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ABSTRACT

The study of quantum many-body systems remains a topic at the forefront of both theoret-

ical and experimental physics research. These systems can exhibit a wealth of interesting

phenomena and phases, and their understanding is important for progress towards new quan-

tum technologies. Ultracold atomic gases are a powerful experimental platform for studying

quantum many-body physics due to the flexibility and control that they afford.

From the perspective of quantum simulation, mixtures of bosonic and fermionic neutral

atoms offer a unique experimental system which permits tunable interactions between both

types of fundamental particles. In solid-state materials, the interplay between the bosonic

and fermionic components can be very important, with the most famous example being

phonon-induced electron pairing in conventional superconductors.

This thesis describes experiments on quantum degenerate mixtures of bosonic 133Cs and

fermionic 6Li with tunable interspecies interactions. We have created the first degenerate

mixtures of Li and Cs atoms and performed several experiments studying the role of in-

teractions in their ground state and dynamics. The central question investigated is this:

“What happens to a Bose-Einstein condensate when it is immersed in a degenerate Fermi

gas?” Throughout the work presented in this thesis, we have discovered several answers:

the fermionic environment changes the effective confinement, the effective 2- and 3- body

interactions, the phase diagram, and the excitations of the condensate.

Our work represents significant progress in understanding the quantum behavior of Bose-

Fermi mixtures, establishing the Li-Cs system as a valuable experimental platform in this

direction. We lay groundwork for future studies of strongly interacting bosons and fermions,

for which there are numerous fascinating theoretical proposals suggesting new quantum

phases and phenomena.

xii



CHAPTER 1

INTRODUCTION

1.1 Ultracold Gases and Quantum Simulation

There are two types of particles, those with integer spin (bosons) and half-integer spin

(fermions). The fundamental particles that make up matter, such as protons, neutrons, and

electrons, are all fermions. Fundamental force carriers, such as photons, gluons, and pions

are bosons. Composite objects, such as atoms, which are made out of fundamental fermions,

can end up as either bosonic or fermionic due to the addition of the spin of their constituents.

In this way, the quantum statistics of a neutral atom are determined by its neutron number,

and different isotopes of the same atom can be bosonic or fermionic.

The fundamental difference between these types of particles is the way that they behave

under particle exchange. The wave function of bosons must always be symmetric with respect

to particle exchange, while for fermions it must be antisymmetric. This rule, obtained from

the spin-statistics theorem of relativistic quantum theory, dictates an enormous amount of

physical phenomena, and is even explicit in many technological applications familiar to the

reader’s personal experience. For example, lasing is an effect driven by boson statistics, and

semiconductor technology is fundamentally based on the fermion statistics of electrons.

In the context of ultracold atomic physics, both bosons and fermions have been used

extensively for various scientific applications. These quantum gases provide a valuable ex-

perimental platform due to the level of control they offer through the generation of optical

potentials and interaction tuning (see Section 2.1). They are well isolated from their en-

vironment and can be created with very few defects compared to their solid state counter-

parts. They operate on length and time scales that are amenable to optical microscopy and

straightforward electronics. Their rich internal structure and long-lived internal states are

also valuable tools for obtaining experimental information with very high precision.
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Ultracold bosonic atoms were the first to be used for quantum many-body physics, ini-

tially igniting the field of quantum gases with the observation of Bose-Einstein condensation

in 87Rb by E. A. Cornell’s group in 1995 [1], which was awarded the Nobel Prize in Physics

in 2001 (along with C. Wieman and W. Ketterle). These types of systems were initially used

to study the basic theories of weakly interacting bosons, as they were the first alternative

to liquid He, a system which remains a theoretical challenge to this day. Soon afterwards,

the study of atoms in optical lattices formed by the interference of laser beams became a

major focus in the ultracold gas community, permitting the study of analog materials to aid

condensed matter physics in the study of strongly correlated materials. Ultracold bosons

in optical lattices have been used for an enormous number exciting experimental studies,

such as the the superfluid-Mott insulator transition, scaling near quantum critical points,

supersolids, time crystals, and many more (for reviews see Refs. [2–4]).

Meanwhile, a significant goal for the field of quantum gases became the study of fermionic

atoms in optical lattices, since these systems are a more faithful analog of electrons in solid-

state materials. The first degenerate atomic Fermi gases were experimentally created in

1999 by B. DeMarco and D. Jin in Colorado [5]. Soon after, fermionic pairing was observed

in R. Grimm’s [6] and D. Jin’s lab [7]. Bardeen-Cooper-Schrieffer (BCS) superfluidity was

demonstrated through quantized vortices in the Ketterle group the following year [8]. Since

then, studies of the famous BEC-BCS crossover have been a major topic of scientific interest.

Another major direction is the study of the Fermi-Hubbard model (see Ref. [9] for a review),

often nowadays in quantum gas microscopes, which intend to shed light on basic features of

high temperature superconductivity.

1.2 Bose-Fermi Mixtures

Combinations of bosonic and fermionic gases are considerably less well-studied than each

individually. The first quantum degenerate gas Bose-Fermi (BF) mixtures were made in

2



2001 out of different isotopes of Li, specifically 6Li/7Li at LKB [10] and Rice University

[11]. In the next year, the first heteronuclear mixtures were made, using fermionic 40K/

bosonic 87Rb at LENS [12] and JILA, and fermionic 6Li / bosonic 23Na at MIT [13]. A

thorough overview of which groups have successfully cooled various combinations of bosons

and fermions to degeneracy since those first experiments can be found in Table 1 of Ref. [14].

Generally speaking, multi-species experiments are harder to work with than single species

experiments, but offer a variety of new experimental opportunities for the trouble. Below,

we will briefly describe some of the research directions being pursued by groups around the

world with Bose-Fermi mixtures.

• Bose-Fermi mixtures in optical lattices. A few years after the initial heteronuclear

mixtures, several groups began to experimentally study the behavior of Bose-Fermi

mixtures in optical lattices. They have observed localization of bosons as a consequence

of fermionic atoms [15, 16], interspecies interaction corrections to the Superfluid-Mott

Insulator transition [17], and realized interacting Mott insulators of each type [18].

Much of the initial interest revolved around sympathetic cooling of fermions, but there

are still many untested theoretical proposals concerning BF mixtures in lattices.

• Heteronuclear molecules. There is enormous interest in the study of ultracold molecules

for many applications [19, 20], including precision tests of fundamental physics, quan-

tum computation, ultracold chemistry, and many-body physics with long-ranged in-

teractions. One important feature is their rich internal structure, which can offer par-

ticularly useful states for precision measurement and quantum computation. Another

is that heteronuclear molecules can exhibit large dipole moments that are absent in

homonuclear molecules by symmetry, which makes them useful for many-body physics

with long-ranged interactions. If the two components of the heteronuclear molecule

are of different quantum statistics, then the result is a rich system of fermions with

long-ranged interactions. The Weidemueller group has measured the dipole moment

3



of deeply bound Li-Cs molecules [21] and obtained a large value of > 5 Debye. These

molecules are currently being pursued for quantum science in optical tweezers at Pur-

due University by J. Hood.

• Polarons. Polarons are impurities which are dressed by their medium. Due to the

tunability of interactions in ultracold atomic gases, they have been used to perform

many interesting experiments in both Fermi and Bose polaron systems (the objects

are labelled by the medium). In the impurity limit, the statistics of the impurities

do not matter, but Bose-Fermi (BF) mixture systems have nonetheless proved useful

due to their particular interaction spectra [22–27]. In recent times, the full crossover

from Fermi to Bose polarons has been studied in the group of R. Grimm [28], which is

an experiment that leverages the flexibility of ultracold Bose-Fermi mixtures in a very

striking way. There are also interesting connections between polarons and three-body

physics, see Section 7.2.

• Superfluid mixtures. One of the most recent developments in this field has been the

creation of BCS-BEC superfluid mixtures, which have been reported in several groups

around the world. There have been reports of such systems created in 6Li/7Li [29],

174Yb/6Li [30], and 41K/6Li.[31]. This is a rare type of quantum system, which may

be promising for a number of theoretical proposals. It may be possible to create Li-Cs

BCS-BEC mixtures as well, see Section 7.5.

1.3 Mediated Interactions

The fundamental particles of nature interact via forces, and those interactions are said

to be mediated by gauge bosons. For example, the electromagnetic force is mediated by

photons, and the weak force is mediated by W and Z bosons. Consider the classic example

of Møller scattering, depicted in Fig. 1.1. This is the simplest example of a process where

4
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γ

e−

e− e−

e−

Figure 1.1: Møller scattering. Shown is the (s-channel) diagram for Møller scattering, in
which two electrons scatter off each other, exchanging a photon. The interaction is said
to mediated by photons, and the process is second order in the coupling constant between
photons and electrons, which is the fine structure constant α.

the electromagnetic force is said to be mediated by a photon. The photon is a necessary

ingredient when evaluating the matrix elements and cross-section for this process.

The idea of mediated interactions, however, is much broader than this fundamental con-

text. There are a wide variety of systems which exhibit such interactions in materials and

even in Atomic/Molecular/Optical (AMO) physics at different levels. In the context of ma-

terials, a very famous example is conventional (BCS) superconductivity, which is observed at

low single-Kelvin temperatures in many metals such as, for example, tin and indium. There

is also the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which is closely related to

much of the science in this thesis and is mediated by fermions within a material. The most

studied example in AMO physics is the mediation of interactions by photons populating an

optical cavity [32, 33].

From the perspective of quantum science and simulation using neutral atoms, mediated

interactions add a level of complexity and control that can support novel quantum phases

and enable new types of Hamiltonian engineering. A major reason for this is that in typ-

ical ultracold atomic gases, scattering can be treated as a contact interaction (see Section

2.1). This simplification is a double-edged sword: it can permit more successful theoretical

predictions, but also limits the ability to realize a variety of quantum systems that involve
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long-ranged interactions.

There are a number of ways to engineer long-ranged potentials in ultracold gases; popular

choices include the use of molecules with dipole moments, Rydberg atoms, optical cavities,

and permanently magnetic atoms. The type of fermion-mediated interactions discussed in

this thesis are theoretically predicted to be long-ranged as well. They are weaker in strength

but many-body in origin. This makes them, in the opinion of the author, a ripe topic for

study, both in terms of fundamental science and quantum simulation.

1.4 Overview of the Thesis

The thesis is organized as follows:

• Chapter 2 presents a theoretical introduction that broadly covers the necessary knowl-

edge to understand the work in this thesis. It is aimed to provide a sufficient primer

for a graduate student.

• Chapter 3 presents an overview of the experimental apparatus. More complete descrip-

tions of most aspects are found in Ref. [34], however the recently added high resolution

imaging set up is discussed in more detail.

