applied. In particular, terms such as ψ∗Apψ in the energy density results in terms such

as A∇ψ in the Gross-Pitaevskii equation. The operator A∇ in the Hamiltonian is neither

diagonal in real space nor in momentum space. However, in the case of a density-dependent

gauge field where A = η|ψ|2, η being a vector representing the strength and direction of
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the gauge field, the term in the Gross-Pitaevskii equation becomes |ψ|2η∇ψ, which can be

rewritten as ψ∗η(∇ψ)ψ. The corresponding operator in the Hamiltonian is now ψ∗η(∇ψ),

which is local in real space. We can evaluate ∇ψ in real space through the fast Fourier

transform.

In summary, our algorithm using the split step Fourier method cannot deal with spatially

varying static gauge fields. However, in our case with density-dependent gauge fields where

the spatial dependence is only inherited from the condensate wavefunction itself, we can still

apply our algorithm.

3.4.3 Truncated Wigner method

The Gross-Pitaevskii equation is supposed to describe the dynamics of a condensate. In

our Bose fireworks experiment, the jets are excited out of the condensate to form two-mode

squeezed states. Since the jets and the rest of the condensate do not share the same wave-

function, the Gross-Pitaevskii equation does not readily apply. This is to be expected since

the jets are amplified from quantum fluctuations, whereas the Gross-Pitaevskii equation is

deterministic. Remarkably, we only need a simple extension to the Gross-Pitaevskii equation

to be able to simulate Bose fireworks. Instead of starting the simulation with the determinis-

tic initial state such as the ground state in a trap, classical noise is added to the initial state.

Several realizations of the classical noise is evolved using the Gross-Pitaevskii equation, and

the resulting ensemble is used to calculate observable expectation values, in a Monte-Carlo

manner. Heuristically we consider each realization of the noise to be one ’experimental

shot’, similar to how single shot in our experiment samples the amplified quantum fluctu-

ation. This approach is called the truncated Wigner method [32]. Theoretically there is a

’correct’ amount and form of classical noise that reproduces the quantum effects. In practice

we hand tune the strength of noise to match experimental observations.
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CHAPTER 4

DOMAIN WALL DYNAMICS DRIVEN BY

DENSITY-DEPENDENT GAUGE FIELD

Emergence of exotic particles in complex many-body systems is ubiquitous in condensed

matter and high energy physics. For example, mesons in quantum chromodynamics and

composite fermions in fractional quantum Hall systems arise from the dynamical coupling

between matter and gauge fields [33; 34]. Ultracold atoms offer a versatile platform to

simulate matter-gauge interaction by creating artificial gauge fields. An important stepping

stone to access the physics of the exotic emergent particles relies on the synthesis of a gauge

field that depends on the matter. Here we demonstrate deterministic formation of domain

walls in a stable Bose-Einstein condensate with a gauge field which is determined by the

atomic density. The density-dependent gauge field is created by simultaneous modulations

of an optical lattice potential and interatomic interactions, and results in domains of atoms

condensed into two different momenta. Modeling the domain walls as elementary excitations,

we find that the domain walls respond to synthetic electric field with a charge-to-mass ratio

larger than and opposite to that of the bare atoms. Our work offers promising prospects

to simulate the dynamics and interactions of novel excitations in quantum systems with

dynamical gauge fields.

This chapter is based on my published work on Nature [35].

4.1 Introduction

Gauge theories form a cornerstone in our understanding of condensed matter systems [36]

and fundamental particles [37]. A complete theoretical understanding of many-body systems

subject to gauge fields, however, faces significant analytical and numerical challenges [38; 39].

Experiments with ultracold atoms offer an alternative approach by quantum simulating gauge
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theory models, where gauge fields can be artificially synthesized [40; 41; 15]. Tremendous

progress has been made in the past years on creating static artificial gauge fields in atomic

quantum gases [42], enabling the realization of, for instance, the iconic Haldane [43] and

Hofstadter models [2; 44].

Fundamentally, gauge fields are dynamical with quantum degrees of freedom that interact

with matter [45; 46; 47; 48; 49]. An intriguing consequence of the dynamical feedback

between the matter and gauge field is the formation of novel particle-like excitations with

emergent properties, for example, mesons in the standard model [33] and composite fermions

in the fractional quantum Hall effect [34]. Recently, several experiment groups have realized

density-dependent gauge fields [50; 51; 52], where the strength of the field depends on the

density of matter [53], as well as lattice gauge theory models [3; 54; 55].

4.2 Bose-Einstein condensate under density-dependent gauge field

We quantum simulate a Bose-Einstein condensate (BEC) subject to a density-dependent

gauge field, which is described by the energy density functional

H =
1

2m∗ |(p−A)ψ|2 + 1

2
g|ψ|4, (4.1)

where ψ is the condensate wavefunction, p is the momentum operator, m∗ is the mass of

the particle, A is the density-dependent gauge field, and g is the interaction strength. We

engineer a gauge field that takes one of two values according to the density n = |ψ|2,

A = ℏk∗ sign(n− nc)x̂, (4.2)

where k∗ > 0 is a constant, sign(x) = x/|x| is the sign function and ℏ is the reduced Planck

constant. The gauge field is along the +x̂ direction when the density exceeds the critical value

nc, and along −x̂ at lower densities, see Fig. 4.1. We observe the formation of stable domain
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Figure 4.1: Illustration of a Bose-Einstein condensate with density-dependent
gauge field. A condensate with inhomogeneous density profile is subject to a density-
dependent gauge field A, which changes sign when the density n exceeds a critical value nc.
The high density (red) and low density (blue) regions of the condensate form domains with
distinct momenta k = k∗ and −k∗ in the x−direction (white arrows), respectively. Along the
domain wall (white) parallel to the gauge field, an array of vortices form as a consequence
of phase continuity, which is a manifestation of the effective magnetic field B ∝ ∂yn (green
arrows). On the other hand, dynamics of the condensate density can induce an effective
electric field E ∝ ∂tn (yellow arrows). In this work, we observe the formation and dynamics
of domain walls perpendicular to the gauge field.

walls in the BEC, which are topological defects [56], and extract an effective charge-to-mass

ratio from their dynamical response to the gauge field.

In the BEC described by Eq. (4.1), the local phase gradient of the ground state wave-

function follows the gauge field, ∂xϕ = k∗ sign(n − nc), in order to minimize the kinetic

energy. The condensate can support two types of domains with momentum k = +k∗ for

density n exceeding the critical value nc and momentum k = −k∗ for lower density n < nc.

The density-dependent magnetic field B = ∇×A = −2ℏk∗δ(n−nc)∂ynẑ is concentrated on

domain walls parallel to the gauge field, and δ(x) is the Dirac delta function . On the other

hand, dynamics of the density generates an electric field E = −∂tA = −2ℏk∗δ(n− nc)∂tnx̂.

The electromagnetic fields E and B can induce Lorentz force on the atoms, simulating

charged particles in the gauge field.
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4.3 Experiment setup

We load a nearly pure BEC of around 40,000 133Cs atoms into a one-dimensional (1D)

optical lattice along the x−direction with an additional weak harmonic confinement in the

x− y plane at the radial trap frequency 2π × 8 Hz and a tight vertical confinement at trap

frequency 2π×223 Hz. The condensate remains in the 3D regime, with a chemical potential

2π × 170 Hz. Using Floquet engineering [57], we realize the gauge field in Eq. (4.2) by

generating a tilted double well dispersion ϵk along the lattice direction, where the energy

offset of the two wells depends on the density of the sample. The dispersion can be modeled

by

ϵk = α(k2 − k∗2)2 − ℏ
m∗kA(n). (4.3)

Here k is the wavenumber, α and k∗ can be controlled by lattice shaking along the x−direction,

m∗ is the effective mass near k = ±k∗, and the gauge field A = As + Ad(n) contains the

static and density-dependent contributions As and Ad(n), respectively, which we generate

from a synchronous modulations of the lattice potential and the interatomic interaction,

respectively [50], see Fig. 4.2. The presence of the gauge field A shifts the local minima of

the dispersion to k = ±k∗ + A to leading order.

4.3.1 Lattice shaking

We modulate the lattice position δx in time t at two frequencies according to δx(t) =

X1 sinωt+X2 sin 2ωt, see Fig. 4.2a, where the modulation amplitude X1 determines α and

k∗ of the double well dispersion, and the amplitude X2 imbalances the two minima [58].

The fundamental frequency ω is red detuned to the second excited band of the lattice at

zero momentum, see Fig. 4.2b and supplement. The shaking induces a direct single photon

coupling at frequency ω and coupling strength Ω1, as well as a Raman coupling involving

both an ω photon and a 2ω photon with coupling strength Ω2. The direct coupling Ω1 has an
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Figure 4.2: Creation of static (a-d) and density-dependent (e-h) gauge fields. a, We
periodically translate the 1D optical lattice by δx = X1 sinωt+X2 sin 2ωt with X1 = 21 nm
and variable X2. b, The frequency ω is slightly red detuned from the transition between
the ground (red) and the second excited band (blue). The first excited band (green) is only
weakly coupled. Here kl = π/(532 nm). The shaking introduces a direct coupling Ω1 (orange
arrow) and a Raman coupling Ω2 (blue arrows). c, In the Floquet picture, the two couplings
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hybridize the bare bands (dashed lines), and the resulting ground band (red line) forms a
tilted double well with minima at k ≈ ±k∗ = ±0.15kl. d, Time-of-flight images show a jump
of the BEC momentum when X2 flips sign. See illustrations for the dispersions with X2 > 0
and X2 < 0. The 1D momentum distribution n(k) is normalized over the first Brillouin zone.
e, The scattering length a is modulated at frequency ω. f, The micromotion of the atomic
density ⟨n⟩ at k = ∓k∗ oscillates in and out of phase with the scattering length modulation.
This results in a higher interaction energy for k = −k∗ than for k = +k∗. g, Combining
both modulations yields a dispersion whose minimum position depends on the density as
k = k∗sign(n − nc). h, The momentum distribution of the BEC displays a jump when aac
exceeds 14(2) aB. See illustrations for the dispersions with n > nc and n < nc.
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odd parity that only mixes states with non-zero momentum k ̸= 0, essential for the creation

of the double well dispersion, see Fig. 4.2c. On the other hand, the Raman coupling Ω2

has an even parity. The interference of the two couplings Ω1 and Ω2 with opposite parities

results in the imbalance of the two dispersion minima. We control the imbalance in our

experiment with the amplitude of the second harmonic modulation X2, which results in a

static gauge field As ∝ −X2. See supplement for details.

The static gauge field As manifests in the momentum distribution of the BEC. Based on

the focused time-of-flight method [59], we see that the condensate momentum indeed takes

on values k = ±k∗ depending on the sign of X2, see Fig. 4.2d. For the rest of this work, we

choose X2 = 23 nm, which imbalances the two wells by h× 3 Hz.

4.3.2 Interaction modulation

The density-dependent part of the gauge field Ad is created by modulating the scattering

length a with an external magnetic field [50] at the same fundamental frequency as the

lattice shaking a(t) = adc − 1
2aac cosωt, see Fig. 4.2e, where adc = 50 aB and aac are the

mean scattering length and the amplitude of the modulation, respectively, and aB is the

Bohr radius. To understand the density dependence of the gauge field, we note that the

atoms in the k = ±k∗ states acquire a time dependent micromotion from the lattice shaking.

Within a Floquet cycle, the atomic density of the two states k = ±k∗ oscillates at frequency

ω with opposite phase [50], see Fig. 4.2f. We modulate the scattering length in phase with

the atomic density in the state k = −k∗, which raises the time-averaged interaction energy

for k = −k∗ and lowers that for k = +k∗. This results in a coupling between the density

and momentum, favoring the k = +k∗ state. The coupling gives the density-dependent part

of the gauge field Ad = ηgacn, where gac = 4πℏ2aac/m0 is the AC coupling constant, m0 is

the mass of the cesium atom and η can be calculated from the micromotion, see supplement.

Combining the lattice and interaction modulations, we can write the resulting gauge field
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as

A = As + Ad(n) = ηgac(n− nc), (4.4)

where the critical density nc, at which the gauge field switches sign, is given by

nc = ϵ/gac, (4.5)

and ϵ = −As/η. When the atomic density exceeds the critical density nc, the dispersion

minimum switches from k = −k∗ to +k∗. For a BEC residing at the lowest energy state,

its momentum also changes sign when the density exceeds the critical value, see Fig. 4.2g.

Thus the BEC can be effectively described by the energy functional Eq. (4.1) with the gauge

field A in Eq. (4.2) that has a step function dependence on the density.

To demonstrate the effect of the density-dependent gauge field, we measure the conden-

sate momentum in the presence of both lattice and interaction modulations. We find that

the condensate momentum indeed changes sign from k = −k∗ to +k∗ at aac = 14(2) aB,

where the critical density nc is comparable to the density of the sample, see Fig. 4.2h. Our

observation is consistent with the dispersion ϵk in Eq. (4.3) with the density-dependent gauge

field A(n) in Eq. (4.4).

4.4 Domain structure and domain wall

In a trapped gas, where the condensate has non-uniform density, see Fig. 4.3a, we expect the

condensate momentum to develop spatial structures in the presence of the density-dependent

gauge field. In the following, we investigate the formation and dynamics of domains with

different momentum in the condensate.

Starting with a regular BEC in a stationary 1D lattice, we slowly ramp up the lattice and

interaction modulations over 300 ms. At the end of the ramp, the dispersion has two minima

at k = ±k∗ around which the effective mass is m∗ = 0.7m0. The BEC has a 1/e lifetime
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of 700 ms under the driving. We measure the spatial distribution n±(r) of the atoms in the

k = ±k∗ states by first transferring the population in the two states to different Brillouin

zones, followed by a short time-of-flight which maps the population to different Bragg orders

[60], see Fig. 4.3(b,c) and supplement. Domain structures of the condensate are revealed by

the density difference ∆n(r) = n+(r)− n−(r).

For moderate interaction modulation amplitudes 14 aB < aac < 25 aB we observe regions

of atoms in the same momentum state separated by a domain wall in over 90% of the samples,

see Fig. 4.3d. The separation of domains results from effective ferromagnetic interactions

between the +k∗ and −k∗ states [61]. The domain wall forms perpendicular to the lattice

direction. We do not observe parallel domain walls with the predicted vortex arrays, likely

due to their higher energy cost under our conditions. In addition, we see that the left (right)

side of the condensate tends to occupy rightward (leftward) momentum, see Fig. 4.3d, which

we attribute to the shrinkage of the cloud during the ramp that preferentially pulls atoms

towards the center. See supplement for details. The position of the domain wall depends on

the density and the interaction modulation amplitude aac, providing a test of the strength

of the density-dependent gauge field.

We analyze the momentum distribution in the condensate through the local magnetiza-

tion defined as

M(r) =
n+(r)− n−(r)
n+(r) + n−(r)

. (4.6)

A value of M = +1 indicates that all atoms condense in the +k∗ state, M = −1 indicates

the condensate in the −k∗ state, and M = 0 indicates a domain wall.

We perform the experiment with different atom numbers and modulation amplitudes

aac. We extract the magnetization M near the center of the condensate for various atomic

density n = n+ + n− and critical density nc = ϵ/gac, see Fig. 4.3e. We find that the local

momentum indeed settles to +k∗ for densities exceeding nc, and to −k∗ for n < nc. From

the experimental data we also extract the coefficient ϵ, and the result ϵexp = h× 23(1) Hz is
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Figure 4.4: Dynamics of the domain wall in response to a synthetic electric field
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(black), 15 (magenta), 30 (red) or 45 aB (blue) over 66 ms and hold for 132 ms. The ramp
induces an electric field E ∝ ȧac (green shaded area). Example images for the ramp to
aac = 45 aB are shown in b. The white dashed lines mark the positions of the domain walls.
Each image is the average of 15 samples. Panel c shows the domain wall dynamics; dashed
lines are fits based on Eq. (4.8). The black data points are excluded from the fit because
the domain wall moves out of the cloud. d, The acceleration ẍ extracted from the fit shows
a linear dependence on the ramp rate ȧac and the electric field E . The linear fit ẍ = βȧac
(black line) gives β = −26(6) ms−1. The prediction for bare atoms gives βatom = 13 ms−1

(dashed line). Error bars indicate one standard deviation.

in good agreement with the prediction ϵ = h× 21.5 Hz.

4.5 Domain wall dynamics

The deterministic formation of domains offers an opportunity to study the domain walls

as elementary objects, which is of fundamental interest to condensed matter physics [62],

high energy physics [63] and cosmology [64]. We introduce a phenomenological model that

describes the domain wall as an elementary excitation with charge Q and mass M interacting
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with the same gauge field A experienced by the underlying atoms, with energy

E = σΛ +
(P−QA)2

2M
, (4.7)

where P = Mv + QA and v are the canonical momentum and the velocity of the domain

wall, Λ is the area of the domain wall, the surface tension σ = 8
3εn/k

∗ is calculated in [56],

and ε is the barrier height of the double well dispersion. For our parameters ε = h × 4 Hz

and the rest energy of the domain wall σΛ is ≈ kB × 1 nK per atom in the domain wall.

For our observed domain walls perpendicular to the lattice along the x−axis, their motion

is restricted to the same direction. The dynamics is driven by the Lorentz force with only

the electric field in the x−direction E = −∂tA, with A given in Eq. (4.4). We derive

ẍ =
Q

M
E

E = −∂η(gacn− ϵ)

∂t
.

(4.8)

To study the dynamical response of the domain wall to the electric field E , we ramp the

density-dependent gauge field and monitor the motion of the domain wall. After preparing

one domain wall in the BEC at the modulation strength aac = 15 aB, we ramp aac to

different values over 66 ms, which induces an electric field E . We then hold for another

132 ms during which the domain wall can freely propagate, see Fig. 4.4a.

We observe that the domain wall moves in the lattice direction in response to the ramp,

see Fig. 4.4(b,c), consistent with the direction of the electric field. The motion persists in

the same direction after the ramp stops. From Eq. (4.8) we expect that the domain wall

accelerates during the ramp ẍ = βȧac, where β ∝ Q/M , and maintains a constant velocity

during the hold time. (The atomic density n remains almost a constant to within 20%

during the dynamics, and η and ϵ are constants.) We fit the domain wall trajectories to

extract the acceleration ẍ, which indeed shows a linear dependence on the ramp rate ȧac,
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see Fig. 4.4d. From the linear fit we extract the charge-to-mass ratio of the domain wall to

be Q/M = −2.8(7) m0
−1, where m0 is the mass of a cesium atom.

Our measurements present an interesting result where the topological defect in the BEC

with density-dependent gauge field behaves very differently from the bare atoms. A bare

atom residing near a local minimum of the double-well dispersion described in Eq. (4.3)

also accelerates under the electric field E because the gauge field A shifts the minima to

k = ±k∗ + A. To leading order in the electric field E the charge-to-mass ratio of an atom

is 1/m∗ = 1.4 m0
−1. This suggests that the electric field propels the domain wall in the

opposite direction compared to the bare atoms at 2.0(5) times the acceleration. Notably, the

direction of domain wall motion is consistent with the condensate relaxing to the momentum

state with lower energy. A quantitative understanding of the different responses between the

domain wall and the bare atoms demands further theoretical and experimental investigation.

In summary, we demonstrate deterministic creation of domain walls in a BEC with

density-dependent gauge field, created by simultaneous modulations of the lattice poten-

tial and the interaction strength. The domain walls remain stable in the BEC and behave

like elementary excitations. Their dynamical response to the gauge field is observed to be

drastically different from the bare atoms. Our work offers promising prospects of Floquet

engineering of optical lattices and atomic interactions as a powerful tool to simulate the

dynamics and interactions of topological defects such as domain walls and vortex lines. Syn-

thesis of dynamical gauge fields that respect local gauge symmetry can also be realized with

Floquet engineering of spin-dependent optical lattices [65].
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4.6 Additional details

4.6.1 Floquet engineering of the gauge fields As and Ad

An atom in our shaken optical lattice evolves according to the following Hamiltonian,

H =
p2

2m
+
U

2
cos k0(x− δx),

where p is the 3D momentum of the atom, U is the lattice depth, k0 is the lattice wavenumber,

δx = X1 sinωt + X2 sin 2ωt is the lattice displacement. On the single particle level, the

dynamics in the y− and z− direction are decoupled, and we focus on the x− direction.

The time dependent Hamiltonian has discrete translational symmetry of the lattice, and the

Hamiltonian separates for different quasi-momentum quantum numbers k as H =
⊗

kH(k).

We numerically calculate the dispersion of the Floquet bands by diagonalizing the Floquet

operator UF (k) = e−i
∫ T
0 H(k)dt in momentum space, including the first 15 bands in the

Hilbert space, and Trotterizing the time evolution into 100 steps.

The operator is diagonalized as UF (k) =
∑
j e

−iϵj(k)T/ℏ|ψj(k)⟩⟨ψj(k)|. The eigenval-

ues ϵj(k) are the quasi-energies, giving the effective dispersion of the hybridized bands. The

eigenvectors contain the micromotion of the Floquet eigenstates |Ψj(k, t)⟩ = e−i
∫ t
0 H(k)dτ |ψj(k)⟩,

from which we calculate the micromotion of the density ⟨n(t)⟩ =
∫
|Ψj(x, t)|4dx shown in

Fig. 4.2f.

The scattering length is modulated as a(t) = adc − 1
2aac cosωt. The time averaged

interaction energy (chemical potential) is Eint = N
V

1
T
4πℏ2
m0

∫
⟨n(t)⟩a(t)dt, for N atoms in

volume V , corresponding to experimentally measured atomic density N/V , which is averaged

over length scales larger than the lattice constant.

Comparing the interaction energy Eint for k = ±k∗ states, we obtain the factor η in

the expression of the density-dependent gauge field Ad Eq. (4.4). This approach treats the

interaction effects to zeroth order in perturbation since we neglect the deviation in density

55



profile from the single particle eigenstates due to interactions.

Analytically we can obtain a qualitative understanding of the creation of the tilted double

well dispersion from perturbation theory. Performing the Jacobi-Anger expansion on the

lattice potential, we arrive at

H = − ℏ2

2m
∂2x +

U

2
cos k0x+H1 = H0 +H1,

where H0 describes the static lattice, and H1 describes the driving,

H1 =
U

4
(eik0xf + e−ik0xf∗),

f = −1

4
(α2 + β2) + 2iα sinωt− 2αβ cosωt.

Here α = k0X1, β = k0X2, and we keep terms up to second order in α and β, and up to ω

in frequency.

The eigenstates of H0 are the Bloch waves. Consider the states |0, k⟩ and |2, k⟩ in the

ground and second excited bands at quasimomentum k. Under rotating wave approximation,

the effective Hamiltonian is

Heff =

E0 Ω

Ω∗ E0 +∆

 ,

where E0 = ⟨0, k|H0|0, k⟩ is the bare energy of the ground band, ∆ is the detuning, and the

coupling is

Ω = αΩ− − αβΩ+.

Here Ω± = ⟨0, k|eik0x ± e−ik0x|2, k⟩. From here we can see that the coupling has two

contributions, one is the direct coupling Ω1 = αΩ−, the other is the Raman coupling Ω2 =

−αβΩ+. The parity of Ω− is odd, and that of Ω+ is even, because the ground and second

excited bands both have even parity wavefunctions.
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Near k = 0, to first order the matrix elements depend on quasimomentum k as Ω =

αω0k − αβω1, E0 = ϵ0k
2 and ∆ = ϵ1k

2 +∆0. Then the hybridized ground band dispersion

is

Eg = ϵ0k
2 +

1

2

(
ϵ1k

2 +∆0 −
√

4(αω0k − αβω1)2 + (ϵ1k2 +∆0)2
)
.

The dispersion has the shape of a double well because the coupling has a zero crossing near

k = 0. Since the fundamental shaking frequency is red detuned, the coupling pushes down

the ground band energy. The tilt is a result of the constructive and destructive interference

of Ω1 and Ω2 at positive and negative quasi-momentum, which pushes down the ground band

energy more on one side than the other. To lowest order, this tilt is given by a linear term

in the dispersion 2α2βω0ω1k/
√

4(αβω1)2 +∆2
0, which effectively generates a static gauge

field As ∝ β = k0X2. The sign of the gauge field depends on the phase between the X1 and

X2 lattice modulation components.

The numerical Floquet calculation indicates that the modulation weakly couples the

ground band to the first excited band in addition to the second excited band. The coupling to

the first excited band mostly contributes to a constant energy shift, and does not qualitatively

change the shape of the dispersion.

4.6.2 System preparation

In our experiment, the optical lattice is formed by a pair of counter-propagating 1064 nm

lasers, with lattice constant 532 nm. We use parameters lattice depth U = 8.9ER, where

ER = h × 1.3 kHz is the recoil energy, and ω = 2π × 9091 Hz. Under our conditions, the

factor η in Eq. (4.4) is η = 0.07m∗/ℏk∗, where m∗ = 0.7m0 and k∗ = 0.15kl.

After loading the atoms into the 1D optical lattice with harmonic confinement formed

by 1064 nm lasers, we prepare the BEC under density-dependent gauge field by slowly

ramping up the modulation amplitudes. We ramp up the amplitude X1 to 7 nm over 11 ms

(100 oscillation periods). Since the critical shaking amplitude for the formation of double
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Figure 4.5: Fit to the population imbalance between the ±k∗ states in Fig 2h for the esti-
mation of the zero-crossing position.

well dispersion is 14 nm (obtained from the Floquet calculation of dispersion), the effective

dispersion changes very little during this time, and we ramp quickly to reduce particle

loss. We then ramp up the amplitude X1 to 21 nm over another 289.3 ms (2630 oscillation

periods), which gives a ramp rate slow enough to suppress fluctuations from the Kibble-Zurek

mechanism [60] and allow for deterministic evolution of the system. The amplitudes X2 and

aac are ramped to the final value over the first 11 ms. This ramp procedure turns on the

gauge field slowly over time, and results in a roughly constant critical density nc throughout

the ramp.