• Chapter 4 discusses our creation of the first degenerate Li-Cs mixtures and initial

scientific studies. In this chapter, we confirm degeneracy and create degenerate Fermi

gases entirely trapped by a BEC through interactions. By studying these trapped

Fermi gases, we gain insight into the processes which prevent the onset of mechanical

instability in our mixture at strong interspecies attraction. It is reproduced from

Ref. [35].

• Chapter 5 discusses our observation of fermion-mediated interactions between bosonic

atoms. We experimentally study the dipole mode of condensates immersed in a Fermi

gas, quantify the effect of fermion-mediated interactions based off the size of the BEC,

6



and observe Bose-Fermi solitons in the quasi-1D regime. This chapter is reproduced

from Ref. [36].

• Chapter 6 discusses our most recent work studying excitations of the condensate in

our mixtures. We perform the first direct measurements of sound propagation, and

extract information about effective 3-body boson-boson interactions and the critical

scattering length for collapse. Intriguingly, we also observe stable sound propagation

at resonant interspecies interactions. This chapter is reproduced from work which is

currently under submission.

• Chapter 7 discusses some ideas and future experiments that are of interest in our lab,

hopefully giving a sense of interesting work that lies just on the horizon.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, we will briefly discuss the theoretical background necessary to make sense

of the work in this thesis. It will not be a very deep dive, and the reader is encouraged to

pursue further reading in the references. It will, however, be presented in a simple way that

will hopefully help newer graduate students get their bearings. Much of the first few sections

follow portions of Refs. [37–41].

2.1 Ultracold Interactions

In this section, we will present a simple summary of ultracold atomic scattering and the

concept of Feshbach resonances, which allow the tuning of interactions between atoms using

an external magnetic field. This will provide a framework to understand the interactions

that are important in all of the experiments presented in this thesis.

The approach to describe ultracold two-body scattering is to solve the quantum mechan-

ical scattering problem at long wavelengths. We consider the Hamiltonian for the relative

motion of two particles

H =
ℏ2k2

2mr
+ V (r), (2.1)

where ℏ is the reduced Planck’s constant, r is the relative position of the two atoms, k is the

relative momentum, and mr is the reduced mass. We consider scattering solutions of the

form

ψ = eikz + f(θ)
eikr

r
, (2.2)

where z is taken as the arbitrary direction of the incoming wave and the second term is the

outgoing scattered wave. The outgoing wave can rewritten in terms of its angular momentum
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components according to a partial wave decomposition using the spherical harmonics. At

large separation, each component is characterized by a phase shift. For potentials V (r) that

fall off sufficiently quickly with distance, at very low energies (k → 0) the contributions

for components with angular momentum l > 0 vanish, leaving only an s-wave contribution.

The typical Van der Waals potential (approximated Vvdw(r) =
C12
r12

− C6
r6
) between neutral

atoms satisfies this criterion. At very low energies, the wavefunction approaches ψ = 1− a
r ,

which defines the scattering length a. For positive a, the extrapolated wave function to small

separations is pushed out of the scattering region, and for negative a it is pulled in. These

two cases correspond to effective repulsion or attraction, respectively.

If all of these simplifications hold, then the scattering potential can be replaced with

simpler pseudopotential which reproduces the scattering length a, given by

V =
2πℏ2a
mr

δ(r) ≡ gδ(r), (2.3)

where the reduced mass mr =
m
2 for intraspecies scattering, δ(r) is the Dirac delta function,

and g is the coupling strength for scattering between the atoms.

For distinguishable particles, the resulting scattering cross-section corresponds to only

the s-wave cross section σ = 4πa2. Due to symmetrization requirements, in the case of

identical bosons the cross section is doubled to 8πa2 and for identical fermions it vanishes.

This is a striking consequence of quantum scattering theory, which states that fermions in

the same internal state do not interact in the s-wave channel. The lowest partial wave that

can contribute is the p-wave channel, which is extremely suppressed at the typical energy

scale for degeneracy in these systems.

One of the major advantages of cold atoms as an experimental platform is the tunability

of the interactions between atoms using Feshbach resonances [42]. For multi-level atoms,

scattering can take place in different “channels,” which are sets of incoming and outgoing

states. If different internal states have different magnetic moments, then their relative energy
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Figure 2.1: Schematic of a Feshbach resonance. Left panel: Two scattering channels are
shown, the “open” channel (blue solid line) and the “closed” channel (red solid line). The
collision energy of two atoms in the open channel (black dashed line) is near the energy of
a bound state in the closed chanel (red dashed line). In general, each potential has many
bound states and there are many channels, but this is a simplified schematic illustrating one
resonance. Right panel: Scattering length near a Feshbach resonance at magnetic field B0.
At positive scattering lengths, the bound state is accessible to the atom pair.

can be tuned using a magnetic field, allowing control over the sign and strength of the atomic

interactions. This is referred to as a magnetically tunable Feshbach resonance.

For a schematic of how Feshbach resonances work, refer to Fig. 2.1. When the energy of a

bound state in a “closed” channel (not energetically permitted) becomes equal to the collision

energy, a scattering resonance can occur, called a Feshbach resonance. The scattering length

diverges in a characteristic way near the resonance

a = abg

(
1− ∆

B −B0

)
, (2.4)

where abg is the background scattering length, ∆ is the change in field between the resonance

and zero crossing, and B0 is the pole of the resonance. This interaction tuning is one of the

most important features of ultracold atom systems. In addition to the control over the

atomic interactions, they can be used to create molecules.
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2.2 Bose-Einstein Condensates

Condensation

A system of non-interacting bosons in 3D undergoes a phase transition (condensation) at

sufficiently low temperatures. This phase transition is characterized by macroscopic occu-

pation of the ground state due to Bose statistics. We will not discuss this process in great

detail, we refer the reader to textbooks such as Refs. [37, 43]. Consider a system of bosons

in the grand canonical ensemble. The expected occupation of state i is given by

⟨ni⟩ =
1

eβ(ϵi−µ) − 1
(2.5)

where β = 1
kBT with kB the Boltzmann constant and T the temperature, ϵi is the energy

of state i and µ is the chemical potential. At a critical temperature Tc, the fraction of the

sample in the ground state begins to grow as 1− (Tc/T )
α, where α = 3/2 for uniform gases

and α = 3 for harmonically trapped gases. In the latter case, the transition temperature

for a non-interacting gas is given by kBTC ≈ 0.94ℏω̄N1/3 where ω̄ = (ωxωyωz)
1/3, N is

the total particle number and ωi are the trap frequencies in each direction. Practically, it is

nearly impossible to bring a sample to sufficiently low temperatures without permitting it to

thermalize during cooling, which requires atomic interactions. The presence of interactions

complicates the picture of condensation, but the process still takes place at a modified critical

temperature.

Gross-Pitaevskii Equation

For a BEC with typical Van der Waals interactions it is appropriate to write the Hamiltonian

[37]:

H =
N∑
i=1

[
p2i
2m

+ V (ri)

]
+ gBB

∑
i<j

δ(ri − rj) (2.6)
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where pi is the momentum of particle i, V (r) is the external potential, and gBB is the

coupling constant discussed in the previous section. This Hamiltonian sums the kinetic and

potential energy of each particle, then add an pair-wise contact interaction with strength

gBB without double-counting.

For a product state of the form

Ψ(r1, r2, ..., rN ) =
N∏
i=1

ϕ(ri), (2.7)

where ϕ is the single particle wave function, the energy is given by

E = N

∫
dr

[
ℏ2

2mB
|∇ϕ(r)|2 + V (r)|ϕ(r)|2 + N − 1

2
gBB|ϕ(r)|4

]
. (2.8)

The interaction energy is then N2/2 times the interaction energy for a pair of particles for

sizeable particle numbers. The condensate wave function, ψ(r) ≡
√
Nϕ(r) is the single

particle wave function normalized to return the total particle number instead of unit prob-

ability, so that n(r) = |ψ(r)|2. For non-interacting gases (gBB = 0), this would correspond

to the the ground state of the external confinement V (r). Inserting this condensate wave

function ψ(r) into the energy and minimizing it with respect to independent variations gives

the celebrated (time-independent) Gross-Pitaevskii equation (GPE)

−ℏ2

2mB
∇2ψ(r) + V (r)ψ(r) + gBB|ψ(r)|2ψ(r) = µψ(r) (2.9)

In many cases, the kinetic energy term in the GPE can be ignored for calculating the ground

state because the interaction term dominates over the kinetic energy. This approximation

is referred to as the Thomas-Fermi (TF) approximation. For the typical case of harmonic

confinement V (r) =
∑3

i
1
2mω

2
i x

2
i , the resulting TF ground state density profile is parabolic,

giving the 3-D condensate density n0 as
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n0 =
µ

gBB

1−∑
i

(
x2i
R2
i

)2
 , (2.10)

where the Ri are the i-direction Thomas-Fermi radii of the condensate. These are given in

terms of the boson-boson scattering length aBB and trapping frequencies ωi as

Ri =

√
2µ

mω2i
= aho

(
15NBaBB

aho

)1/5

(2.11)

where aho =
√

ℏ
mω̄ is the oscillator length for the geometric mean of the trap frequencies

ω̄ = (ωxωyωz)
1/3. The chemical potential is fixed by the particle number N =

∫
d3r n0(r)

as µ = ℏω̄
2

(
15NBaBB

aho

)2/5
.

Outside of the TF approximation, for more accurate density profiles and to include

dynamics, it is necessary to take into account the kinetic energy. There are few analytical

results for full solutions, see Appendix C for discussions of simple numerical methods.

The GPE is a very effective tool to simulate trapped Bose-Einstein condensates, and has

been shown to be very useful for a wide variety of experiments. It does not always work,

however, as it assumes that all particles are in the ground state. At strong interactions, the

fraction which does not remain in the condensate (quantum depletion) can be large. Addi-

tionally, atoms can be excited out of the condensate, for example by time-dependent drives.

For long-ranged interactions, the GPE in this form is no longer appropriate, although it can

be approximated (see Section C). Despite its limitations, it is invaluable to experimentalists

working with condensed systems.