In Fig. 4.2h, the modulation amplitude at which the BEC momentum changes sign is

estimated to be 14(2) aB. To obtain this value, we fit the momentum space distribution with

two Gaussians and extract the population imbalance between the ±k∗ states. We plot the

imbalance against the modulation amplitude aac and fit with a hyperbolic tangent curve,

see Fig. 4.5. From the fitted position of the zero-crossing we obtain the value 14(2) aB.

Although the dynamics during the ramp on of the gauge is deterministic, it is not quite
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adiabatic since the two momentum minima are only offset by h × 3 Hz, comparable to the

ramp time 300 ms, and we do not arrive at the ground state. During the ramp fields,

the cloud systematically shrinks, in part due to particle loss which reduces the chemical

potential, and in part due to the reduction of quantum pressure as the dispersion crosses the

critical point from parabolic to double well, during which the effective mass diverges and the

quantum pressure drops to zero. Since we are in the Thomas-Fermi regime, the quantum

pressure is usually negligible, but in this case its reduction is significant enough to bias the

domain formation because a slow ramp across the critical point is very susceptible to any

bias. We have confirmed this effect in experiments with no gauge field (balanced double well

dispersion), and in numerical simulations without particle loss.

In Fig. 4.3e, we repeat the experiment at three different total particle numbers 4.8, 3.6, 2.5×

104. The data shown in Fig. 4.3(a-d) are from the dataset with particle number 4.8× 104.

4.6.3 Extracting the domain densities from Bragg peaks

We extract the spatial distribution of the atoms in the k = ±k∗ states following the technique

in [60]. At the time of detection, we switch off X2 and aac and ramp the modulation

amplitude X1 to 140 nm over 0.8 ms. This pulse of lattice shaking excites the atoms from the

ground band to superposition states of excited bands at the same quasi-momentum, which

have oscillating projections to each Brillouin zone. Atoms in different quasi-momentum

states have different oscillations. We image the atoms at the time when the projections

of k = ±k∗ states are maximally different. We perform a 6 ms time-of-flight to map the

Brillouin zones to Bragg diffraction orders.

The densities in the Bragg diffraction orders

n⃗(x, y) = (n−1(x, y), n0(x, y), n1(x, y)) ,
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is the sum of the contributions from atoms in the k = ±k∗ states,

n⃗ = n+ê+ + n−ê−,

where the basis vectors ê± describe the distribution over the three Bragg diffraction orders

of atoms in the k = ±k∗ states. We calibrate the basis vectors ê± by biasing the entire

condensate into k = ±k∗ and performing the same time-of-flight measurement. The basis

vectors ê± are L1 normalized such that the components sum to 1. We determine the densities

n± by fitting under the positivity constraint n± > 0.

The Bragg peaks of atoms in the k = ±k∗ states are shifted relative to each other during

the TOF, because of the difference in quasi-momentum. We take this shift into account when

reconstructing the domain densities. Additionally, this shift may cause originally disjoint

domains to overlap during the TOF. The coherent domains interfere in the overlapping

region, forming density waves at wavenumber 2k∗. This effect does not significantly alter

the extracted domain structure or domain wall position, and we neglect it in our analysis.

4.6.4 Analysis of the domain structures

Since we observe that the domain walls are mostly perpendicular to the lattice direction,

in our analysis we treat the domain structures as 1D. For the analysis in Fig. 4.3e of the

main text, we integrate the mean and difference of the domain densities, n = n+ + n− and

∆n = n+ − n−, over the y−direction, then select the central 10% of the cloud. Effectively

we select a central vertical stripe of the cloud. We have checked that our results are not

sensitive to the chosen stripe width. From each experimental realization we calculate the

magnetization M = ∆n/n, and we plot the average of n and M for each set of modulation

amplitude aac and particle number N . We convert the 1D density to 3D density by dividing

with the length scales in the y and z directions, ly and lz. Since the chemical potential is not
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Figure 4.6: Fit to experiment data in Fig. 3e for the extraction of ϵexp.

larger than the trap frequency in the z−direction, we use the length scale of the harmonic

oscillator ground state lz =
√
h/mω. We obtain the length scale ly = (

∫
ndy)2/

∫
n2dy from

the measured density profiles n.

From the experiment data in Fig. 4.3e, we extract a value of ϵexp in Eq. (4.5) by fitting

to the expression

M = tanh
lnn− ln(ϵexp/gac)

C
,

with each data point in Fig. 4.3e corresponding to a magnetization M , a density n, and a

modulation strength gac. This expression represents the relation M = sign(n − ϵexp/gac),

but smooths the step function by a width parameter C. We present our fit to experiment

data in Fig. 4.6.

For the analysis in Fig. 4.4c, we integrate the difference of the domain densities ∆n over

the y−direction. We then extract the position of the zero crossing of the integrated 1D
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domain density, by fitting a straight line to the six data points (each corresponding to a

pixel in the image) around the numerical zero crossing, in order to improve accuracy. The

error bars shown in Fig. 4.4c are 68% confidence intervals of this fit. With this procedure

we determine the domain wall position with an uncertainty of around 0.3 microns.

We fit the domain wall trajectories in Fig. 4.4c by assuming a common initial velocity

for all ramp rates, a constant acceleration during the ramp which is independently varied

for each ramp rate, and a constant velocity after the ramp stops. The fitted initial velocity

is −17(10) µm/s, which we attribute to residual dynamics during the domain formation

process.

The conversion of the ramp rate ȧac to the electric field E is derived from Eq. (4.4). We

have

E =
4πℏ2

m0
nηȧac,

with density n = 2.8 × 1013 cm−3 from the experiment. The prediction of parameter β for

bare atoms is obtained from this relation and the charge-to-mass ratio 1/m∗.
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CHAPTER 5

MANY-BODY ECHO OF PARAMETRICALLY AMPLIFIED

MATTER-WAVE

5.1 Introduction

Reversibility of many-body dynamics is a highly debated question over the past 100 years.

While thermal ensembles evolve toward states with high entropy, dictated by the second

law of thermodynamics. Evolutions that reverses the dynamics toward the initial state are

permitted by physics laws that govern the microscopic interactions of particles.

In quantum mechanics, the recipe of reversing dynamics is in principle straightforward.

Evolution from an initial state |i⟩ to the final state |f⟩ = U |i⟩ is given by the unitary operator

U = e−iHt/ℏ, where H is the Hamiltonian, t is the time and ℏ is the Planck constant. To

evolve the system back to the initial state, we only need to reverse the sign of the Hamiltonian

H → −H because of the identify eiHt/ℏei−Ht/ℏ = 1.

Practically the challenges to perform reversal are two folds. First of all, the reversal

process can be extremely sensitive to imperfect control of the Hamiltonian, especially for

interacting systems that couple to many degrees of freedom, examples include chaotic system

and quantum critical dynamics. See Fig. 5.1a. Second, the fidelity of reversal is frequently

exponentially suppressed in the limit of large particle number and long evolution time.

To quantify the fidelity of reversing many-body quantum dynamics, one introduces the

Loschmidt echo as the probability to bring the system back to the initial state

L = |⟨i|eiH
′t/ℏe−iHt/ℏ|i⟩|2, (5.1)

where H ′ = −H + δH is assumed to slightly deviate from −H by the imperfection δH.

The effectiveness of second law comes from the conjecture that the presence of imperfection
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Figure 5.1: Difficulty in reversing complex many-body dynamics. (a) A broken
glass does not spontaneously come together, which is an example of irreversible many-body
classical dynamics. (b) Time evolution of a complex many-body quantum system e−iHt/ℏ

takes a well-prepared initial state |ψi⟩ to a final state |ψf ⟩ spread across a continuum,
formed by a large number of states with different energies. Successful time reversal of the
dynamics requires precise inversion of the Hamiltonian H → −H. In a realistic scenario, the
Hamiltonian is inverted imperfectly H → −H + δH. The phase of the system is scrambled
in the continuum and the reversal is ineffective, ending in a state |ψ′i⟩ away from the initial
state.

strongly suppressed the probability to observe any success of reversal in the limit of large

particle number (large particle number) and long evolution time. For system that are classi-

cally chaotic, in the critical regime, Loschmidt echo is expected follow L → exp(−αNδHt),

where α is a constant.

5.2 Experiment setup

In our experiment, we load a nearly pure BEC of around 40,000 133Cs atoms into a two-

dimensional (2D) circular box trap, with vertical trap frequency ωz = 2π × 826 Hz and

radius R around 20 µm. The box is deep enough to confine the BEC, but not to confine

the excitations, such that the unbound excitations form a continuum. The condensate is

in the quasi-2D regime, with a low chemical potential µ < h × 15 Hz. We modulate the
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Figure 5.2: Difficulty in reversal of Bose fireworks due to dephasing. (a) We
periodically modulate the interaction strength at frequency f = 500 Hz to excite the system
(red). Afterwards we invert the driving to reverse the driven dynamics (blue). (b) The disk
shaped BEC is nearly uniform before driving (t = 0). After the excitation pulse, the BEC
develops strong excitations in the form of density waves (t = 4.7T ). At the end of the reversal
pulse, the excitations remain strong (t = 10T ). The images are examples of single shots.
(c) The diagram on the left illustrates that the BEC is coupled to a continuum of excited
pairs of particles with opposite momentum. We show the time evolution of the structure
factor for momentum modes with different energy E in the experiment (top) and simulation
(bottom). The resonance energy is denoted by Ef = hf/2. White dashed lines mark the
phase gradient across excitations with different energy. The higher energy modes exhibit
faster phase winding (blue wavy arrow) than the lower energy modes (red wavy arrow). The
experiment data is averaged over 2 repetitions.

interaction strength at frequency f through an oscillating magnetic field near a Feshbach

resonance[7]. The modulation induces stimulated emission of pairs of atoms in the BEC

into counter-propagating momentum modes, a process called Bose fireworks[17]. Since the

unbound momentum modes form a continuum, there is not only a resonant process exciting

the modes with energy Ef = hf/2, but also off-resonant processes exciting modes with

detuned energy E = Ef+∆. The pair production process leads to two-mode squeezed states

in the momentum continuum. These states are maximally entangled, and the reduced density

matrix of each individual momentum mode is thermal with large subsystem entropy[18]. The

Hamiltonian is
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H =
∑
k

∆ka
†
kak + g(a

†
ka

†
−k + aka−k)). (5.2)

5.3 Simple reversal

We attempt to reverse the many-body dynamics by inverting the modulation, see Fig. 5.2a.

Under rotating wave approximation, the inverted modulation corresponds to inverting the

interaction term g in the Hamiltonian Eq. (5.2). We record the evolution by imaging the

density waves that develop in the BEC, which result from the interference between the

excited atoms and the BEC[19], see Fig. 5.2b. From the density wave patterns we extract

the structure factor Sk = ⟨(ak + a
†
−k)(a−k + a

†
k)⟩, which measures the quadrature of the

momentum modes. See supplement for details.

Time evolution of the structure factor Sk for momentum modes with different energies

E reveals that excited atoms occupy many modes with different detuning develop different

phases, with blue detuned modes advancing faster than red detuned modes, see Fig. 5.2c.

During the reversal pulse, only the resonant modes have their excitations reversed, whereas

the off-resonant modes are excited even further. The theoretical calculation predicts that the

resonant mode can be almost perfectly reversed back to the vacuum, while the population

in off-resonant modes grows exponentially. The poor reversal of many-body dynamics is a

consequence of not inverting the detuning term ∆k in the Hamiltonian Eq. (5.2), which is

an example of Loschmidt echo.

Previous studies have shown that a simple reversal scheme like that shown in Fig. 5.2 can

only reverse as much as 20% of excited atom population[18], limited by the detuning ∆k.

There has been several theoretical proposals on improving the reversal efficiency. Careful

adjustments of the reversal pulse is proposed to mitigate the effect of counter-rotating terms

under strong driving[20]. A formulation of the many-body dynamics in terms of the SU(1,1)

group revealed a general class of time reversal schemes[21]. However, these schemes do not
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offer a significant improvement in reversal efficiency in our experiment, because they do not

address the core issue of combating the detuning in the continuum.
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Figure 5.3: Many-body echo. (a) A pulse of interaction modulation excites the system
(red), followed by a Bragg pulse of optical lattice (green). Another pulse of interaction
modulation reverses the dynamics (blue). (b) During the excitation pulse, pairs of atoms
are excited from the BEC (gray). Some pairs (blue) have higher energy than the resonance
(dashed line), while some have lower energy (red). The Bragg pulse (green arrows) swaps
excitations in blue and red detuned modes. (c) Single shot images from the experiment
illustrate the effect of the Bragg pulse. The red boxes show the region of interest in which
we count the population of excited atoms for d. (d) We monitor the evolution of excitation
population over time, comparing schemes with no reversal (black), no Bragg pulse only
reversal (red), and both Bragg and reversal (blue). Solid curves are guides to the eye.
Dotted lines mark population levels that signify the reversal efficiency of each scheme. Each
data point is averaged from 22 repetitions. Error bars denote one standard deviation.

5.4 Many-body echo

We can achieve a much improved reversal performance by swapping the atoms in blue detuned

and red detuned modes in the continuum, which effectively inverts the detuning ∆k, before

applying the reversal pulse, see Fig. 5.3a. The swapping is implemented by a Bragg pulse of
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two counter-propagating laser beams along the x−direction with wavelength λ = 1064 nm,

which transfer momentum to the atoms through Bragg diffraction. The momentum transfer

kL = 4π/λ is chosen to be twice the resonance momentum kf =
√

2mEf/ℏ for modulation

frequency f = 2652 Hz, such that the momentum mode k = kf + δk is coupled to k =

−kf + δk, see Fig. 5.3b. To leading order, the two modes have equal and opposite detuning.

The length and strength of the Bragg pulse is carefully tuned to realize a π−pulse, which

swaps the population in the two coupled modes, while simultaneously realizing a 2π−pulse

for the BEC at k = 0, such that the disturbance to the BEC is minimal. See supplement for

details. After the Bragg pulse, atoms in off-resonant modes are put into modes with equal

and opposite detuning, and evolve with inverted detuning during the reversal pulse. We call

this method of reversing many-body dynamics in a continuum the ’many-body echo’.

To benchmark the performance of the many-body echo, we measure the time evolution of

the population of atoms excited along the x−direction, and compare three different schemes,

see Fig. 5.3c. In the ’no reversal’ scheme, we extend the excitation pulse to continuously drive

the system. The population exponentially grows until saturation, when the BEC starts to

deplete. In the ’reversal’ scheme, after the excitation pulse we apply a reversal pulse that is

phase shifted by 180◦, which is similar to the scheme in Fig. 5.2. Finally, for the many-body

echo scheme, we apply the Bragg pulse after the excitation pulse, followed by a reversal

pulse phase shifted by 273.6◦. The difference in reversal phase shift is due to the phase

imprinted by the Bragg pulse. Starting with a population 469(29) before reversal, without

the Bragg pulse the lowest excitation population we achieve is 366(15), a reversal efficiency

of 22(6)%. With the Bragg pulse, the many-body echo reverses the excitation population

down to 149(7), a reversal efficiency of 68(2)%, see Fig. 5.3d. The factor of 3 improvement

in reversal efficiency implies an improvement of the Loschmidt echo by the same factor for

each mode. The many-body echo effectively reduces the subsystem entropy of each excited

mode by 1.14(6) kB , compared to the entropy reduction of 0.25(8) kB with the simple
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reversal scheme. Theoretically the reversal efficiency of many-body echo can reach 99%, see

supplement. However, the experiment is limited by primarily the depletion of the BEC and

the escape of the excited atoms from the BEC, which can be seen from the saturation of

growth in the ’no reversal’ scheme.

5.5 SU(1,1) interferometer

We can take advantage of the many-body echo to improve the performance of SU(1,1) in-

terferometry, similar to how spin echo is widely adopted to improve SU(2) interferometers.

We realize an SU(1,1) interferometer with a contrast of 90% and up to 2000 particles. The

particle number we achieve is 100 times higher than state-of-the-art using nonlinear optics

and cold atoms, thanks to the many-body and continuum nature of our system. The setup

for the SU(1,1) interferometer is largely the same as Fig. 5.3, except that the phase shift of

the reversal pulse ϕ is varied by changing its delay time, see Fig. 5.4a. In the language of

SU(1,1) interferometry, our system uses the BEC as the pump. The excitation pulse results

in a parametric amplifier (PA) that creates two-mode squeezed states in pairs of momentum

modes. The Bragg pulse imprints phases on the BEC as well as the excited atoms. The

reversal pulse realizes another PA, after which the total excitation population is measured,

see Fig. 5.4b. The population displays interference fringes as a function of the phase of the

reversal pulse, which provides a measurement of the phase imprinted by the Bragg pulse, see

Fig. 5.4c. Note that we stop the reversal pulse after 6 periods, which is when the reversal

efficiency is highest.

The phase shift at the minimum of the interference fringes ϕmin measures the phase

difference between the excited atoms and the BEC,

ϕmin = θk + θ−k − 2θ0 − π, (5.3)
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where θ0 is the phase shift of the BEC and θ±k are the phase shift of the excited atoms.

Fitting a sinusoidal curve to the data yields the measurement ϕmin = −79(1)◦, which is

in good agreement with the prediction −74.2◦, see supplement. The maximum measured

excitation population is 2000(140) atoms, whereas the minimum is 196(48) atoms, giving a

contrast of 90(3)%, see Fig. 5.4d.
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Figure 5.4: SU(1,1) inteferometry. (a) We apply the same driving scheme as shown
in Fig. 5.3, and scan the phase shift ϕ of the reversal pulse. (b) We realize a multi-modal
SU(1,1) interferometer, where the BEC serves as the pump for the parametric amplifier (PA1)
representing the excitation pulse. The Bragg pulse imprints a phase θ0 on the BEC, and
θ±k on the excited atoms. The second parametric amplifier (PA2) represents the reversal
pulse. We measure the final total excitation population. (c) The final population forms
interference fringes as a function of the phase shift ϕ. The phase shift at the minimum is
ϕmin = θk+θ−k−2θ0−π, which measures the difference in phase shift between the BEC and
excited atoms imprinted by the Bragg pulse. The reversal pulse is stopped after 6 periods,
when the reversal efficiency is highest. The black curve is a sinusoidal fit with period fixed
at 360◦. The horizontal line denotes the population before reversal. Each data point is
averaged from 14 repetitions. Error bars denote one standard deviation. (d) Example single
shot images at destructive and constructive interference show clear distinction in excitation
population. The red boxes mark the region of interest.
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5.6 Additional information

5.6.1 Bragg pulse with optical lattice

The Bragg pulse is a square pulse of optical lattice formed by retroreflected 1064 nm laser

for a duration of 140 µs. The strength of the pulse is calibrated experimentally from the

Rabi oscillation. Since the pulse is short and strong, the BEC is excited through off-resonant

transitions to higher momentum states. The duration 140 µs is chosen according to numerical

simulation, such that the pulse strength that realizes a π−pulse for atoms at k = ±k also

realizes a 2π−pulse for the BEC at k = 0. The simulation suggests that the BEC returns to

the initial state with > 99.9% fidelity. The k = −kf atoms are transfered to k = +kf with

93.4% fidelity, with 3.2% each ending up in k = +3kf and k = −3kf , and 0.05% remaining

in k = −kf . Since k = +3kf and k = −3kf don’t participate in the reversal dynamics

and essentially no atom remains in k = −kf , the Bragg π−pulse can be considered nearly

perfect. The simulation describes a single particle starting from a momentum eigenstate

that evolves in the presence of an optical lattice. The time trace of population in each Bragg

order is shown in Fig. 5.5.

Time (ms)
0 0.1

0

1

0

±2kf±4kf

Po
pu

la
�o

n
fr
ac
�o

n

Time (ms)
0 0.1

0

1

Po
pu

la
�o

n
fr
ac
�o

n kf
-kf

-3kf3kf

k = kf k = 0
2¼-pulse¼-pulse

Figure 5.5: Time trace of population fraction in each momentum state during the Bragg
pulse, for the excited atoms (k = kf ) and the BEC (k = 0).
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The simulation also predicts the phase shift imprinted onto the BEC and the excited

atoms near the band edge. The phase shift on excited atoms should be −90◦ since they

complete a π−pulse. However, since the system is not 2-level, this phase shift is actually

predicted to be −142.1◦. The phase shift on the BEC is predicted to be θ0 = 51.8◦.

In the context of the SU(1,1) interferometer, a time delay τ of the reversal pulse realizes

a phase shift ϕ = ωτ in the rotating frame, where ω = 2πf , f = 2652 Hz. During this time,

in the lab frame the resonantly excited atoms acquire a phase δ = −ωτ/2, whereas the BEC

acquire no phase shift. Maximum excitation is achieved when the BEC and excited atoms

have the same phase. At the end of the Bragg pulse, the phase of the BEC is 51.8◦, and

that of the excited atoms is −142.1◦. After another ∆τ = (166.1◦/360◦)× (f/2) = 348 µs,

the phase of the excited atoms becomes 51.8◦, same as that of the BEC, and this is the

time delay that results in maximum excitation. Since the Bragg pulse is τ0 = 140 µs long,

the total time delay is τ = 488 µs, which gives ϕmax = 465.9◦ = 105.9◦. The minimum

excitation is achieved when the phase is shifted from the maximum by 180◦, ϕmin = −74.1◦.

Another way to derive this result is that during the Bragg pulse, the rotating frame

acquires a phase shift of τ0× (f/2)×360◦ = −66.8◦, which means that in the rotating frame

the Bragg pulse imprints a phase of θ±k = −75.3◦ on the excited atoms. Given θ0 = 51.8◦,

we have ϕmin = θk + θ−k − 2θ0 + π = −75.3◦

5.6.2 Numerical simulation of many-body echo

In the many-body echo scheme, the Bragg pulse couples two pairs of momentum modes,

±kf ± δk. We number the modes as 1 to 4, with 1 : −kf − δk, 2 : kf + δk, 3 : kf − δk, 4 :

−kf + δk. Then the Hamiltonian during the excitation (H1), Bragg (H2) and reversal (H3)

pulses are

H1,3 = ∆1(a
†
1a1 + a

†
2a2) + ∆3(a

†
3a3 + a

†
4a4) + g(a

†
1a

†
2 + a1a2 + a

†
3a

†
4 + a3a4) (5.4)

73



H2 = ∆1(a
†
1a1 + a

†
2a2) + ∆3(a

†
3a3 + a

†
4a4) + Ω(a

†
1a3 + a

†
3a1 + a

†
2a4 + a

†
4a2) (5.5)

Here ∆1 =
ℏ2(2kf δk+δk2)

2m is the detuning of modes 1 and 2, ∆3 =
ℏ2(−2kf δk+δk

2)
2m is that of

modes 3 and 4, g is the interaction modulation strength and Ω is the Bragg optical lattice

strength. The coupling strengths Ω and g are chosen to be real by redefinition of phase

reference for the modes. The Hamiltonian is quadratic in the bosonic operators during the

entire sequence. Therefore, the Heisenberg equation is linear, and can be solved by matrix

algebra. We numerically solve the Heisenberg equations for each quadruplet of modes with

a certain δk, and collect the result for all momentum to simulate the entire continuum. An

example of simulation result is shown in Fig. 5.6.
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Figure 5.6: Simulation of many-body echo. Top panel shows the evolution of structure
factor for different momentum. Bottom panel shows the time trace of the total population.
In the simulation we set the modulation frequency at 2652 Hz and modulation strength
g = h × 70 Hz. Left side shows the simulation for many-body echo (Bragg and reversal).
Right side shows reversal only, for comparison.
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5.6.3 SU(1,1) representation and interferometry

The Hamiltonian for one pair of momentum modes k = ±k is

H = ∆(a
†
kak + a

†
−ka−k) + g(a

†
ka

†
−k + aka−k), (5.6)

where ∆ = ℏ2k2
2m − hf

2 is the detuning, ak is the annihilation operator for momentum k

and g is 1/8 times the peak-to-peak modulation amplitude of chemical potential. Define

K0 = (a
†
kak + a−ka

†
−k)/2, K1 = (a

†
ka

†
−k + aka−k)/2 and K2 = (a

†
ka

†
−k − aka−k)/(2i). The

Hamiltonian is rewritten as

H = 2∆K0 + 2gK1. (5.7)

The operators K0,1,2 form the su(1, 1) algebra, defined by the commutation relations

[K0, K1] = iK2

[K2, K0] = iK1

[K1, K2] = −iK0

(5.8)

Therefore the Hamiltonian H is an element of the su(1, 1) algebra, the time evolution

operator e−iHt is an element of the SU(1,1) group, and the dynamics it generates is a

representation of the SU(1,1) group. The Hamiltonian acting on the vacuum generates two-

mode squeezed states parametrized by the squeezing parameter z,

|z⟩ = 1√
1− z2

∑
n

zn|n, n⟩. (5.9)

The parameter z is a complex number with norm ||z|| < 1, which can be thought of as a

point on the Poincare disk. The Poincare disk is a representation of SU(1,1) [21]. Elements

of SU(1,1) acts on the Poincare disk as Mobius transformations written as 2 × 2 complex
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matrices,

a b

c d

 : z → az + b

cz + d
. (5.10)

The operators K0,1,2 are written as

K0 =
1

2

1 0

0 −1

 =
1

2
σz, (5.11)

K1 =
1

2

 0 1

−1 0

 =
i

2
σy, (5.12)

K2 =
1

2

 0 −i

−i 0

 = − i

2
σx, (5.13)

where σ denotes Pauli matrices. It can be derived that the time evolution operator U = e−iHt

is

U =

coshκt− i∆
κ sinhκt − ig

κ sinhκt

ig
κ sinhκt coshκt+ i∆

κ sinhκt


= e−iθK0e−iηK1e−iθK0

(5.14)

where κ =
√
g2 −∆2, θ = tan−1

(
∆
κ tanhκt

)
and η = −2 sinh−1

( g
κ sinhκt

)
.