Bogoliubov treatment

The Hamiltonian can be re-written in terms of the annihilation and creation operators ψ̂

and ψ̂† for bosons as
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Ĥ =

∫
dr

[
−ψ̂†(r) ℏ2

2mB
∇2ψ̂(r) + V (r)ψ̂†(r)ψ̂(r) +

gBB

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
. (2.12)

For a homogenous gas, the position space operators can be written in momentum space as:

ap =
1√
V

∫
dre−ipr/ℏψ̂(r)

a
†
p =

1√
V

∫
dreipr/ℏψ̂†(r)

(2.13)

where V is the system volume and p is the momentum ℏk. They are the Fourier transform

of the position space operators. Then the Hamiltonian can be rewritten in terms of these

operators as

H =
∑
p

ϵ0pâ
†
pâp +

gBB

2V

∑
p,p′,q

â
†
p+qâ

†
p′−q

âp′ âp, (2.14)

where ϵ0p = ℏ2k2
2mB

is the bare kinetic energy of a boson. In the Bogoliubov treatment, one

replaces the operators â0 and â
†
0 with

√
N0, since for large particle numbers N ≈ N + 1 ≈

N − 1. Rather than ignoring quantum fluctuations, as in the GPE approach which yields a

classical field theory, they are only taken to be small. So, we keep only the largest orders

which allows the Hamiltonian to be approximated as

Ĥ ≈
N2
0 gBB
2V

+
∑
p̸=0

(ϵ0p + 2n0gBB)â
†
pâp +

n0gBB

2

∑
p̸=0

(â
†
pâ

†
−p + âpâ−p). (2.15)

This Hamiltonian can be written in terms of the new annihilation and creation operators

of non-interacting elementary excitations, rather than the bosonic atoms themselves. The

Hamiltonian becomes
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H =
N2gBB
2V

+
∑
p ̸=0

ϵpα̂
†
pαp −

1

2

∑
p ̸=0

(ϵ0p + n0gBB − ϵp). (2.16)

The annihilation and creation operators αk and α
†
k for the phonons are related to the corre-

sponding operators for the bosonic atoms ak and a
†
k through the Bogoliubov transformation

ak = ukαk + vkα
†
−k

a
†
k = ukα

†
k + vkα−k,

(2.17)

with coefficients defined by

u2k =
1

2

(
ϵBk + gBBnB

ℏωk
+ 1

)

v2k =
1

2

(
ϵBk + gBBnB

ℏωk
− 1

)
,

(2.18)

where ℏωk =

√(
ϵBk
)2

+ 2gBBnBϵ
B
k is the Bogliubov dispersion and ϵBk = ℏ2k2

2mB
is the

kinetic energy of a boson.

The third term in the transformed Hamiltonian gives the Lee-Huang-Yang (LHY) cor-

rection to the ground state energy, which is typically weak. However, LHY corrections have

certainly been measured, and in some cases can be fundamentally important to the behavior

of the system, for example in the case of Bose-Bose liquid droplets [44, 45].

2.3 Single Component Degenerate Fermi Gases

Degenerate Fermi gases are very different from Bose-Einstein condensates. In this section,

we will discuss the behavior of single-component zero temperature Fermi gases which to very

good approximation do not interact at ultracold temperatures, as discussed in Section 2.1.
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The particles in a degenerate Fermi gas follow Fermi-Dirac statistics, in which the occupation

of state i is given by:

< ni >=
1

eβ(ϵi−µ) + 1
(2.19)

with a very important change in sign in the denominator compared to the case of Bose

statistics discussed in the previous section. This sign change is a result of enforcing the

Pauli exclusion principle, and permits only one fermion per state. At zero temperature, a

single component degenerate Fermi gas will not macroscopically occupy the ground state

or undergo a phase transition, but will instead form a so-called “Fermi sea,” in which each

state is filled by one fermion up to the zero-temperature chemical potential, called the Fermi

energy EF .

In a harmonic trap, the particles thus occupy trap levels up to the energy EF . It is then

possible to calculate the density profile by summing up the appropriate number of harmonic

oscillator wave functions. The resulting density profile will not be “smooth,” but will rather

have small, Fermi energy scale ripples due to the eigenfunctions, which will lose contrast as

the particle number becomes large.

For large particle numbers and low momenta k ≪ kF where ℏ2kF
2mF

= EF defines the

Fermi momentum kF for fermions of mass mF , instead of using the eigenfunctions one can

employ the Thomas-Fermi approximation. Here, one treats the system semiclassically under

a local density approximation. Specifically, the system is taken to locally behave according

to the results of the uniform Fermi gas with a local Fermi EF − VF , where VF is the

external potential. For a uniform Fermi gas, the density is related to the Fermi energy as

EF = ℏ
2mF

(6π2nF )
2/3. In the Thomas-Fermi approximation for fermions of mass mF , we

relate the Fermi energy to the local fermion density nF and external potential VF as

EF =
ℏ

2mF
(6π2nF )

2/3 + VF , (2.20)
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where the Fermi energy is fixed by the normalization. In this picture, the extent of the gas

is set by the Thomas-Fermi radii Ri defined by EF = 1
2mω

2
iR

2
i . The resulting 3-D fermion

density nF is

nF = N
8

π2
1

RxRyRz

(
1−

∑
i

x2i
R2
i

)3/2

. (2.21)

This density distribution is useful for modelling low temperature systems, but it clearly

does not contain many important details. In particular, the density ripples that this smooth

profile are missing are the origin of the characteristic potential form for interactions mediated

by the Fermi gas (see Section 2.5.)

2.4 Thermometry

The most straightforward method of thermometry for these atomic gas samples is time-

of-flight imaging. The atoms are released from their optical confinement and allowed to

freely evolve, ballistically expanding outward as they fall under the influence of gravity. The

expansion is due to the kinetic energy of the atoms in the gas, and therefore can be used to

measure the temperature. For free time-of-flight expansion times which are long compared

to the trap period, the position distribution maps onto the momentum distribution.

Thermometry of Bose-Einstein condensates is relatively straightforward, because for tem-

peratures below the Tc for condensation there is typically a thermal fraction which can be

resolved in the absorption images. The condensate is only pure for zero temperature, and

the macroscopic occupation of the ground state leads to a clear high density peak which

distinguishes condensate atoms from thermal atoms.

Interactions between the condensate and surrounding atoms can lead to complications,

but fitting the expansion of the thermal fraction works as a thermometer as long as it is

resolvable in the imaging. Depending on the trapping geometry, directly fitting the thermal

fraction in situ can be sufficient. The boson density nB is bimodal below Tc and is a
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combination of two parts:

nB = n0 + nth (2.22)

where n0 is the 3D condensate density and nth is the thermal part. The thermal fraction

profile can be fit to a Gaussian given by:

nth = np,th
∏
i

e
−mω2i x

2
i

2kBT , (2.23)

where np,th is the peak thermal density, T is the temperature, and ωi are the trapping

frequencies. Note that the actual profile of the thermal fraction is not quite Gaussian. At

low temperatures, the distribution is modified by Bose statistics and is given in terms of a

polylogarithm. However, since the temperature is determined from the extent of the thermal

wings, rather than the overall shape of the distribution, this is not typically an important

correction.

As discussed in Section 2.2, the 3D condensate density is a parabola. In an absorption

image, the measured density is a 2D column density n0,2 after integration in the third

direction. Performing the integration results in the column density profile

n0,2 =
4

3

µ

gBB
Rz

(
1− y2

R2
y
− z2

R2
z

)3/2

. (2.24)

Often, we integrate again to perform a 1D bimodal fit, for example the x direction yields

n0,1x =
π

2

µ

gBB
RzRy

(
1− x2

R2
x

)2

. (2.25)

In the more specific case of our experiment, when performing time-of-flight measurements

for the Cs atoms we first allow the gas to freely expand for a few ms while at high magnetic

field, then switch off the field and allow further expansion. This is done to allow the density

of the gas to reduce somewhat before dropping the field and causing the Cs atoms to travel
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Figure 2.2: Effect of degeneracy on fermion density distribution. Inset: The fugacity z is
a sharp function of T/TF , and large values of the fugacity correspond to a higher degree
of degeneracy and further departure from Gaussian density profiles. 3D density profiles
are shown for a symmetric trap with ω/2π = 150 Hz and 1 × 104 particles for different
temperatures. The black dashed line is the T = 0 prediction (see text) and the red dashed
line is a thermal prediction for T = 0.8TF for comparison. The various other curves are
calculated for the labelled temperatures.

through many scattering resonances along the way which cause atom loss and heating. This

process must be modelled for the thermal fraction to obtain accurate temperatures from the

cloud size at a particular time of flight time.

For degenerate Fermi gases, however, performing thermometry is trickier. A single com-

ponent Fermi gas does not undergo any phase transition as it reaches low temperatures,

instead there is a smooth crossover. The overall kinetic energy in time-of-flight at zero tem-

perature is set by the Fermi energy, so you cannot use the expansion rate alone to tell you

the temperature as you approach the Fermi temperature TF . Instead, the shape of the gas

must be analyzed, and it is the departure from a thermal (Gaussian) profile which indicates

degeneracy. A tell-tale sign that T/TF < 1 is that the low momentum portion of the gas is

lower than for a thermal gas, so fitting only the wings and comparing the result is a good
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qualitative indicator of degeneracy. We will discuss this in a bit more detail now, with much

of the discussion following Refs. [46] and [38].

Thermometry of cold Fermi gases relies on the use of the polylogarithm function, which

frequently appears in the statistical mechanics treatment of Bose and Fermi distributions.

This function interpolates between the classical Gaussian profile and the zero-temperature

Thomas-Fermi profile. The polylogarithm of order n is defined by the series

Lin(x) =
∞∑
k

(−x)k/kn. (2.26)

We measure the temperature by performing 2D fits to the column density of the Li. We

use the Thomas-Fermi fit function

OD = A

Li2

[
−ze

(x−x0)
2

2σx e
(y−y0)

2

2σy

]
Li2 [−z]

+ c (2.27)

where A, x0, y0, σx, σy, c, and z are fit parameters representing an overall peak OD, the

x center, the y center, the x and y widths, an offset caused by noise, and the fugacity,

respectively. From the fugacity, the degeneracy parameter T/TF is then obtained via

T

TF
=

(
−1

6Li3(−z)

)1/3

. (2.28)

This degeneracy parameter characterizes the discrepancy from a Gaussian thermal distribu-

tion, but does not itself tell the temperature of the sample. The 3D density n is calculated

according to

n =
−1

λ3dB
Li3/2

[
−eβ(µ−VF (r))

]
(2.29)

where λdB =
√

2πℏ2
mF kBT is the thermal de Broglie wavelength. Sample calculated density

profiles are shown in Fig. 2.2 that illustrate the crossover from Gaussian to Thomas-Fermi
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profiles as the temperature is lowered at constant particle number (fixed by µ).

The discrepancy from a Gaussian in experimental data can be seen qualitatively by fitting

the wings or looking at the residuals of a full fit, which show clear structure at the center and

edges that disappears when the profile is fit to a polylogarithm. The expansion of the widths

σi, which grow as σi =

[
kbT
mω2

i
(1 + (ωit)

2)

]1/2
for a gas released from harmonic confinement,

is combined with the fugacity fit to obtain T and TF .

2.5 Response Functions and Mediated Interactions

In a quantum degenerate Bose-Fermi mixture, the bosons are capable of mediating an inter-

action between the fermions and vice versa. The simplest picture for understanding this is to

consider the system in terms of response functions. Atoms of the opposite species create per-

turbations as they move around in the gas, and other atoms feel those perturbations leading

to an effective interaction. Since response functions have length scales set by the properties

of the gas, they can be long-ranged, even though they originate from contact interactions

defined by the scattering lengths involved.