In the context of SU(1,1) interferometry, we start from a two-mode squeezed state |z⟩ =

e−iϕK0e−iξK1e−iϕK0 |0⟩ with z = ei(ϕ−π/2) tanh ξ/2. After evolution with U , we end up

with |w⟩ = U |z⟩, with

w = eiθ
eiθz cosh η

2 − i sinh η
2

ieiθz sinh η
2 + cosh η

2

. (5.15)
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The final population is nf = |w|2/(1− |w|2), and can be derived to be

nf =
1

2
(cosh ξ cosh η − 1) +

1

2
cos(θ + ϕ) sinh ξ sinh η. (5.16)

It is clear that the final population depends sinusoidally on the phase of the state |z⟩, giving

interference fringes. In our experiment, the time delay of the reversal pulse changes the

phase of the reversal pulse in the rotating frame. In the lab frame, it instead changes the

phase of the excited atom (due to energy difference with the BEC), which is equivalent to

changing the phase of the two-mode squeezed state |z⟩.

5.6.4 Visualization of many-body echo dynamics

Inspired by how spin echo can be better understood with the help of visualizing SU(2) on the

Bloch sphere, we develop a visualization of the many-body echo dynamics. The governing

Hamiltonians are given in Eq. (5.4) and (5.5). The Hamiltonian Eq. (5.4) generates dynamics

in SU(1,1), whereas the hamiltonian Eq. (5.5) generates dynamics in SU(2). The SU(2)

generators are Sx = a
†
1a3 + a

†
3a1, Sy = (a

†
1a3 − a

†
3a1)/i, Sz = a

†
1a1 − a

†
3a3. Therefore, the

many-body echo dynamics is a representation of SU(1, 1) × SU(2). Similar to how SU(2)

can be visualized on the Bloch sphere with coordinates given by the expectation value of the

generators, we can compute the expectation values of the following generators,

Kx =
1

2
(a

†
1a

†
2 + a1a2)

Ky =
1

2i
(a

†
1a

†
2 − a1a2)

Sx = a
†
1a3 + a

†
3a1

(5.17)

We have ⟨Sy⟩ = 0, and the other expectation values can be computed from conservation

laws. The vacuum is at the origin with all expectation values being 0.

The expectation values Eq. (5.17) allow us to represent each state as a point in a three
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dimensional space. For simplicity we only show the two dimensions spanned by Kx and Ky.

At each instant of time, the continuum of modes with different detuning occupy a family of

different states. In Fig. 5.7, we plot the state of each mode in the continuum (labeled by

color) at several instants of time. As a comparison we also plot the evolution under only

reversal without the Bragg pulse, showing how the off resonant modes miss the origin and

fail to be reversed.
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Figure 5.7: Visualization of many-body echo and reversal dynamics. Top: many-body echo
dynamics at four different times. t = 5 ms is right before Bragg pulse. t = 5.14 ms is
right after Bragg pulse. t = 10.14 ms is when the system is almost completely reversed.
Bottom: Reversal dynamics without Bragg pulse. The off-resonant modes do not go back to
the origin.

5.6.5 Loschmidt echo

Loschmidt echo is defined as the overlap of the initial and final states after imperfect time

reversal. Here we theoretically calculate the Loschmidt echo for our system, described by

Hamiltonian Eq. (5.2).

The Hamiltonian produces two-mode squeezed states. The initial state is the vacuum.

The overlap with the vacuum |0⟩ of a two-mode squeezed state |k⟩ with mean population nk

is
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|⟨0|k⟩|2 =
1

1 + nk
. (5.18)

Since the Hamiltonian describes independent pairs of modes, the Loschmidt echo of the

entire system is the product

L =
∏
k

1

1 + nk
. (5.19)

For a pair of modes with detuning ∆k, the final population can be calculated to be

nk =
4g2∆2

k

(g2 −∆2
k)

2
sinh4

√
g2 −∆2

kt. (5.20)

Most modes have nk ≫ 1, except those with exponentially small detuning. Therefore, we

can approximate the Loschmidt echo as

L ∝ e
−
∑
k
4
√
g2−∆2

kt
≈ e−αMgt, (5.21)

where M is the number of modes and by taking the continuum limit of the sum over k we

obtain α = π.

An example of numerical calculation of time decay of Loschmidt echo is shown in Fig. 5.8

for the scenarios with no reversal, simple reversal and many-body echo. Exponential decay

can be seen in all three scenarios.

5.6.6 Detection

The structure factor Sk = N−1
∫
dr1dr2e

−ik(r1−r2)n(r1)n(r2) = ⟨(ak + a
†
−k)(a−k + a

†
k)⟩

measures the quadrature of mode k, and is experimentally detected by Fourier transforming

the atomic density. However, our limited imaging resolution results in a distortion of the

measured density profile from the actual one. In particular, density modulations at different

wave vectors are attenuated and phase shifted, according to the modulation transfer function
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Figure 5.8: Numerical calculation of time decay of Loschmidt echo, for no reversal (black),
reversal (red) and many-body echo (blue) schemes. Vertical dashed line denotes the param-
eters roughly corresponding to our experimental conditions.

[10]. More over, since our condensate has high optical density, the imaging suffers from

additional saturation. To calibrate for all these distortions, we measure the structure factor

for a ground state condensate in the same trap, with low chemical potential. In this case

the structure factor is predicted to be 1 for all wave vectors except very close to k = 0.

This experimentally measured structure factor is smoothed using the MATLAB function

denoiseImage, and used as the baseline. The experimental data shown in Fig. 5.2c is the

measured structure factor divided by this baseline. Additionally, since the structure factor

is 2D, we bin each momentum mode according to their kinetic energy, and plot the average

of the structure factor in each bin. Even though the data is from only 2 experimental

repetitions, each repetition gives a 2D grid of structure factors and each energy bin contains

many data points.
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For Fig. 5.3 and 5.4, we wait 28 ms until the excited atoms fly out of the condensate and

form jets. When counting the excitation population, we only count the excitation along the

x−direction, in the red boxes shown in Fig. 5.9.

0

20Density (¹m
-2)

30 ¹m x

Figure 5.9: Red boxes mark the region of interest in which we count the excitation population.
White dashed circles indicate the circular jet emissions diffracted by the Bragg pulse.

5.6.7 Experimental parameters

For the experiments shown in Fig. 5.2, the particle number is 4.5 × 104, the trap radius is

22 µm, the time averaged scattering length is 6 aB , the peak-to-peak modulation amplitude

of scattering length is 80 aB , and the modulation frequency is 500 Hz. For the experiments

shown in Fig. 5.3 and 5.4, the particle number is 3× 104, the trap radius is 15 µm, the time
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averaged scattering length is 1 aB , the peak-to-peak modulation amplitude of scattering

length is 50 aB , and the modulation frequency is 2652 Hz.

5.6.8 Experimental calibration of Bragg pulse

In the experiment, the Bragg pulse is calibrated by first setting the pulse length to 140 µs,

then scanning the light intensity to realize a 2π−pulse on the BEC. There will be multiple

maxima due to Rabi oscillation, and we find the one with the weakest light intensity. We

then fix the pulse intensity and scan the pulse length to confirm that the jets experience a

π−pulse.

Since the theory calculation assumes a square pulse, we want to make sure the rise time

of the light intensity is minimal. An oscilloscope trace of the photodiode signal recording the

retroreflected beam intensity is shown in Fig. 5.10. We can see that the rise time is rather

short (∼ 5 µs), and that the pulse length is 140 µs.

Figure 5.10: Pulse shape of the Bragg pulse.

We apply the Bragg pulse to a ground state BEC, fixing the pulse length and scanning the

beam intensity, and measure the population in different Bragg diffraction orders. The Bragg

orders are separated spatially by a short time-of-flight. Fig. 5.11 shows the dependence of

the population in each Bragg order on the beam intensity, determined by the control voltage
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to the retroreflection AOM. Several oscillations can be seen. The 2π−pulse is realized at

AOM control voltage 1.35V, as can be seen in Fig. 5.12.

1 1.5 2 2.5 3 3.5 4
AOM amplitude (V)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

At
om

 n
um

be
r

104

-1 order
+1 order
0 order
-2 order
+2 order

Figure 5.11: Bragg diffraction of the BEC at various beam intensities.
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Figure 5.12: Rabi oscillation of the BEC under Bragg pulse with AOM control voltage 1.35V.
The population in the 0-th Bragg order first returns to maximum at 140 µs.

The Bragg diffracted jets are actually spatially displaced from the un-diffracted jets after

time-of-flight, because of their motion before the Bragg pulse. Left moving jets first fly to the

left by some distance before being Bragg diffracted to the right, where as the un-diffracted
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jets on the right side spend the entire time moving to the right. By delaying the Bragg pulse,

we can exaggerate this displacement, see Fig. 5.13, allowing us to measure the diffracted and

un-diffracted population separately. We can thus measure the Rabi oscillation and confirm

the realization of a π−pulse, see Fig. 5.14.
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Figure 5.13: Spatial separation of Bragg diffracted jets. Colorbar shows atomic density in
units of µm−2.
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Figure 5.14: Rabi oscillation of jets under the Bragg pulse. Imaging background is not
carefully calibrated, but the un-diffracted population clearly reaches minimum at 140 µs.
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CHAPTER 6

OTHER PROJECTS

Over my years in Chin lab I have contributed to a few other projects. In this chapter

I will present the technical details of my contributions in those projects, as well as some

preliminary theoretical and numerical explorations of new proposals.

6.1 Superresolution microscopy of cold atoms in an optical lattice

Superresolution microscopy has revolutionized the fields of chemistry and biology by resolving

features at the molecular level. In atomic physics, such a scheme can be applied to resolve the

atomic density distribution beyond the diffraction limit and to perform quantum control. In

this work we demonstrate superresolution imaging based on the nonlinear response of atoms

to an optical pumping pulse. With this technique, the atomic density distribution can be

imaged with a full-width-at-half-maximum resolution of 32(4) nm and a localization precision

below 500 pm. The short optical pumping pulse of 1.4 µs enables us to resolve fast atomic

dynamics within a single lattice site. A by-product of our scheme is the emergence of Moiré

patterns on the atomic cloud, which we show to be immensely magnified images of the atomic

density in the lattice.

The experimental details and main results can be found in our publication [66]. In this

section I will present the derivations of some key theoretical formulas in the paper.

6.1.1 General setup

In our experiment, the Cesium atoms normally occupy the internal state |F = 3⟩, which is

the lowest magnetic state. Before we perform absorption imaging, we use optical pumping to

transfer the atoms to the state |F = 4⟩, after which the atoms can absorp the imaging light

and cast a shadow on the camera. If the atoms remain in the state |F = 3⟩, it is invisible
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to the imaging. Constrained by the optical resolution r ∼ 1 µm of our microscope, we can

only measure the total number of atoms within each circle of radius r, but not resolve the

finer distribution of atoms.

The main idea of our technique is as follows. Instead of optical pumping all the atoms,

we form a standing wave with the optical pumping light by retroreflecting the beam. The

standing wave is tuned carefully such that the light intensity at the nodes is precisely can-

celed. In this case, only atoms away from the nodes are optically pumped to |F = 4⟩, while

the atoms close to the nodes see very little optical pumping light and remain in |F = 3⟩,

which is a dark state to the imaging light. The population of atoms close to the nodes can

then be measured as the deficit in the detected atom number. By scanning the position of

the nodes across the atomic sample and repeating the imaging, we can map out the atomic

distribution with a precision not constrained by the microscope resolution, but rather the

width of the dark window around the nodes.

In the following sections I present the derivation of the shape and width of the dark

window, as well as the fact that our detected signal gives the shape of the atomic distribution

broadened by the dark window, which serves as a point spread function.

6.1.2 Three-state optical pumping model

Since we excite the atom using an optical pumping beam forming a standing wave (optical

lattice), only atoms near the nodes of the standing wave remain unexcited in the dark

state. The dark fraction as a function of the distance to the nodes is a ’window function’

that we scan across the probed sample, and the width of the window function determines

the spatial resolution of our imaging technique. Here quantitatively describe the optical

pumping process, and derive the dark fraction of the atoms. We also derive the FWHM of

the window function:

We consider the states F = 3, 4, 4′. Spontaneous emission of F ′ = 4 state does not always
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result in state F = 4, but also state F = 3. The branching ratio for the desired decay into

F = 4 is β = 7/12. In addition, we always operate in the regime where the pulse duration

is much longer than the natural lifetime 1/Γ of the F ′ = 4 state, such that Rabi oscillations

can be neglected. Therefore we employ a three state rate equation model:

˙p4′ = −sΓ
2
(p4′ − p3)− Γp4′

ṗ3 = −sΓ
2
(p3 − p4′) + (1− β)Γp4′

ṗ4 = βΓp4′

f = p4,

(6.1)

where p denote occupation probabilities for different internal states, the excitation fraction

f is equal to the probability p4 of the atom to be in F = 4 state, and s = 2Ω2/Γ2 = I/Isat

is the intensity in units of saturation intensity.