First, let us discuss the case for impurities immersed in a BEC. The response function

χB for a homogenous zero-temperature condensate is [37]:

χB(q, ω) =
nBq

2

mB(ω
2 − ω2q )

(2.30)

where nB is the boson density, q and ω are the momentum and frequency of the perturbation

and ωq is the Bogoliubov dispersion:

ℏωq =
√[

ϵ0q(ϵ
0
q + 2nBgBB)

]
(2.31)

where ϵ0q = ℏ2q2
2mB

is the kinetic energy of a boson and gBB = 4πℏ2aBB
mB

is the interaction

strength between bosons. The response function χB features divergences for the condition

21



Figure 2.3: Density response function of a BEC. The dispersion and response function are
shown for a BEC calculated from Eq. (2.30) for realistic experimental parameters and a
scattering length aBB = 260a0. The white dashed line indicates the Bogoliubov dispersion.
The colormap indicates the value of χB(q, ω), which shows a dispersive lineshape about the
divergence at the dispersion. The long wavelength, static limit gives χB(0, 0) = −1/gBB .

ω = ωq, which indicates that the system is resonantly excited if the excitation matches the

dispersion, see Fig. 2.3. This is an intuitive result, and the unphysical divergence is a result

of the omission of any damping mechanisms for the phonons in the simplest models of a

BEC.

Let us consider now the static limit, where the impurities are stationary (or moving very

slowly compared to the energy scale of the condensate.) Then,

χB(q, ω) ≈ χB(q, 0) =
nB

gBBnB + ℏ2q2/4mB
. (2.32)

If we perform a Fourier transform, we see that this is a Yukawa potential (recall that∫
d3keikr 1

m2+k2
∝ e−kmr/r):

χB(r, 0) =
−mBnB
πℏ2

e−
√
2r/ξ

r
(2.33)
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where ξ =
√

ℏ2
2mBnBgBB

is the healing length of the condensate.

The mediated interaction, then, results from a coupling of density fluctuations. To

see this, consider the following. A fluctuation in the impurity density δnI leads to a

potential felt by the bosons given by δVb = gBIδnI , resulting in a density fluctuation

δnb = χb(q, w)gBIδnI . Similarly, δVI = gBIδnI resulting in an effective second order energy

shift in the impurities of δVI = g2BIχbδnI , defining the induced interaction Uind = g2baχb.

The range of the potential ξ is extended as the chemical potential gBBnB is reduced,

indicating that less massive atoms lead to longer range mediated interactions, similar to

the case of fundamental particles. The boson-mediated interaction between fermions is

closely analogous to BCS pairing in conventional superconductors, see Section 7.4 for further

discussion.

The overall approach is similar for fermion mediated interactions, with the induced inter-

action between impurities now dictated by the fermion response function χF (q, w) instead.

However, the calculation of the response function for the Fermi gas is is more complicated.

This is not surprising, because the dynamics are not captured in something as straight for-

ward as the Gross-Pitaevskii equation. This is ultimately a consequence of their much more

complicated wave function.

Under the random phase approximation (RPA), the density response of a non-interacting

Fermi gas is the so-called Lindhard function [47, 48]. For a 3-D system, the real part can be

written

Re[χF (q̄, ω̄)] =
k3F

4π2EF

[
−1 +

4q̄2 − q̄4−
8q̄3

log

∣∣∣∣∣1 + q̄2−/2q̄

1− q̄2−/2q̄

∣∣∣∣∣− 4q̄2 − q̄4+
8q̄3

log

∣∣∣∣∣1 + q̄2+/2q̄

1− q̄2+/2q̄

∣∣∣∣∣
]
(2.34)

where ω̄ = ℏω
EF

, q̄ = q/kF , and q
2
± = ω̄ ± q̄2. See Fig. 2.4. In the static limit, when ω → 0,

the function reads
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Figure 2.4: Density response function of a non-interacting Fermi gas. The RPA response
function for a non-interacting Fermi gas is shown in terms of dimensionless energies and
momenta. The white dashed line indicates the momentum 2kF , where the function exhibits
a slope discontinuity in the static limit. The colormap indicates the value of χF (q, ω) which

is normalized to the long wavelength, static limit χF (0, 0) =
mF kF
2π2ℏ2 .

F (q̄) = −χF (q̄, 0) =
k3F

4π2EF

[
1 +

1− (q̄/2)2

q̄

]
log

∣∣∣∣∣1 + q̄
2

1− q̄
2

∣∣∣∣∣ , (2.35)

where as usual kF and EF are the Fermi momentum and energy respectively. This function

is plotted in Fig. 2.5.

The bosons which are present in the Fermi gas are coupled to the density through the

interspecies scattering length, and this effect can be calculated using the above response

function. In the case of our Li-Cs system, the low energy scale of the Cs gas as well as the

large mass imbalance motivates the static approximation that ω = 0.

The effective interaction potential between point-like Cs atom impurities is given by

taking the fourier transform of F (q), which gives the so-called RKKY potential form

VRKKY (r) = −g2BF
mF

8π3ℏ2
sin(2kF r)− 2kF r cos(2kF r)

r4
. (2.36)

24



0 1 2 3 4 5

q/k
F

0

0.2

0.4

0.6

0.8

1

(q
,0

)

Fermions

Bosons

Figure 2.5: Static response functions of a BEC (red) and non-interacting Fermi gas (blue).
The two response functions are calculated for homogenous gases with accessible peak densi-
ties in typical experiments near the |a >-Cs Feshbach resonance. The boson density is set
to 5.1 ×1013 cm−3 and the fermion density is set to 4.7× 1011 cm−3. Each curve has been
normalized by its zero momentum, zero energy transfer limit χ(0, 0).
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The potential exhibits ripples, called Friedel oscillations, at a length scale π
kF

associated with

a discontinuity in the slope of F (q) at the momentum q = 2kF . Note that this response

function has no divergences analogous to the boson case, because there are no long lived

excitations associated with the single component Fermi gas. Instead, there is just a broad

spectrum of available excitations.

In the low momentum limit, the static Lindhard function becomes:

F0 ≡ F (q = 0) =
mF kF
2π2ℏ2

(2.37)

This value F0 is the density of states at the Fermi surface for a homogenous Fermi gas.

This is an intuitive result, because for long wavelengths the system can be treated in the

Thomas-Fermi approximation as a uniform system.

2.6 The Mean-Field Phase Diagram

The overall phase diagram of a Bose-Fermi mixture is an interesting topic which has been

studied theoretically under various assumptions and approximations. The earliest works

studying this in a spin polarized Fermi gas mixed with a BEC are Refs. [49] and [50].

This section outlines the basic picture referred to in the literature as the mean-field phase

diagram. At weak interactions, the system is in a miscible phase. At strong repulsion, the

system may enter an immiscible phase (“phase-separates”) into two components with zero

overlap if kinetic energy is neglected. At strong attraction, the mixture is mechanically

unstable towards “mean-field collapse,” a process by which the density of both components

diverge. This phase diagram is the simplest model for the overall behavior of the mixture,

but additional complications such as thermalization time scales, particle loss, inhomogeneity,

and beyond mean field effects can all modify the observed phase boundaries and even the

phases themselves. In this section, we present the overall picture following closely several of
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these references.

To understand the overall stability of the mixture, the relevant criterion is the change

in energy for fluctuations of the particle densities. The total energy of the mixture Etot in

terms of the densities nB and nF is given by

Etot =

∫
drE(nB , nF ). (2.38)

We expand the total energy to second order in small fluctuations of the densities of each

component, δnB and δnF . Then, we have:

E(nB + δnB , nF + δnF ) ≈ E(nB , nF ) +
∂E

∂nB
δnB +

∂E

∂nF
δnF

+
1

2

(
∂2E

∂n2B
δn2B +

∂2E

∂n2F
δn2F

)
+

∂2E

∂nB∂nF
δnBδnF

(2.39)

The linear contributions in the expansion of the total energy are then just
∫
drµBnB and∫

drµFnF . Since the individual particle numbers of the bosonic and fermionic component

are fixed, these both indepedantly must vanish. To assess stability, one must now check at

second order if the configuration is a minimum, a maximum, or a saddle point by looking at

the Hessian matrix Hf,ij =
∂2f

∂xi∂xj
. Since µ = ∂E

∂n , we have

HE =

 ∂µ
∂nB

∂µB
∂nF

∂µF
∂nB

∂µF
∂nF

 . (2.40)

The determinant of the Hessian and the sign of its diagonal entries are sufficient to

indicate the local curvature. If the determinant is positive, this indicates either a minimum

or maximum, and the sign of a diagonal element indicates the curvature. If the determinant

is negative, it indicates a saddle point. Therefore, the system is stable for a global minimum

under the condition:
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Figure 2.6: Mean-field phase diagram for a homogenous mixture. Theoretical results are
shown according to the predictions for a uniform system. The blue line indicates the bound-
ary for collapse, and the red line indicates the boundary for phase separation. The black
dashed line indicates a typical peak fermion density in our (inhomogenous) experiments. The
boson-boson scattering length is taken to be aBB = 265a0, and the result is independent of
the boson density.

∂µB
∂nB

∂µF
∂nF

− ∂µB
∂nF

∂µF
∂nB

≥ 0, (2.41)

with the additional constraint that for both species independently ∂µ
∂n ≥ 0.

First, let us consider a homogenous BF mixture, where our desired results can be obtained

analytically. We start from the chemical potentials of each species in the Thomas-Fermi

approximation and at zero temperature. The chemical potential of the bosons µB is given

by

µB = nBgBB + gBFnF , (2.42)

where nB is the (condensed) boson density, gBF is the interspecies interaction coupling

constant, and nF is the fermion density. The fermion chemical potential is

µF = EF + gBFnB =
ℏ

2mF
(6π2nF )

2/3 + gBFnB . (2.43)
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The elements of the matrix HE are then

HE =

gBB gBF

gBF
2ℏ

6mF
(6π2)2/3n

−1/3
F

 , (2.44)

resulting in the stability condition,

2gBB

3

ℏ
2mF

(6π2)2/3n
−1/3
F − g2BF ≥ 0 (2.45)

which can be re-arranged to give

gBB ≥ 3

2
g2BF

nF
EF

= F0g
2
BF . (2.46)

This is equivalent to the statement that the system becomes unstable towards collapse when

the bare boson-boson repulsion gBB is overcome by mediated attraction as described in the

previous section.

A more complicated argument that does not originate from an expansion in small density

fluctuations predicts the condition for a saddle point, as described in Ref. [50]. This occurs at

a critical fermion density nf,c =
3

4πa3BF

[
aBB/aBF

(1+mF /mB)(1+mB/mF )

]3
. This condition, as well as

the condition for collapse are shown in Fig. 2.6. The regime of phase-separation corresponds

to the spontaneous formation of a separated pure bosonic phase and pure fermionic phase.

In a nonuniform system, we can model the phase diagram by adding an additional poten-

tial energy for each species VB and VF that contains the trapping potential and allowing nB

and nF to be functions of space. Then, we can assign the instabilities based on the central

densities, which will be the first to both collapse and phase separate. We start from the

zero-temperature Thomas-Fermi expressions for the chemical potential of each species:

µ = gBBnB + VB + gBFnF (2.47)
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EF =
ℏ2

2mF
(6π2nF)

2/3 + gBFnB + VF, (2.48)

There is no simple analytical form to solve for the resulting density profiles as a function of

interspecies scattering length aBF . However, they can be found numerically. The simplest

way to calculate the density profiles and phase diagram is to self consistently evaluate the

chemical potential of each species by iteration until the simulation converges, see Appendix

C. When it converges, it will converge to the ground state density distribution, and if it

fails to converge that can be understood as an instability towards collapse. We define phase

separation as zero density overlap in the center of the trap, but it is not a well defined phase

transition for an inhomogenous gas.

While there is no analytic solution, we can consider the central densities approximately

and make reasonable estimates for the phase boundaries in our system. Due to to the

significant density mismatch in our mixture, only a small fraction of the total fermions are

displaced or trapped by the condensate even for sizeable scattering lengths. Typical peak

densities with no interactions are 5× 1013 cm−3 for bosons and 3× 1011 cm−3 for fermions,

and typical condensate Thomas-Fermi radii are about 50 microns in the long axis and 2

microns in the short axis. The fraction of fermions occupying this volume is then roughly

nF
NF

RxRyRz ∼< 1%. Even accounting for the effect of mean field attraction only a few

percent at most can be confined. Therefore, we can approximate the Fermi energy in the

mixture as the bare Fermi energy for the trapped Fermi gas. Furthermore, the interaction

energy gBFnF tends to be quite small compared to the boson chemical potential even for

large scattering lengths. These reasons motivate the approximate expression at the trap

center:

µ = gBBnB + gBFnF0

(
1− gBFnB

EF

)3/2

(2.49)

where nF0 and nB are the densities of each species with no interspecies interactions. This
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Figure 2.7: Mean-field phase diagram for a inhomogenous mixture. Theoretical results are
shown according to the predictions for the nonuniform system with simplifying approxima-
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permits the calculation of the collapse boundary according to vanishing compressibility

∂µ
∂nB

= 0 and the phase separation boundary as gBFnB = EF . The critical collapse condition

can be evaluated as

nB,c =
EF

gBF

(
1−

4E2
F,0g

2
BB

9g4BFn
2
F0

)
(2.50)

where nB,c is the critical boson density for collapse. See Fig. 2.7 for the resulting phase

diagram.

The system can be more accurately modelled by including a kinetic energy term for each

species. For the bosons this is very straightforward, and just looks like a standard Gross-

Pitaveskii equation. For the fermions, going beyond the Thomas-Fermi approximation can

be tricky, and we typically do so in a hydrodynamic approximation. Again, we refer the

reader to Appendix C for more details. We note that ground state results in our system

do not depend significantly on the inclusion of fermion kinetic energy. However, as demon-
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strated in experiments by R. Grimm’s group [51, 52], corrections beyond the Thomas-Fermi

approximation can be very important in the regime of strong repulsion and phase separation,

where they play a role in the properties of the interface between species.

2.7 Excitations

In the previous section, we discussed the response functions of the Fermi gas and Bose-

Einstein condensate. The quasiparticle excitations of the BEC follow the Bogoliubov disper-

sion, and that is reflected in the divergence of the response function. However, if the BEC is

immersed in a Fermi gas, as in our experiments, the density profiles are coupled to each other

through the interaction term gBFnBnF. Through this coupling, the Fermi gas responds to

phonons which are travelling through the BEC according to the Lindhard function, and the

resulting energy shift leads to a change in the BEC dispersion. This argument is laid out in

a microscopic calculation in Ref. [53] and a more transparent form in Ref. [54]. Following

Ref. [54], we can write the coupling between the density fluctuations δnB and δnF of the

two species as a matrix:

 1 gBFχB

gBFχF 1


δnB
δnF

 = −

χBVB
χFVF

 . (2.51)

Inverting the matrix on the left yields 1
1−g2BFχBχF

 1 −gBFχB

−gBFχF 1

 giving the rela-

tion:

δnb =
1

1− g2BFχBχF
(χBVB + gBFχBχFVF ). (2.52)

This expression tells us how external potentials on each component of the gas create pertur-

bations to the boson density. The boson dispersion corresponds to excitations only through

the boson potential VB . Therefore, the response function of the condensate χB is modified
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to the new effective response

χ′B =
χB

1− g2BFχBχF
(2.53)

and the collective modes correspond to the divergence of this modified response function,

as they did to the original χB discussed in Section 2.5. Inserting χB , we see that this

corresponds to

nbq
2

mB(ω
2 − ω2k)

=
1

g2BFχF
. (2.54)

Re-arranging gives

ω = ωk

√
1 + g2BFχFnB

q2

ωkmB
. (2.55)

This is actually a rather intuitive result. It says that the Lindhard function is excited at the

ω and k determined by the bare boson Bogoliubov distribution, and this results in a small

energy correction. At small q, the result is that the modified sound speed is the sound speed

expected for a condensate with effective interaction strength gBB − g2BFF0.

We take a moment to comment on the more first principles, microscopic calculation from

Ref. [53] which starts from the Hamiltonian in terms of the Bogoliubov phonons. It arrives

at the expression

ℏω = ωk + g2BFnB
ϵBk
ωk
χF (k, ωk/ℏ). (2.56)

The result obtained in this way actually agrees to second order in gBF , which can be seen

by expanding Eq. (2.55) for small changes in the dispersion.

We evaluate Eq. (2.56) for various system parameters and show the resulting dispersions

in Fig. 2.8. For k ≪ kF the effect of the Lindhard function is to simply reduce the sound

speed. In the experimental work presented in Chapter 6 , we are still at wavelengths long

compared to both the healing length ξ and 1/kF , meaning that we excite only this low

momentum region of the Lindhard function and expect only sound speed shifts. Information
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Figure 2.8: BEC dispersion modified by fermions. The bare BEC dispersion (black solid line)
and the modified BEC dispersion (red solid line) are shown for realistic system parameters.
The red dashed line is the limit calculated for the sound speed in Ref. [53]. Note that
this line is tangent to the full calculation for low momenta. The calculation is performed
for 30,000 bosons and 20,000 fermions in reasonable trap frequencies for our experiment.
The results are shown for three different magnetic field values on the attractive side of the
Li-Cs Feshbach resonance at 892.65 G which correspond to interspecies scattering lengths
(a) −500a0, (b) −725a0, and (c) −950a0.

can be learned about the higher momentum portion for example using Bragg spectroscopy

(see Section 7.1) or by carefully studying the propagation of density perturbations.

As a note of interest, the presence of the Bose-Einstein condensate also induces a sound

mode in the single component fermion gas which is otherwise non-interacting and does not

support such excitations [55].

2.8 Solitons

The GPE is a nonlinear wave equation, and such equations are capable of supporting “soli-

tary wave” solutions, or “solitons” when the profile of the excitation can balance out the

dispersion. There are a variety of types of solitons that can form in Bose-Einstein conden-

sates. In general, solitons are either dark and correspond to density depletions, or bright and

correspond to enhancements. Dark solitons can be created optically [56], and bright solitons

can be formed by collapse and modulational instability [57, 58]. Dark solitons travel with a

velocity determined by their density amplitude δn, according to v = cB
√

1− δn/n0 where
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cB is the Bogoliubov sound speed and n is the peak condensate density. These are closely

related to the propagating density excitations described in Chapter 6, and hence travel with

the same speed, but those do not exactly correspond to solitonic solutions.

There has been several theoretical investigations into Bose-Fermi solitons as well [59–62].

These solitons are stabilized by the interspecies interactions, and can form for both attractive

and repulsive scattering length aBF . Bright solitons in the condensate can either look bright

(aBF < 0) or dark (aBF > 0) in the Fermi gas. We believe that the solitons we observed in

Chapter 5 correspond to the bright-bright case, but did not have in-situ Fermi gas imaging

in place to confirm at the time of that work. Note that the presence of the bosons can

create solitons in the non-interacting spin polarized Fermi gas, even though they cannot be

supported by the fermions alone.
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CHAPTER 3

EXPERIMENTAL APPARATUS

In this section, we describe the apparatus which was used to perform the science in this

thesis. J. Johansen’s thesis (Ref. [34]) contains an in-depth discussion of the systems details.

Presented here is a less thorough overview. There are some very significant apparatus up-

grades, however, which are the capability for in situ imaging and potential projection using

a high-resolution objective. These are discussed in considerably more detail in Section 3.7.

3.1 General Set-Up

To study ultracold atomic gases, it is necessary to create an environment which is free from

(comparably) hot air molecules which would kick atoms out of their trapping potential upon

collision. A room temperature (∼ 300K) atom is of enormous energy compared to the typical

energy scales accessed by optical trapping. This leads to a finite lifetime (called vacuum or

1-body lifetime) that limits the time over which a particular atomic sample can be studied.

Sufficient vacuum lifetimes are achieved by performing experiments at ultra high vacuum

(UHV) inside of a steel vacuum system which has been carefully designed and assembled.

Components must be thoroughly cleaned prior to assembly, and once assembled must be

heated to hundreds of degrees C for long periods of time (“baked”) in order to allow the

material to outgas. Our vacuum system has several major components. It contains a set of

ovens, in which our Li and Cs source material is stored and heated, a small chamber with

viewports for creating a 2D MOT of Cs, a long tube which provides differential pumping

and also forms part of the Zeeman slower, 2 ion pumps, a Ti sublimation pump, and a main

science chamber. The vacuum system must of course be sealed to maintain low pressure,

but it has various windows which allow the passage of laser light which is used to cool, trap,

and probe the atomic samples inside. See Fig 3.1 for a schematic depicting the main science
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Figure 3.1: Schematic of vacuum chamber and laser light. The atomic samples are at the
center of the vacuum chamber, and are exposed to various laser beams from different beam
paths and laser sources throughout the experimental sequence. The magneto-optical trap-
ping (MOT) beams come in along three perpendicular directions and are retro-reflected. The
horizontal and vertical imaging beams travel along with the MOT beams but are transmitted
by the same optics which reflect the MOT, see Fig. 3.9. The Raman sideband cooling (RSC)
lattice beams form a lattice using 3 beams and a single retro-reflection.. The Zeeman beam
is aimed through the Zeeman slower and hits the back of the ovens (not shown.) The dipole
traps all enter through the same window and are dumped on the other side of the chamber.
Images can either be taken vertically or horizontally, with the horizontal camera placed at
a 45 degree angle with respect to the long axis of the trapped clouds.
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chamber and beam paths through the viewports.