Such a first order linear differential equation can be easily solved by matrix diagonaliza-

tion. The solution of f at pulse time t and intensity s corresponding to drive field Ω is found

to be:

f = 1− γ+
γ+ − γ−

e−γ−t − γ−
γ− − γ+

e−γ+t

γ± =
Γ

2
(s+ 1)

(
1±

√
1− 2sβ/(s+ 1)2

)
.

(6.2)

The optical pumping lattice formed by retro-reflecting a beam with intensity I gives rise

to a drive field described by:

Ω(x) =

√
2s0Γ2 sin(2πx/λop), (6.3)

where s0 = I/Isat and λop = 852.335 nm is the wavelength of the optical pumping light. In
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the limit of long pulse time t ≫ 1/Γ where we operate, we can consider only the case with

s≪ 1, as elsewhere f ≈ 1. In this case,

f = 1− e−
βΓ
2

s
s+1 t, (6.4)

where s = 2Ω2/Γ2 = 4s0 sin
2(2πx/λop). Therefore

g = e−
βΓ
2

s
s+1 t. (6.5)

The full width at half maximum w of g(x) is given by equation g(w/2) = g(0)/2. In the

regime of super-resolution where w ≪ λop, the solution is

w =
λop
2π

√
2 ln 2

s0tβΓ
. (6.6)

This describes the predicted resolving power and its scaling with pumping power and

pulse time in the strong pulse, long time limit.

The theoretical resolution shown in Fig. 2C in the main text is obtained differently,

without making analytical approximations. Instead, the shown prediction is the FWHM of

a numerically fitted Gaussian to the shape f(x), the same way FWHM is extracted from

experimental data.

6.1.3 Optical pumping under spatially dependent drive field

Here we derive the equation that states that the excitation fraction under a spatially depen-

dent drive field is given by a convolution, just like how an image is the convolution of the

ground truth with the point spread function.

1−F(∆x) =

∫
n(x)g (∆x− x) dx, (6.7)
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where n(x) is the density distribution of the imaged atoms, F(∆x) is the fraction of atoms

excited as a function of the optical pumping lattice displacement ∆x, which is the imaging

signal that we measure, and g(x) is the window function Eq. (6.5). The derivation is given

assuming a pure initial state for the atom. Generalization to mixed states is straight forward.

The atom has spatial and electronic degrees of freedom. Therefore, a state can be written

as

|ψ⟩ =
∑
i,j

ψi,j |i⟩x ⊗ |j⟩e, (6.8)

where |i⟩x and |j⟩e form a basis in the spatial and electronic subspace, respectively, and ψi,j

are the probability amplitudes.

A density matrix ρ̂ can be written similarly:

ρ̂ =
∑

i1,i2,j1,j2

ρi1,i2,j1,j2|i1⟩x⟨i2|x ⊗ |j1⟩e⟨j2|e

=
∑
α,β

ρα,βα̂x ⊗ β̂e.

(6.9)

Here each α̂x = |i1⟩x⟨i2|x for some i1, i2, and notates a basis for the density matrix in the

spatial subspace. Similarly β̂e denotes a basis in the electronic subspace.

Optical pumping is described by a linear first order differential equation for the density

matrix ρ̂, in the form

i∂tρ̂ = Lρ̂, (6.10)

where L is a linear operator on ρ̂. This linear equation can be solved by matrix exponentia-

tion:

ρ(t) = e−iLtρ̂(0) = U(t)ρ̂(0), (6.11)
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where the evolution operator U(t) = e−iLt is the matrix exponentiation of L.

Given the basis of ρ̂, we can expand the linear operator U :

U =
∑

α1,α2,β1,β2

Aα1,α2,β1,β2(α̂1,xα̂2,x)⊗ (β̂1,eβ̂2,e)

=
∑
u,v

Au,vûx ⊗ v̂e.

(6.12)

Here ûx and v̂e again denote basis in the spatial and electronic subspace.

The excitation fraction is the probability of the atom to be found in a ’pumped’ state |p⟩

in the electronic subspace, and is given by

F = Tr(P̂ ρ̂), (6.13)

where P̂ = |p⟩⟨p| is the projection operator onto |p⟩. Therefore the excitation fraction after

evolution U from a initial pure state ρ̂0 = ρ̂x,0 ⊗ ρ̂e,0 is

F = Tr(P̂Uρ̂0)

= Tr(
∑
u,v

Au,vûxρ̂x,0 ⊗ P̂ v̂eρe,0)

=
∑
u,v

Au,vTr(ûxρ̂x,0)Tr(P̂ v̂eρe,0)

= Tr

([∑
u,v

Au,vTr(P̂ v̂eρe,0)ûx

]
ρx,0

)

= Tr
(
fρx,0

)
,

(6.14)

where we denote f =
∑
u,v

Au,vTr(P̂ v̂eρe,0)ûx. This f is in fact the excitation fraction of

atoms in a uniform drive field, as in that case spatial degree of freedom is decoupled and

F = Tr
(
fρx,0

)
= f . Noting that the action of f on ρx,0 is direct multiplication, we have
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F(∆x) =

∫
n(x)f(∆x− x)dx, (6.15)

where n(x) is the diagonal of ρx,0 and is the initial spatial distribution, and f(∆x − x) is

the local excitation fraction due to an optical pumping lattice displaced by ∆x. As the

remaining fraction g ≡ 1− f and
∫
n(x)dx = 1, we derive Eq. 1 in the main text.

1−F(∆x) = 1−
∫
n(x) [1− g(∆x− x)] dx

=

∫
n(x)g(∆x− x)dx.

(6.16)

6.1.4 Numerical simulation of motional dynamics

In this work we probe the dynamics of the atomic wavefunction in an optical lattice after

a sudden shift of the lattice displacement, as a demonstration of the ability to spatial-

temporally resolve nanometer-microsecond scale dynamics of our technique. The numerical

prediction of the dynamics which we compare the experimental measurement against is

described here.

Dynamics of a single particle in a sinusoidal optical lattice is given by the Schroedinger

equation:

iℏ∂tψ = − ℏ2

2m
∂2xψ − V0 cos(4πx/λ)ψ. (6.17)

Given an initial condition ψ0, this equation can be numerically solved by Fourier trans-

form followed by matrix exponentiation, or projecting onto the basis of Mathieu functions,

which are eigenstates of the Hamiltonian. We simulated the dynamics in a lattice with trap

frequency 24 kHz, of an initial state that is the ground band Wannier function localized in

one lattice site which is then shifted by 79 nm. The resulting |ψ(τ)|2 is plotted against τ

in the left part of Fig. S2. Comparing with measured data in Fig. 3B, shown in the right
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Figure 6.1: Dynamics of an atom in a lattice site. Left: numerical simulation. Right:
experimental data.
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part, simulation results reflect various features observed experimentally, including the non-

sinusoidal motion of the peak, and the distortion of the wavefunction at later times. The

simulation showed negligible tunneling to adjacent sites at 160 µs. Inhomogeneity of the

traps along imaging direction is not included in simulation, and its contribution to damping

of the observed dynamics cannot be reflected by the simulation.

6.2 Pattern formation in a driven Bose–Einstein condensate

Pattern formation is ubiquitous in nature at all scales, from morphogenesis and cloud for-

mation to galaxy filamentation. How patterns emerge in a homogeneous system is a funda-

mental question across interdisciplinary research including hydrodynamics, condensed mat-

ter physics, nonlinear optics, cosmology and bio-chemistry. Paradigmatic examples, such

as Rayleigh–Bénard convection rolls and Faraday waves, have been studied extensively and

found numerous applications. How such knowledge applies to quantum systems and whether

the patterns in a quantum system can be controlled remain intriguing questions. In this

project we show that the density patterns with two- (D2), four- (D4) and six-fold (D6) sym-

metries can emerge in Bose–Einstein condensates on demand when the atomic interactions

are modulated at multiple frequencies. The D6 pattern, in particular, arises from a reso-

nant wave-mixing process that establishes phase coherence of the excitations that respect the

symmetry. Our experiments explore a novel class of non-equilibrium phenomena in quantum

gases, as well as a new route to prepare quantum states with desired correlations.

The experimental details and main results can be found in our publication [12]. In this

section I will present the details of symmetry decomposition of density wave patterns.

6.2.1 Symmetry decomposition of density wave patterns

When driven with different modulation waveforms, the BEC develops different patterns.

We would like to extract the relative strengths of D2, D4 and D6 symmetry components
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in the patterns. We use the following symmetry decomposition method. Given a pattern

P , we consider it as a superposition of D2, D4 and D6 symmetric components P2,4,6 with

amplitudes c2,4,6 and a small offset c0. In order to find the contribution of each symmetry

component, we fit the patterns using the following function:

P = c2P2 + c4P4 + c6P6 + c0, (6.18)

where

P2 = Rθ2 cos(kfx+ ϕ2), (6.19)

P4 =
1√
2
Rθ4

[
cos(kfx+ ϕ4,1) + cos(kfy + ϕ4,2)

]
, (6.20)

P6 =
1√
3
Rθ6

[
cos(kfx+ ϕ6,1)

+ cos(−1

2
kfx+

√
3

2
kfy −

1

2
ϕ6,1 +

√
3

2
ϕ6,2)

+ cos(−1

2
kfx−

√
3

2
kfy −

1

2
ϕ6,1 −

√
3

2
ϕ6,2)

]
.

(6.21)

Here Rθ[·] denotes rotation by angle θ. The basis functions P2,4,6 are l2 normalized such

that the strength coefficients c2,4,6 are comparable. There are 12 fitting parameters in

total: {c2, c4, c6} determine the strengths of the symmetry components, c0 determines the

overall offset, {θ2, θ4, θ6} determine the orientations, and {ϕ2, ϕ4,1, ϕ4,2, ϕ6,1, ϕ6,2} determine

the displacements. The fitting parameters are initialized randomly and the optimization

result with the lowest mean squared error is chosen as the final fit. The optimal fitting

parameters are shown in Table 6.1. Decomposition of an example pattern is shown in Fig. 6.2,

showing the original pattern, the decomposition into different symmetry components, and

the residual.
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Parameters units Scheme I Scheme II Scheme III
c2 µm−2 0.302(8) -1.49(4) -0.32(1)
c4 µm−2 -0.080(8) -0.41(3) -0.26(1)
c6 µm−2 0.070(6) 1.55(4) 0.072(8)
c0 µm−2 -0.009(3) 0.02(2) 0.005(4)
θ2 rad 1.594(2) -0.497(2) 0.274(2)
θ4 rad 1.537(6) -0.608(6) 0.206(2)
θ6 rad 1.455(6) -0.547(1) 0.008(7)
ϕ2 rad 0.96(3) 5.96(3) 4.93(3)
ϕ4,1 rad 4.4(2) 6.2(1) -1.72(5)
ϕ4,2 rad 5.6(1) 2.5(1) 3.84(4)
ϕ6,1 rad 1.2(1) 3.43(4) 2.6(2)
ϕ6,2 rad 2.7(1) 5.64(3) 3.8(2)

Table 6.1: Optimal fitting parameters for symmetry decomposition.

-6 60
5 ¹m c6P6 c4P4 c2P2 PresP

Figure 6.2: Symmetry decomposition of density wave patterns. The pattern P =
c6P6+ c4P4+ c2P2+Pres is projected onto the bases P6, P4 and P2 with weights c6, c4 and
c2. The residual Pres is dominated by the spatial inhomogeneity of the sample.

6.3 Artificial magnetic flux from modulated DMD potential

Projection of arbitrary time-dependent potential pattern with DMDs allows great flexibil-

ity in engineering the Hamiltonian of the system. One interesting application is creating

artificial gauge fields. Creating artificial gauge fields with non-trivial magnetic flux has

been experimentally challenging, with existing realizations either relying on external tilts or

Raman transitions, both methods introducing significant heating. Here we investigate the

possibility to create artificial flux on a square 2D lattice by adding periodic energy modu-

lation to each site. Experimentally this corresponds to a scenario where an additional light
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pattern is projected with DMD onto a lattice. The scheme in principle drives off-resonantly,

which hopefully results in less heating.

6.3.1 Framework

We first consider four sites of the lattice, with bare tunneling J0 and on site energy modu-

lation vfn(t), where v has the unit of energy and f(t) is dimensionless, and f(t+ T ) = f(t).

The tight binding Hamiltonian is

H = −
∑
<nm>

J0a
†
nam + v

∑
fn(t)a

†
nan. (6.22)

Define gauge transformation U = e
∑
ivχn(t)a

†
nan where χn(t) = −

∫ t fn(τ)dτ . The trans-

formed Hamiltonian is

H ′ = U†HU − iU†∂tU = −
∑
<nm>

J0e
iv[χm(t)−χn(t)]a†nam. (6.23)

If the modulation is far detuned (the driving frequency is much larger than the band

width J0), the effective Hamiltonian is the zeroth order Floquet Hamiltonian:

Heff = ⟨H ′⟩T = −
∑
<nm>

J̃nma
†
nam, (6.24)

with effective tunneling J̃nm = J0⟨eiv[χm(t)−χn(t)]⟩T , where ⟨·⟩T denotes average over one

period.