The top and bottom of the vacuum chamber have recessed viewports, which allow objects

to be brought close to the atomic sample. It is important for these experiments to be able

to control the magnetic field that the atoms experience, which is generated primarily by two

water cooled copper coils which are mounted to these recessed viewports, see Refs. [34, 63]

for further details. To summarize, the magnetic field coils consist of many stacked copper

discs with water channels carrying water in the direction parallel to the axis of the coil,

rather than in series as with typical hollow conductor coils. These coils carry about 300 A

of current during the high field portions of a typical experimental sequence, and are capable

of generating fields from 0-1000 G.

The recessed viewport on the top of the vacuum chamber is additionally used since recent

hardware upgrades to bring a high-resolution microscope objective near the atoms and obtain

high numerical aperture (NA), see Section 3.7. The lower recessed viewport will additionally

be used in the near future to bring a small, much faster coil very close to the atoms to

perform fast modulation of the magnetic field and therefore the atomic interactions.

Throughout the experimental sequence, it is necessary to control a variety of signals,

such as various optical powers, shutters, and coil currents. This control is performed using

a computer running LabView and National Instruments PCI/PCIe cards. The LabView

program intakes a series of voltage and timing instructions on various channels, which are

then uploaded to the cards and executed according to an external clock. For more details

about the computer control, see Appendix A.

3.2 A Small Amount of Atomic Physics

In the work presented in this thesis, atoms are tools which we are using to study many-body

physics, rather than the primary focus of study themselves. It is nonetheless very important

to have a working knowledge of the basic behavior of atoms and their interaction with electric
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Figure 3.2: Level structure of the D2 transition in Cs over the accessible magnetic field
range of the experiment. (a) Cs D2 transition structure at zero field. (b) As a function
of magnetic field, the various magnetic sublevels split. The ground state of Cs is in the
intermediate regime at 1000 G, but the excited state has already entered the Paschenbach
regime by ∼200 G. We perform laser cooling near zero field, then evaporation and science
near 900 G. See Ref. [64] for the various constants necessary to calculate these levels.

and magnetic fields.

The atoms discussed in this thesis are alkali atoms, so their outer shell contains one

unpaired electron. This means that they are very similar in structure to hydrogen, although

they have in general more internal states. Various excited internal states have lifetimes (or

equivalently, linewidths Γ) which are due to transition probabilities to lower lying states.

Atoms can be transferred between states by any perturbation of their Hamiltonian which

couples the relevant states together, but the most common method for controlling these

transfers is using light.

For both of our atomic species, we work on the D2 transition, which is the electronic

transition from the S1/2 ground state to the P3/2 excited state. The structure of the relevant

internal states for Cs is shown in Fig. 3.2 and for Li in Fig. 3.3. Due to unfavorable two-body

relaxation rates in Cs, it is only possible to create stable BECs of the absolute lowest internal

ground state. Li, however, being fermionic, can be stably created in a variety of internal
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Figure 3.3: Level structure of the D2 transition in Li over the accessible magnetic field range
of the experiment. (a) Li D2 transition structure at zero field. (b) As a function of magnetic
field, the various magnetic sublevels split. Both the ground and excited states are in the
Paschenbach regime at 900 G. Note that the four m′

j levels in the excited state each contain

a set of m′
I = {−1, 0, 1} states, but their splittings are only a few MHZ and unresolvable on

this graph. We perform laser cooling near zero field, then evaporation and science near 900
G. See Ref. [65] for the constants necessary to calculate these levels.
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states due to Pauli blocking of collisions. Conventionally, the Li ground states are labelled

from the bottom up, either by the numbers 1-6 or the letters a− f . We will use the letters

a− f , and for all of the science data in this thesis we are working with the absolute lowest

internal state, |a⟩.

The states are labelled at zero field according to the quantum number F which is the

total angular momentum F = I+L+S, where I is the nuclear spin, L is the electron orbital

angular momentum, and S is the electron spin. This is referred to as the Zeeman regime,

where the states shift in a magnetic field according to their magnetic quantum number mF

as ∆B = µBgFmFB, where gF is the hyperfine Lande g-factor. Both the lowest internal

state of Cs and states a− c in Li are “high-field seeking,” meaning that they can be trapped

(for 2 directions) by a magnetic quadrupole trap. This type of confinement provides the

primary weak confinement along one direction in our degenerate samples.

At high fields, the interaction between the nucleus and electron is weak compared to their

interaction with the external field, and they decouple. This is referred to as the Paschenbach

regime, and the appropriate quantum numbers are no longer F but instead J = L+S and I.

The resulting field shift is ∆B = µB(gJmJ + gImI)B where gJ and gI are the appropriate

g-factors.

Although there are many states in each diagram shown in Figs. 3.2 and 3.3, often the drive

is tuned to frequencies near resonance and the system can be reduced to approximately two

levels. For times short compared to the linewidth of the transition Γ, the system undergoes

Rabi oscillations between the ground and excited state at the Rabi frequency
√
Ω2 + δ2

with contrast Ω2

Ω2+δ2
, where δ is the detuning. For times long compared to the linewidth,

the photon scattering rate is Rsc = Γ
2

Ω2/2
δ2+Ω2+Γ2/4

. We are in the latter limit for all of the

interaction between atoms and light described throughout the thesis except for microwave

transitions in the ground state manifold of Cs. The Rabi frequency can be connected to the

intensity of light and saturation of the transition through I/Is = 2Ω2

Γ2 , which connects this
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Figure 3.4: Atomic interaction strengths. Scattering lengths of all relevant species combina-
tions are plotted from 500 - 1000G. Shown are the Cs-Cs (in |3, 3⟩) (blue solid line), Cs-Lia
(red solid line), Cs-Lib (red dashed line), and Lia-Lib (green solid line) scattering lengths.
Note that the behavior of the Cs scattering length is only favorable for evaporation near 900
G on this plot. The curves are from the Refs. [66–68]

scattering rate to the cross-section expressions given in Section 3.7.

3.3 Feshbach and Efimov Resonances in Li-Cs

The Feshbach resonances for the lowest two spin states of Li colliding with the ground state

of Cs have been characterized experimentally both by the Weidemüller group and earlier

members of the Chin group. These Feshbach resonances are very powerful experimental

tuning knobs, both for attaining ultracold gas samples in the first place and further science

once they have been created. Tuning the interactions permits efficient evaporative cool-

ing, and also allows systematic investigation of ultracold gas systems from weak to strong

interactions.

Our experiment involves the two lowest hyperfine states of Li (|a⟩ and |b⟩) and the

absolute hyperfine ground state of Cs (|3, 3⟩). Their scattering lengths are plotted in Fig.
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3.4. For science beyond system preparation, the experiments in this thesis all take advatange

of the |a⟩-Cs Feshbach resonance at 892.648 G, which has a width of ∆ = 2G and strength

sres = 0.02 [68].

There are additionally very well studied Efimov resonances. The one most likely to be

relevant for the work in this thesis is for Cs-Cs-|a⟩ at 892.689 G, which corresponds to

aBF = −3300a0. The three-body interactions near this resonance may play a role in physics

near the Feshbach resonance pole. The behavior of degenerate Bose-Fermi mixtures near

such an Efimov resonance is an interesting avenue of future study, see Section 7.2.

In order to successfully perform evaporative cooling, it is important to have sufficient

interaction strength for good thermalization rates (which depend on the elastic cross section

∼ a2), but not too high so as to lose too many atoms to three-body loss (∼ a4), which is

the dominant atomic loss process (in a good vacuum). Roughly speaking, values of about

∼ 100a0 are good for bosons, but the scattering length for Cs-Cs collisions in the lowest

hyperfine state is about -2500 a0 at zero field. In this sense, working with Cs beyond the

single particle limit requires some tuning of the interactions, and in fact condensates have

only been reported near the zero-crossings near 20 G and 900 G.

It is therefore extremely fortunate that there is an interspecies Feshbach resonance near

892 G, where we are able to create BECs of Cs and also control the interactions between

the Cs and Li atoms. This is the core feature of the Li-Cs mixture which enables the science

presented in the rest of this thesis and establishes it as a valuable platform for studying the

many-body physics of Bose-Fermi mixtures.

3.4 Laser Cooling

Each of our atomic species must be brought from above room temperature (∼ 330C for Li,

∼ 50C for Cs) down to temperature scales low enough that their de Broglie wavelengths are

comparable to their inter-particle spacing. This is done using a combination of laser cooling,
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which transfers the thermal energy of atoms into scattered photons, and evaporative cooling

in optical traps.

Laser cooling schemes are broadly separated into “Doppler” and “sub-Doppler” tech-

niques, named for their lowest theoretically achievable temperatures TD = ℏΓ
2kB

and TR =

ℏ2kL
mkB

. The Doppler limit is defined by the decay rate of the cooling transition, while the

limit of sub-Doppler cooling, the recoil limit, is limited by the wavelength of the light. For

us, these correspond to TD ≈ 120 µK and TR ≈ 200 nK for Cs and TD ≈ 140µK and TR ≈

3.5 µK for Li.

Cooling schemes are most straightforward to enact using atomic species which have

“closed” or “cycling” transitions, which allow many scattering events to occur before the

atom leaks into a state which is no longer resonant. These are determined by the available

internal states and transition selection rules. In alkali atoms, the structure of the D2 tran-

sitions allows for such transitions between the “stretched” states (|mF | = F ) in the ground

and excited manifolds. This fact, combined with their relatively simple electronic structure

resulting from only a single valence electron, has led to them being the historical workhorses

of ultracold atomic physics. We live in exciting times, however, and this is rapidly changing

with the cooling of many different types of elements (such as the lanthanides and alkaline-

earths) with various advantages and drawbacks for quantum simulation and computation.

The overall process of laser cooling works essentially the same for both Cs and Li atoms

down to the Doppler limit, but below that they are not amenable to the same techniques.

This is because the hyperfine splitting is unresolved for 6Li, meaning that the separations

are smaller than the linewidths (see Fig. 3.3). For this reason, we employ the sub-Doppler

technique of degenerate Raman Sideband Cooling (dRSC) [69] on Cs, but not Li. There are,

however, other techniques which have been very successful for efficient sub-Doppler cooling

of Li, in particular grey molasses on the D1 line [70]. This capability is not possible for us

at the time of this thesis, but it is a potential upgrade which can be implemented if we wish
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to reach significantly larger atom numbers in our degenerate Fermi gas .

For each of our atomic species, we have a set of < 1 W lasers near resonant with the D2

line to perform laser cooling as well as absorption imaging. For an in-depth discussion of

these laser systems, I refer the reader to Ref. [34]. Essentially, each set has a “Reference”

laser, which is locked to a vapor cell which provides an absolute frequency reference, then a

“MOT” and “Repump” laser which are locked to the reference using the optical interference

(a beat-note) on a photodiode. The MOT and Repump lasers play the roles of providing the

cooling light for laser-cooling, and preventing the sample from “going dark” by accumulating

in internal states which are not resonant with the cooling light. In the case of Cs, there are

an additional two lasers used to create the dRSC lattice. A combination of shutters, acousto-

and electro- optical modulators (AOMs/EOMs), and laser current/piezo control determine

the frequencies and intensities of light to which the atomic sample is exposed throughout

the experiments.

The typical laser cooling sequence to produce degenerate Cs and Li |a⟩ mixtures is sum-

marized below. For more information about each dipole trap, see Section 3.5.

1. Li MOT loading. We begin the sequence by performing a 10 second load of Li atoms

by setting the Zeeman coil and main coil currents to the Li configuration and turning

on the Li Zeeman and MOT beams.

2. Li CMOT. We ramp the beam powers, detunings, and field gradient to create a higher

density atomic gas sample for loading into the BFL dipole trap. At this stage, we

typically image about 11 million atoms at < 500 µK.

3. BFL loading / pre-evaporation. We ramp up the BFL power and switch off the laser

cooling light, then perform some initial fast cooling of the resulting Li |a⟩ − |b⟩ spin

mixture at resonant interactions using the appropriate Feshbach resonance near 850 G

[66]. Note from Fig. 3.3 that these are the two states are adiabatically connected to the
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absolute internal ground state at zero field. Once they have been initially somewhat

cooled, we translate them away from the MOT loading region using a motorized stage.

The evaporation process can be done quickly at strong interactions because three-body

loss is suppressed for two-component fermion mixtures.

4. Cs MOT loading. We load a Cs MOT for 3.7 seconds by switching the Zeeman current

and main current configurations to be appropriate for Cs and turning on the Cs Zeeman

and MOT beams. This is done while the Li sample is not present in the MOT region

to avoid near resonant light induced loss.

5. Cs CMOT. We ramp the beam powers, detunings, and field gradient to increase the

atomic density in preparation for loading into the RSC lattice.

6. Cs Molasses. We release the atoms from the field gradient and perform 5 ms of optical

molasses / polarization-gradient cooling. During this time, the gas slowly expands since

it is no longer confined. We typically image ∼ 80 million atoms at ∼ 10 µK at this

stage.

7. Cs RSC. We load the Cs gas into the RSC lattice, and perform cooling using the

optical pumping beam as cooling light and the MOT beam as a repumper. In this

process, atoms are cooled through transitions that remove vibrational quanta from the

motional states of the trapped atoms in the wells of the lattice. At this stage, we

typically image ∼ 15 million atoms at ∼ 3 µK.

8. State purification / OTOP Loading. RSC pumps most of the atoms into the lowest

internal state of Cs. We perform levitation using a field gradient (31.1 G/cm) to allow

only those atoms to remain and purify the sample. After the spin state is purified,

we ramp down the levitation gradient while loading into the OTOP which is being

modulated to increase trapping volume out of the RSC. Finally, we ramp up to high

magnetic field where the Cs scattering length is appropriate for evaporation, and reduce
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the modulation on the OTOP to zero. After this stage, we typically image ∼ 3 million

atoms at ∼ 6 µK.

9. Evaporation. We then cool the Cs atoms to ∼ 1 µK via forced evaporation for about 10

seconds by reducing the power in the OTOP beam according to an optimized trajectory

and keep ∼ 1.2 million Cs atoms. At the same time, we evaporate Li in the BFL to a

point where we typically image ∼ 90 k Li atoms at ∼ 5 µK. The exact number and

temperature we measure here is prone to significant drift month to month. We think

this is due to drifts in the exact trap depth near the very bottom of the BFL intensity

control voltage.

10. State purification / Li transfer to dual color. We transfer the atoms from the BFL into

the dual color trap by translating the stage back to the science region and lowering

the BFL intensity while ramping up the dual color beam powers. We typically image

∼ 15k Li atoms at this stage. We bring the Li atoms to about 300 nK in the dual

color trap, then perform a resonant light pulse to eject |b⟩ atoms out of the trap. It is

important to keep |b⟩ up until this point, so that the fermions can thermalize during

evaporation (otherwise they would be non interacting.)

11. Cs transfer to dual color. We load the Cs into the dual color trap by manipulating the

OTOP position, power, and the power in each of the dual color beams. See Section

3.6 for more detail.

12. Sympathetic cooling. We perform a final round of forced evaporation where the Li

and Cs are cooled together and thermalizing. This can be done on either side of the

Feshbach resonance, and works best for interspecies scattering lengths |aBF | between

100-200 a0.

After all of the above steps, which take about 27 seconds, we end up with dual degen-

erate mixtures of Li |a⟩ and Cs [35]. We consider this the initial preparation phase of an
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experiment.

3.5 Dipole Trapping

Throughout the experimental stages outlined in the previous section, the samples are loaded

into off-resonant dipole traps which function as external potentials. The strength and sign

of this potential are determined by the wavelength λ and intensity I of the light according

to [71]:

Udip(r⃗) = −
∑
i

3πc2

2ω30i

(
Γi

ω0i − ω
+

Γi
ω0i + ω

)
I(r⃗), (3.1)

where c is the speed of light, ω0i are atomic resonance frequencies and Γi are their linewidths.

The dipole force falls off more slowly with large detunings from atomic resonance than the

scattering rate, which permits long lifetimes in optical traps if sufficiently off resonant light

is used. The strength of the potential for various wavelengths is shown in Fig. 3.5 for both

Li and Cs. The scale of the off-resonant trapping force necessitates high power lasers with

outputs > 1 W. These traps are often characterized by the trap depth (peak potential felt

by the atoms), and the (easily measured) trap frequency, given by the Taylor expansion of

the trapping potential about its minimum.

There are four dipole trapping beams, which we denote the BFL, the OTOP, the 1064,

and the 780, the latter two of which share an optical fiber and are dubbed the dual color.

The BFL is a crossed dipole trap with a maximum ∼ 80 W per arm that can be translated

using a motorized stage. Note that this laser is quite powerful, and is required due to our

lack of sub-Doppler cooling for Li. Even with this very bright light source, we only manage

to load a small fraction of the coldest Li atoms out of the Li CMOT and into the trap. The

OTOP is a max ∼ 15 W beam path which has a ∼ 1 m path length after being diffracted by

an AOM with tunable drive frequency. By modulating the drive frequency at 100 kHz, the

beam is dynamically expanded in order to increase loading volume out of the RSC, and by
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Figure 3.5: Optical dipole force on Li and Cs atoms. Trap depth experienced by Li (red
solid line) and Cs (blue solid line) exposed to light of intensity 1 mW/cm2. Black dashed
lines indicate wavelengths of off-resonant light used on the atoms in our experiment. They
correspond to the DMD at 635 nm, the dual color beam at 780 nm, and the two dipole traps
at 1064 nm.

tuning the average value of the drive frequency the position along the gravity direction can

be controlled. The dual color trap creates two foci displaced vertically by ∼ 10 µm at the

location of the atoms, with the 780 nm lower than the 1064 nm beam. This allows for the

compensation of gravitational sag between the two species, because 780 is blue-detuned and

repulsive for Cs but red-detuned and attractive for Li. It also provides an additonal useful

degree of freedom to control the separation of the gases when mixing them together.

Some small additional notes for future graduate students: two of the laser sources that

were in use at the time of Ref. [34] have been replaced in the experiment. The Mephisto

MOPA and the small IPG fiber laser (SFL) have been replaced with a single 30 W system

from Precilasers. Also, the dual color 780 nm intensity lock pick off path has been changed

to minimize some observed contamination from the 1064nm beam. The ZDT path currently

has no input light, but much of the beam path still exists and could be used in the future if

picked off from the remaining Precilasers power.
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3.6 Trap-Mixing

As a general strategy, we perform laser cooling and initial evaporative cooling separately

on the two species, only mixing them together once they have reached temperatures of

about 300 nK. This allows the cooling of each species to be, for the most part, troubleshot

and optimized separately. Many details of the laser cooling process can be found in earlier

sections of this thesis and Ref. [34]. At the time of that thesis, the experimental procedure

was developed to create cold (but still thermal) gases in the hundreds of nK with tunable

overlap for the purposes of doing careful three-body-loss measurements. After that work was

completed, we optimized the later stages of the experiment to achieve degeneracy.

We began by optimizing the evaporation of Cs in the OTOP, and were able to create

BEC’s in the trap as evidenced by a bimodal distribution in time of flight. Due to the slow

dynamics in the trap, which has a trap frequency (ωx, ωy, ωz)/(2π) ≈ (6.6, 20, 150) Hz, we

ended up doing forced evaporation for about 10 seconds to reach degeneracy. However, we

found that creating the BEC in the OTOP and then attempting to transfer it into the final

trap tended to cause too much heating, due to the low energy scale. The stability of the

process also left something to be desired. We were also not interested in loading the Li

into this trap, because we did not want the final science trap to have the long free-space

path length necessary to permit modulation of the OTOP, which is a useful tool during

preparation but a pain for stability.

We observed that about 300 nK was a reasonable energy scale where we could move the

atoms between the traps without causing too much heating and the system was less sensitive

to instability in the optical potentials. The most robust scheme, which we have continued

to implement, is summarized in Fig. 3.6. First, while the OTOP is well separated from

the other beams, we load a roughly even |a⟩ − |b⟩ Li spin mixture from the BFL into the

combined 780 nm and 1064 nm trap, which are both trapping for Li. We do this by ramping

up the powers in both beams while the BFL is overlapped with them using the translation
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Figure 3.6: Dipole trap powers during final trap mixing. Diagrams showing the optimized
beam powers for mixing the Li and Cs together. The upper plot shows the powers in the
two dual color trap beams, with the 1064 nm trap shown in blue and the 780 nm trap shown
in red. The lower trap shows the behavior of the OTOP beam, with the black line being
the power and the green line being the position dictated by the modulation frequency of an
AOM. The position 0 is the approximate position of the atomic cloud.

stage. After the BFL is ramped to zero using an AOM, we additionally translate the trap

away to maximize extinction of the light at the atom position.

We then ramp the 1064 nm beam power close to zero, leaving the Li trapped almost

entirely in the 780 nm beam. In this trap, the trap depth is lower than a D2 photon recoil,

and we perform a “killing” pulse which cleanly eliminates the (usually) undesired |b⟩ atoms

from the trap. Once the Li is loaded into the 780 nm trap, we begin the process of adding

Cs to the trap. We do this by moving the OTOP towards the dual color trap from above

at a rate of about 190 µm/s over 1s. We stop the beam at a position where it is overlapped

with the top edge of the 1064 nm focus, but separate from the 780 nm beam focus. This

allows us bring in the OTOP beam for the trap transfer without significantly disturbing the

Li already in the trap. We then lower the 780 nm and OTOP trap powers to mix both gases

into primarily the 1064 nm beam. The final sympathetic cooling is then done by lowering

the trap depth of the 780 nm beam to zero while lowering the trap depth of the 1064 nm

beam to a target value to serve as our single beam science trap.
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3.7 Microscopy and Potential Projection

By implementing a high resolution microscope objective, it is possible to image and probe the

atomic samples at smaller length scales than previously possible. Additionally, the flexibility

afforded by configurable optical potentials generated using a DMD is a valuable asset to

future experiments. The majority of the initial testing and focusing of the microscope was

done by G. Cai, and more technical details such as the alignment procedure, detailed optical

set-up, and imaging scheme optimizations will be available in his thesis.