6.3.2 ’Translationally invariant’ modulation

It is natural to consider ’translationally invariant’ modulation, where the modulation wave-

form is the same on all sites, while the phase differs from site to site. If the phase varies

linearly through space the modulation corresponds to a traveling wave. Instead we will

97



Figure 6.3: Time dependence of K,F1 and F2 for realizing a complex effective tunneling

consider general spatial phase dependence:

fn(t) = f(t+ ϕn). (6.25)

In this case

χm(t)− χn(t) =

∫ t+ϕn

t+ϕm
f(τ)dτ = T [F (t+ ϕn)− F (t+ ϕm)] , (6.26)

where F (t) = 1
T

∫ t f(τ)dτ is the dimensionless integral of f(t). We can add a constant offset

to f(t) such that F (t) = F (t+ T ), which corresponds to shifting the energy of all sites by a

constant amount, without affecting the physics.

The effective tunneling is thus given by

J̃nm/J0 = ⟨eivT [F (t+ϕn)−F (t+ϕm)]⟩T = ⟨eiαKnm(t)⟩T , (6.27)

where we define Knm(t) = F (t)−F (t+ϕm−ϕn) and α = vT is the dimensionless modulation

strength. Obviously ⟨Knm⟩T = 0. Therefore, intuitively for the tunneling to be complex,

Knm must spend different amount of time being positive and negative, while averaging to 0.
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Figure 6.4: Schematics of a 4 site plaquette with artificial flux

Let’s consider a simple case, where Knm is either a positive constant or a negative constant:

Knm(t) =


1, 0 < t/T < ϵ

− ϵ

1− ϵ
, ϵ < t/T < 1

. (6.28)

The resulting tunneling is

J̃nm/J0 = ϵeiα + (1− ϵ)e−i
ϵ

1−ϵα. (6.29)

Experimentally this can be realized by pulsing f on for each site, making F (t) a sawtooth,

with various delays. The duty cycle is ϵ = (ϕm − ϕn)/2π. See Fig. 6.3.

To realize artificial flux in a 4 site plaquette, consider the setting shown in Fig. 6.4. The

phase of light pulse ϕn is labeled next to each site and the phase of tunneling is labeled

next to each link. The dependence of the tunneling phase on α is shown in Fig. 6.5. This

configuration can be extended into a 1D ladder horizontally, but extending into a 2D plane
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Figure 6.5: Dependence of the tunneling phase on α. Horizontal axis is modulation
strength α. Vertical axis is tunneling phase divided by π.

with uniform flux is not straightforward.

Incidentally, since Knm and thus the tunneling phase is an odd function in ϕm − ϕn,

traveling wave modulation will never work, since opposing links will have the same tunneling

phase, netting zero flux.

6.4 Rotating harmonic and Gaussian trap

Colioris force in a rotating frame simulates magnetic field felt by charged particles. Through

rapid rotation near centrifugal limit, the ground state of a few body interacting atomic sys-

tem transitions to highly correlated states. We would like to investigate the requirements

for various experimental parameters for preparing such nontrivial states reliably. Most im-

portantly we would like to calculate the ground state energy gap for various configurations,

which determines the temperature requirement, as well as the time needed for adiabatic pas-

sage. Here we outline the steps for calculating the energy levels and show some preliminary

numerical results. We will compare the cases with harmonic trap and Gaussian trap.
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6.4.1 Theory and setup

For a given trap geometry, we formulate the many-body problem in terms of second quan-

tization on the basis of single particle trap eigenstates. For exact treatment, all eigenstates

must be included, which is numerically impossible since there are infinitely many of them.

We must truncate the single particle Hilbert space to include only the ’most relevant’ states,

which we will discuss in detail for each specific trap geometry that we consider.

We label the included single particle eigenstates |l⟩, each having wavefunction ψl and

eigenenergy ϵl. The many-body Hamiltonian after second-quantization in the above basis is

given by:

H =
∑
l

(ϵl − µ)a
†
l al + g

∑
lkmn

Vlkmna
†
l a

†
kaman, (6.30)

where al destroys a (bosonic) particle in state |l⟩, µ is the chemical potential, g is the

interaction strength and Vlkmn describes the contact interaction between the states:

Vlkmn =
1

2

∫
ψ∗l ψ

∗
kψmψnd

2r (6.31)

In order to inject angular momentum into the system we must introduce perturbation

that breaks rotational symmetry. The easiest type of such perturbation is dipolar:

U = λr cos θ, (6.32)

written in polar coordinates, which is realized by moving the entire trap in a circle with

radius R = λ/mΩ2 with frequency Ω. For reference, for λ = 10 kHz/µm,Ω = 100 kHz, we

have R = 89 nm. Such perturbation adds an additional term to the Hamiltonian:

H1 = λ
∑
mn

Umna
†
manT (6.33)
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Umn =

∫
ψ∗mUψnd

2r (6.34)

We exactly diagonalize this Hamiltonian by writing it as a matrix in the Fock basis. As

the Hamiltonian conserves particle number, we span our Hilbert space with Fock states with

definite number of particles N . For example for N = 4, a Fock state

|ψ⟩ = |klmn⟩ (6.35)

denotes a state where the four particles occupy single particle states labeled by k, l,m, n. If

two labels are the same, the single particle state is occupied by two particles. Using this

notation, the full Hilbert space considered is spanned by states with k ≤ l ≤ m ≤ n. The

dimension of this Hilbert space is roughly O(MN ), where M is the number of included

single particle eigenstates. The matrix elements ⟨k′l′m′n′|H|klmn⟩ are obtained from (6.30)

according to bosonic operator algebra.

Harmonic trap

We start off with the well-studied case of harmonic trap. The single particle Hamiltonian is:

Hs = −1

2
∂2 +

1

2
r2 − Ω · L, (6.36)

where the trap frequency ω is rescaled to be 1. The last term is due to rotation, at angular

frequency Ω ∗ ω.

In the ususal case where interaction is much smaller than trap frequency, we consider

only the lowest landau level, with states given by:

ψl(z = x+ iy) = (πl)−1/2zle−|z|2/2 (6.37)
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The energies are

ϵl = (1− Ω)l (6.38)

The interaction matrix is

Vlkmn = δl+k−m−n2
−(l+k+2) (l + k)!

π
√
l!k!m!n!

(6.39)

The dipolar coupling is

Umn = δm−n−1
(n+ 1)!√
2n!(n+ 1)!

+ δm−n+1
n!√

2n!(n− 1)!
(6.40)

The interaction strength g is related to the 3D scattering length a and the harmonic

oscillator length in the z-direction lz =
√
ℏ/mω⊥ by:

g =
√
8πa/lz (6.41)

For typical condition a = 200aB and ω⊥ = 2 kHz, lz = 500 nm, we have g = 0.1.

Since the Hamiltonian conserves angular momentum, many-particle states with different

total angular momentum don’t mix, and we can safely include single particle states only

up to angular momentum lmax. We can even truncate the many-body Hilbert space even

further by including many-body states only up to total angular momentum Lmax. To see

physics of the 1/2-Laughlin state, which has total angular momentum L = N(N − 1), we

chose lmax = 2N + 2 and Lmax = N2 + 8.

Gaussian trap

Let’s now turn to the Gaussian trap. The single particle Hamiltonian is:

Hs = −∂2 − αe−r
2
− Ω · L (6.42)
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Here energy and frequency are in units of E = ℏ2/4mσ2, σ is the 1-sigma width of

the trap, and α is the trap depth. For Cesium with σ = 1 µm, E = 120 Hz, and λ is

in units of E/
√
2σ = 85 Hz/µm. This time there is no analytic solution, but we can still

numerically obtain the eigenstates. Since the Hamiltonian conserves angular momentum, we

seek simultaneous eigenstates of both energy and angular momentum, satisfying the equation

−∂2rϕl −
1

r
∂rϕl +

l2

r2
ϕl − αe−r

2/2σ2ϕl = Eϕl (6.43)

ψl(r, θ) = ϕl(r)e
−ilθ (6.44)

There is a subtlety in working with polar coordinates numerically, due to coordinate

singularity at the origin. Instead of working with a grid rj = j∆r, j = 0, · · · , rmax/∆r, we

work with [67]

rj = (j + 1/2)∆r, j = 0, · · · , rmax/∆r (6.45)

with the condition ϕ(r0) = ϕ(r−1) due to its azimuthal symmetry.

Restricting to LLL in this case means taking the solution with smallest E for each l ≤ 0.

Denoting the solutions and eigenvalues ϕl and El, we have

ϵl = El − Ωl (6.46)

Vlkmn =
δl+k−m−n

2

∫ ∞

0
ϕlϕkϕmϕn2πrdr (6.47)

Umn =
δm−n−1 + δm−n+1

2

∫ ∞

0
ϕmϕn2πr

2dr (6.48)

The interaction strength g is

g =
√
32πa/lz (6.49)

For typical condition a = 200aB and ω⊥ = 2 kHz, lz = 500 nm, we have g = 0.2.

There is a natural truncation of the single particle Hilbert space, as a finite sized trap
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only supports a finite number of bound states El < 0. Discarding the free states is justified,

because the interaction term couples states according to their spatial overlap, and free states

occupy all of space while the bound states concentrate around the trap. Therefore the

overlap between free and bound states is smaller than that between bound states by a factor

of ∼ σ2/A, which is the ratio between the area of the trap and the area between traps. If

the traps are distantly separated, the coupling is small, and the free states can be safely

discarded. This observation is particuarly important, as the free states can have arbitrarily

large angular momentum while only having energy slightly above 0, meaning their energy can

quickly drop below that of the ground state for nonzero Ω. Intuitively the centrifugal force

makes the area outside the trap anti-trapping, where these low energy states live, meaning

they have small spatial overlap with the trap region.

In addition to discarding the free states, further truncation according to angular momen-

tum can be performed, the same way as in the case of harmonic trap.

6.4.2 Numerical results

Harmonic trap

Shown in Fig. 6.6 is the numerical result for a harmonic trap, showing a sequence of ground

state level crossings, due to different many body states having different interaction energy

shift. To find an adiabatic passage sequence towards nontrivial ground states we need addi-

tional information about the widths of avoided level crossings in the presence of perturbation,

similar to Fig. 6.7. Eventually we need to simulate the time dependent dynamics following

the adiabatic sequence to find the optimum path and fidelity.
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Gaussian trap

The situation with Gaussian trap is quite different from the harmonic trap case, as the

anharmonicity breaks the degeneracy of the LLL at centrifugal limit. Instead, higher angular

momentum state crosses the ground state sooner, as shown in Fig. 6.8. As a result the many

particle spectrum is very different as well (Fig. 6.9). It is important to note that the first

ground state crossings are between states composed of single particle levels with l = 0 and

l = 4, which are coupled by dipolar perturbations through a fourth order process, making the

coupling very small. Crossing between states with lower angular momentum occur later, but

with a larger coupling. Therefore, by passing through the narrow avoided crossings quickly

we can target level crossings at higher rotation frequency, avoiding transition to states with

high angular momentum and lower energy.

As a side note, realistically all finitely deep traps are anharmonic, with higher angular

momentum states having reduced energy. The above considerations provide justification

for ignoring the effect of anharmonicity if it only starts to become important for very high

angular momentum states, as the early ground state crossings will be very narrow, and

transition at the crossings will be suppressed.

To identify an adiabatic passage sequence to a target state, again we need a plot like Fig.

6.7. Here it’s technically more difficult as it’s harder to tell which two states to calculate the

gap between.
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Figure 6.6: Lowest few energy levels versus rotation frequency for N = 4, with (solid line)
and without (dashed line) interaction.
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Figure 6.7: Map of ground state energy gap for various rotation frequency and perturbation
strength. Reproduced from Fig 2 of PHYSICAL REVIEW A 70, 053612 (2004).

108



Figure 6.8: Single particle energy levels in a Gaussian trap with depth α = 80. Anharmonic-
ity causes states with higher angular momentum to cross with ground state sooner.
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Figure 6.9: Many particle spectrum for N = 4 and α = 80. Slopes of the lines indicate the
total angular momentum for each many body state.
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CHAPTER 7

OUTLOOK

7.1 Liquid-gas phase transition and vortex array from

density-dependent gauge field

For the Bose-Einstein condensate subject to a density-dependent gauge field studied in chap-

ter 4, theoretical and numerical investigations suggest that the system can exhibit a liquid-gas

like phase transition under certain conditions, where the high and low density domains would

be the liquid and gas phase, respectively. Moreover, the phase boundary (domain wall) can

host an array of vortices, which is under certain conditions energetically favourable to having

the domain wall perpendicular to the gauge field. In this section I present the theoretical and

numerical study. Finding and realizing experimental parameters that allow us to observe

these effects in the lab is an interesting future direction.

7.1.1 Introduction

-2 -1 1 2
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Figure 7.1: Tilted double well dispersion εk versus momentum k

Consider a condensate described by the mean field Hamiltonian
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H =
∑
k

εk|ψk|2 +
U

2
|ψ|4 + η

2
|ψ|2ψ∗e⃗ · (−iℏ∇⃗)ψ (7.1)

Here ψ is the condensate wavefunction. The first term is the kinetic energy with dispersion

εk shown in Fig. 7.1. The dispersion exhibits two minima ±k0, and the two minima differ

by an amount ∆. The second term is the interaction energy. The third term describes a

density dependent gauge field A⃗ = η
2 |ψ|

2e⃗.

We’d like to consider the case where the density dependent gauge field causes the bias

between the two minima to shift polarity when the density exceeds a critical value nc =

∆/(2η), such that high and low density regions have opposite quasi-momentum. We are

interested in whether droplets could form in this case.

7.1.2 Thermodynamic bulk treatment

Let’s ignore surface effects for now. Suppose the gas has particle number N and occupies

a volume V . Consider particles with quasi-momentum ±k0 as two different species, and

assume each species have uniform density and do not spatially overlap. Let N1.V1 (N2, V2)

be the particle number and volume of specie +k0 (−k0), respectively. Then the total energy

of the gas is given by

E = N1

(η
2
n1

)
+N2

(
∆− η

2
n2

)
+
U

2
N1n1 +

U

2
N2n2, (7.2)

where the first two terms are kinetic energy and the last two are interaction energy and

ni = Ni/Vi are the densities.

We have constraints

N1 +N2 = N (7.3)

V1 + V2 = V (7.4)
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Therefore we have

E =
η

2

N2
1

V1
+ (N −N1)

(
∆− η

2

N −N1

V − V1

)
+
U

2
N2
1/V1 +

U

2

(N −N1)
2

V − V1
, (7.5)

To minimize the energy, we have

∂E

∂N1
=
∂E

∂V1
= 0 (7.6)

The two equations reduce to

n1 =

√
U − η

U + η
n2 (7.7)

n1 =
∆

U + η −
√
U2 − η2

(7.8)

The constraints N1 +N2 = N and V1 + V2 = V can be rewritten as

n2 = n0 + (n0 − n1)
γ

1− γ
, (7.9)

where n0 = N/V and γ = V1/V .

Eliminating n1, n2 from equations (7.7)(7.8)(7.9), we have

γ =

√
1 + α√

1 + α−
√
1− α

−
√
1− α√

1 + α−
√
1− α

n0U

∆

(
1 + α−

√
1− α2

)
, (7.10)

where α = η/U .

As γ is the fraction of volume occupied by specie +k0, we can use it to characterize the

phases of the gas. If γ ≥ 1, the entire system is ’gaseous’, having quasi-momentum +k0 and

density below critical density. If γ ≤ 0, the entire system is ’liquid’, having quasi-momentum

−k0 and density above critical density. If 0 < γ < 1, the system is a mixture of ’liquid’

and ’gas’, with the ’gas’ occupying a fraction γ of the volume. Plotting γ against α and
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β = nc/n0 = ∆/(2ηn0) gives us the phase diagram shown in Fig. 7.2.

Figure 7.2: Phase diagram of the liquid-gas transition. The horizontal axis is α, the
strength of the density-dependent gauge field. The vertical ais is β, the critical density over
the mean density. The colorbar shows γ, the fraction of volume occupied by the ’gas’ phase.
We see a pure liquid phase (dark blue), a pure gas phase (light blue), and a coexistence
phase in between. When α > 1 the system is unstable and undergoes collapse.

The phase boundaries are given by

βc1 =
1

2

(
1 + 1/α−

√
1/α2 − 1

)
(7.11)

βc2 =
1

2

(
1− 1/α +

√
1/α2 − 1

)
(7.12)

7.1.3 Equation of state and finite-pressure droplet

Consider the equation of state of the system, expressed in terms of the dependence of the

chemical potential µ = ∂E/∂N on the mean particle density n = N/V . From the previous

section we can derive that
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µ =



(U + η)n, 0 < n < ∆
U+η−

√
U2−η2

∆(U+η)

U+η−
√
U2−η2

, ∆
U+η−

√
U2−η2

< n < ∆√
U2−η2−(U−η)

(U − η)n+∆, n > ∆√
U2−η2−(U−η)

(7.13)

We can see that the chemical potential is constant in the liquid-gas mixture phase. Since

the compressibility is given by β = 1
n2

∂n
∂µ , in the liquid-gas mixture phase the compressibility

is infinite, meaning the pressure of the system stays constant when it is compressed. There-

fore, in the liquid-gas phase we can consider the system to form finite-pressure droplets of

liquid, surrounded by gas.

There is an alternative, more general way to derive the existence of the finite-pressure

droplet. Consider an equation of state expressed as the energy density ϵ(n) as a function

of particle density n. Consider the case where the system is composed of two regions with

different density, region 1 with density n1 and volume V1, and region 2 with density n2 and

volume V2. The total energy of the system is

E = ϵ(n1)V1 + ϵ(n2)V2, (7.14)

subject to the constraints that V1 + V2 = V and n1V1 + n2V2 = n0V , where n0 is the mean

density of the whole system. The constraints can be solved,

V1 = V
n2 − n0
n2 − n1

(7.15)

V2 = V
n0 − n1
n2 − n1

(7.16)
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Therefore the total energy is

E = ϵ(n1)V
n2 − n0
n2 − n1

+ ϵ(n2)V
n0 − n1
n2 − n1

= ϵ̃(n1, n2, n0)V

(7.17)

with

ϵ̃(n1, n2, n) = ϵ(n1)
n2 − n

n2 − n1
+ ϵ(n2)

n− n1
n2 − n1

(7.18)

The result Eq. (7.17) means that the system can obtain a new energy density ϵ̃(n1, n2, n0)

at mean density n0 by forming a mixture of domains with density n1 and n2. Upon closer

inspection, the new energy density is on the line connecting ϵ(n1) and ϵ(n2), see Fig. 7.3.

This means that if at any point the equation of state curve ϵ(n) is non-convex, one can

draw a line connecting two points on the curve that lies under the curve itself, which means

lowering energy by forming domains. Furthermore, the linear nature of the equation of state

implies constant chemical potential and infinite compressibility, meaning that the domains

are finite-pressure droplets. The chemical potential plot µ(n) is counter-intuitive since the

system does not transition to the red species as soon as the chemical potential line crosses

the blue species. Rather, the formation of droplets can be intuitively seen from the equation

of state plot ϵ(n).

The results of the previous section can be readily derived by drawing a tangent line to the

bare equations of state of the two species, ϵ1(n) = (U + η)n2/2, ϵ2(n) = (U − η)n2/2 +∆n.

More generally, beyond our simple two species model, as long as the bare equation of state of

any system develops a non-convex section, the system can support finite pressure droplets.

This derivation does not consider the energy cost of droplet surfaces. To observe the

droplets in an experiment, the surface energy must be paid by the energy gain from droplet

formation in the bulk, which is the difference between the magenta and red dot at density
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n0 in Fig. 7.3. Since the surface energy scales as the system size L whereas the bulk energy

scales as L2, going to larger system size is favorable. In our previous experiment, the system

size is primarily limited by the parasitic harmonic trapping from the optical lattice. An

anti-harmonic compensation projected by the DMD can help combat this effect. A less tight

harmonic trap also allows for a lower chemical potential, which is also favorable in reducing

surface energy.

"
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Figure 7.3: Non-convex equation of state leads to finite-pressure droplets. If the
equation of state ϵ(n) (red and blue) is non-convex between n1 (blue dot) and n2 (red dot),
the system can lower its energy density to ϵ̃ (magenta) by forming a mixture of domains
with density n1 and n2 (magenta dot). The chemical potential µ is constant in the mixture
phase (µ̃, indicating that the domains are finite-pressure droplets.

7.1.4 Simulation

We can derive a GPE from the mean-field Hamiltonian as shown in section 3.4.2, and use

imaginary time evolution to numerically find the ground state. An example is shown in

Fig. 7.4. Here Eq (7.10) predicts a gas fraction of 96%, but simulation gives about 45%.

This is understandable, because the gas is not really uniform inside the box because of the

dispersion, and the effective volume is smaller, meaning the actual β is smaller. A smaller β
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Figure 7.4: GPE simulation of density-dependent gauge field induced roplet. Here
α = 0.999, β = 0.8, Un0 = 4ER. Left is density profile; right is phase profile. The box is
±20× 532 nm in both directions.

is indeed predicted to result in a smaller gas fraction.

From the simulation, it is apparent that the contribution from the surface is never negli-

gible, because the boundary between the ’liquid’ and ’gas’ is formed by an array of vortices,

and they cost a lot of energy. For this reason, actual numbers of k0 and Un0 changes the

condition for droplet formation. We can map this dependence out more carefully with the

numerical simulation.

7.2 Squeezing edge states of a Floquet topological insulator

Topological insulators have attracted the interest of condensed matter physicsts for more than

a decade, and the study of the topological physics is a major goal of quantum simulation

with ultracold atoms. Ultracold atomic platforms like ours offer greater degree of control

and more detailed detection compared to solid state systems. A standing challenge in this

direction is the excitation and detection of edge states, which result from the bulk-boundary

correspondence, a cornerstone result in topological physics. Unlike solid state systems where

the edge states can be populated with electrons in the nearby Fermi sea and detected with

resistive measurements, in ultracold atoms it is difficult to populate these excited states with
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bosons, and to reach sufficiently low temperatures with fermions.

In this section, I describe a proposal to overcome this challenge utilizing Bose fireworks,

which populates excited states with squeezed pairs of atoms excited by interaction modu-

lation. I describe a framework that predicts the squeezing dynamics in a general basis of

states (rather than the plane wave basis like in the previous chapters). To create a Floquet-

topological insulator that supports edge states in our system, we may follow the proposal

[68; 69] which employs resonant shaking of a 1D lattice. Sharp edges in the system can be

created with walls projected through the DMD.

7.2.1 Bose fireworks in general basis

Consider a system with single particle Hamiltonian H0, with single particle eigenstates |ψi⟩

and eigenenergies Ei. The second quantized Hamiltonian of the system is then

H0 =
∑
i

Eia
†
iai, (7.19)

where ai is the annihilation operator of a boson in state |ψi⟩. Now let’s turn on interpar-

ticle interaction, in particular a contact interaction like that found in our experiment. The

interaction Hamiltonian is

H1 =
g

2

∫
dx a(x)†a(x)†a(x)a(x). (7.20)

The local bosonic annihilation operator a(x) is related to the eigenstate annihilation operator

as

a(x) =
∑
i

ψ∗i (x)ai, (7.21)

119



where ψi(x) is the spatial wavefunction of state |ψi⟩. The total Hamiltonian is then

H =
∑
i

Eia
†
iai +

g

2

∑
ijkl

Fij,kla
†
ia

†
jakal, (7.22)

where Fij,kl =
∫
dx ψi(x)ψj(x)ψ

∗
k(x)ψ

∗
l (x).

Now lets consider that there is a BEC in the state |ψ0⟩ with particle number N , and

employ Bogoliubov approximation. The Hamiltonian becomes

H =
∑
i

Eia
†
iai +

g

2

∑
ij

N(Fij,00a
†
ia

†
j + F00,ijaiaj + 4Fi0,j0a

†
iaj). (7.23)

Under periodic driving g(t) = γ cosωt, we can repeat the treatment in section 3.2, and arrive

at the RWA Hamiltonian

H =
∑
i

(Ei −
ℏω
2
)a

†
iai +

γN

2

∑
ij

(Fij,00a
†
ia

†
j + F00,ijaiaj). (7.24)

We can see that it is formally the same as the fireworks system we considered before, except

that now all the modes are generally coupled together, rather than separated into indepen-

dent pairs. Still, one can define a new basis to diagonalize the quadratic Hamiltonian, and

we conclude that the resulting dynamics is squeezing of the near resonant excited states.

In the context of Floquet-topological edge states, since the edge states live in a gap, as

long as the driving strength is small compared to the band gap, only the edge states will

have exponentially growing population, and the bulk states in the bands are far enough

off-resonant to not be excited. Therefore, we can selectively populate the edge states, if we

start from a BEC and periodically modulate the interaction.

In terms of detection, generally in the absence of edge states the eigenstates are delocal-

ized bulk states in the band, which are localized in momentum space. If we perform imaging

after time-of-flight, or focused time-of-flight, we would see localized peaks in each Brillouin
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zone. On the other hand, the edge states are localized in real space on the edges, and thus

delocalized in momentum space. We would see a smeared background of atoms in the entire

Brillouin zone. This can be potentially a clear signature of population of the edge states.

7.2.2 Creating topological edge states with shaken 1D lattice

Shaken lattices has long been regarded as one of the most feasible ways to create Floquet-

topological insulators with ultracold atom quantum simulators. A detailed study was given in

[68], where among other schemes it was proposed that resonantly shaking the 1D lattice with

a ’two photon’ transition (shaking at half the resonance frequency) results in a topologically

nontrivial band. The system could be effectively described with the Su–Schrieffer–Heeger

model. The paper also discussed in detail how to characterize the Zak phase, the 1D ’topo-

logical invariant’, as well as how to numerically predict edge states in a finite system. A more

detailed investigation of this shaking scheme was given in [69], which described the system

in terms of a Creutz ladder, with more intuitive pictures of what makes the system topolog-

ical. These references are a great starting point to investigate the feasibility to realizing a

Floquet-topological insulator in our shaken lattice system.
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