To perform high resolution microscopy, it is fundamentally important to collect a large

fraction of the solid angle of light emitted from the object to be imaged. This is defined

by the numerical aperture NA = sin θ where θ is the maximum half angle at which light

can enter the objective. The attainable resolution is directly improved for larger NA. There

are multiple ways to characterize resolution, but a commonly used metric is the Rayleigh

criterion which is given by r = 0.61λ/NA where λ is the wavelength of the imaging light,

either 852 nm for Cs or 671 nm for Li in our case.

Our objective is custom made by Special Optics, and is designed to give a magnification

of 16.75 and a working distance of about 30 mm. It fits inside of the inner radius of the

top coil. The accompanying tube lens creates an image on an Andor Ikon-M CCD, which is

then read-out to an imaging computer for analysis. Additionally, in front of the CCD there

is a filter to allow 670 nm and 852 nm light to transmit but block out room light and 1064

nm dipole trap scatter. The camera is capable of taking multiple images in a Fast-Kinetics

configuration, which we are planning to use to take images of both Li and Cs in situ in a

single experimental shot. For now we are operating it the standard full-frame read out mode.

The DMD is an evaluation board DMD (DLP3000) from Texas Instruments, which is

connected via USB to our control computer. A 635 nm free-running diode laser is reflected

off the micromirror face and demagnified before being projected down onto the atoms. The

effective size of the DMD projection in the atom plane was chosen to permit the generation
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Figure 3.7: Overall schematic of optical potential projection and Cs BEC imaging. A high
resolution microscope objective with numerical aperture NA=0.6 is positioned close to the
atomic sample. Imaging light near 852 nm (purple arrow) is sent upwards through the
objective, and is transmitted through a dichroic mirror and imaged onto a CCD. Light which
is blue-detuned at 635 nm (green arrow) is reflected off a configurable digital micromirror
device (DMD) before being reflected from the same dichroic and projected onto the atomic
sample.
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of optical potentials which can surround the typical degenerate Fermi gases we create.

We control the DMD by uploading images into its onboard memory, which can then be

controlled via a computer over USB. This dictates which mirrors are on or off, while the

overall brightness and therefore potential depth on the atoms is determined by the 635 nm

laser power. Time dependent potentials can be generated using a trigger input on the DMD

which allows the patterns to be changed, but at the time of this thesis this functionality has

not yet been used on the atomic samples.

For Cs, at high field we often use the horizontal imaging to perform single-shot cali-

brations of the magnetic field based off microwave spectroscopy [34, 72]. In this type of

measurement, we use microwaves to excite atoms from |3, 3⟩ → |4, 4⟩, which only excites

atoms at two particular locations along the length of the cloud due to the curvature of

the field. Then, we image the sample using the σ+ transition from the side (with reduced

cross section) and use the separation of the excitation peaks, the trap frequency, and the

Breit-Rabi formula to extract the magnetic field. This type of spectroscopy can also be

used to calibrate the effective pixels in the horizontal and vertical imaging, because the trap

frequency and resonant microwave frequency fix the distance in terms of well known atomic

properties.

Vertically, we can use this same excitation scheme to perform in situ imaging, without

taking the cross section hit since we can properly address the σ+ transition with a vertical

beam. There are, however, two major draw-backs. The first is that the same sensitivity

to magnetic field that makes the microwave transition useful for calibration can often be

a nuisance when averaging experimental data, because field drifts of a few mG lead to

significant number noise. Secondly, it is difficult to effectively couple ∼ 10 GHz radiation

into our chamber with a conventional microwave horn, leading to a rather slow excitation.

This is problematic both due to inelastic |3, 3⟩ − |4, 4⟩ collisions and the large repulsive Cs

|4, 4⟩ − |4, 4⟩ interaction which excites the cloud [73]. Nonetheless, this scheme was used
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successfully for the work presented in Chapter 4 and 5, before we improved the imaging.

With the new and improved in situ imaging, to fully take advantage of the microscope

it is important not to be limited by effects such as those mentioned above. So, we optically

pump into state |4, 4⟩ instead of using microwaves. We use a 2 µs pulse generated from our

Cs Repump laser to pump atoms from absolute ground state |3, 3⟩ into the stretched state

|4, 4⟩ by addressing the |3, 3⟩ → |3′, 3′⟩, where they mostly decay into |4, 4⟩. This transition

is only MHz away from the low-field repump transition and is accessible just by tuning the

diode laser current.

Additionally, to reach better resolution we enter the regime of high intensity absorption

imaging. This has several advantages for imaging atomic clouds in situ, the most important

being that it permits better signal at high densities and reduces unwanted effects from atomic

motion induced by photon scattering. See Fig. 3.8 for a direct comparison of the old imaging

performance to the upgraded system.

The column density n2 is determined from the images according to the following equation:

n2(x, y)σ = − ln
It(x, y)

I0(x, y)
+
I0(x, y)− It(x, y)

Is
(3.2)

where σ and Is do not exactly correspond to the calculated atomic values, and must be

calibrated in the experiment. To be more concrete, an absorption image is taken by imaging

an initial laser pulse which blows away the atoms (It) and a second image after they are gone

(I0). Finally, the electronic background is imaged with the light turned off, and subtracted

from each of the previous two images. Comparing the images yields the column density as

described in the equation above. In the limit of a weak imaging beam, as we typically employ

for lower resolution imaging, the second term in Eq. (3.2) vanishes and the imaged density

is independent of imaging intensity.

It is ideal to take the two images as close together as possible, as motion in the imaging

beam can result in fringes in the atomic density image. For now, we actually take our images
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Figure 3.8: BEC imaging and potential projection sample images. Top: Old in situ image
of a BEC at aBB ≈ 200a0, with the imaging system used for the work described in Chapters
4 and 5. Middle: Image of the same system taken using the high resolution microscope (see
text). Bottom: Sample image of same condensate after a projected stripe DMD pattern with
3.3 µm spacing has been turned on adiabatially.
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Figure 3.9: A) Cartoon showing the configuration of the main magnetic field coils during
the MOT and during the high magnetic field portions of the experiment. Durinig the MOT
phase, the currents point in opposite directions and the atoms are trapped at the magnetic
field zero. At high field, the top coil current direction is flipped so that they are pointed
in the same direction. The resulting field is much more uniform, with residual curvature
that leads to a weak anti-trapping effect in y and trapping in x and z (<10 Hz for Cs).
C) Just above the upper recessed viewport, a quarter wave plate and reflective polarizer in
combination allow the MOT light to be reflected and the imaging light to pass through to a
camera.

spaced 500 ms apart, which is quite long, but we find that there are actually very few fringes

as long as we do not attempt to switch off the magnetic field during this time (which gives

a significant and audible mechanical kick to the system). The largest source of fringes in

our images originates from water-cooling of the main coils, which vibrates the experimental

chamber.

The vertical imaging beam and the vertical MOT beam both enter the chamber from

the bottom view port. However, it is necessary for the MOT light to be reflected with the

correct handedness to provide confinement, while the imaging light must make it out of the

chamber to a camera. This is done using two polarization optics which are placed on top of

the top viewport, see Fig. 3.9. Note that these optics were taken into account in the custom

design of the objective to ensure the desired performance.
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Figure 3.10: Sample Li in situ images. Shown are averaged images taken according to the
imaging scheme described in the text. The upper image shows a depletion of the density due
to repulsive interactions localized on the BEC, and the lower image shows an enhancement
due to attraction.

The confinement in the MOT is obtained by keeping the polarization σ− as defined by

the local magnetic field direction. To understand this, consider that we are cooling using

the 4→5’ transition, so the excited stretched states exhibit larger Zeeman shifts than the

ground stretched states. This means that, relatively, the σ+ (σ−) transitions are blue- (red-)

detuned as the local field grows stronger. During the MOT, the laser light is red-detuned,

so atoms moving away from the center will preferentially scatter light meeting them head

on and be pushed back towards the center.

The imaging light is then σ+ compared to the final bias field direction. For this type

of scheme to work, the top coil must be switched so that it creates a field along the same

direction as the bottom coil during the MOT, which in our case is opposite to gravity.

The same structure with polarization optics exists along one of the horizontal MOT beam

directions. We can image along the vertical direction, using our microscope, or with about

10x lower resolution at a 45 degree angle horizontally to the dipole traps.
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In situ Li imaging

At high field, when the atoms are quantized along the direction opposite to gravity, the

horizontal and vertical imaging behave differently due to atomic transition selection rules.

For Li, we have historically imaged the gas horizontally on the σ− transition using circularly

polarized light. This leads to a factor of 4 reduction in the effective atomic cross section, since

half the projection is along the quantization axis, and then another half is projected along

σ+. Before the work presented in Chapter 3, we modified the Li horizontal imaging beam

path so that the light is linearly polarized, gaining a factor of 2 in signal. This additional

SNR was very helpful for performing thermometry of the fermions, which relies on more

careful analysis of the density profiles than boson thermometry (see Section 2.4).

Due to the polarization optics, this σ− imaging transition would yield poor SNR along

the vertical direction, because most of the light is reflected for the MOT. Instead, we want

to target a σ+ transition to maximize signal at the vertical CCD. We do so using a two-step

process. First, we optically pump the atoms into |f⟩ by allowing population to decay from

the excited state manifold. Then, we image on the available σ+ cycling transition out of |f⟩.

To understand this pumping process, it is important to note that at 900 G the Li atoms

are well into the Paschenbach regime, where the nuclear spin and electron spin are basi-

cally uncoupled and the appropriate quantum numbers are mJ and mI , rather than F and

mF . In this regime, dipole transitions which couple to the motion of the electron do not

flip the nuclear spin. In this notation, our typical Li state |a⟩ = |mJ = −1/2,mI = 1⟩

and |f⟩ = |mJ = 1/2,mI = 1⟩. To pump from |a⟩ to |f⟩, we excite the transition |a⟩ ↔

|m′
J = 1/2,m′

I = 1⟩, which can only decay back down to |a⟩ or |f⟩, leading to pumping into

|f⟩, because these are the two states in the ground manifold with mI = 1. We excite this

transition using a sideband on the horizontal Li imaging path generated by passing the beam

through an EOM before fiber coupling it to the experimental table. Then, the σ+ transi-

tion that we cycle on to perform absorption imaging is |f⟩ ↔ |m′
J = 3/2,m′

I = 1⟩, which
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belongs to the highest energy branch of the excited state. A similar scheme permits imaging

atoms in |b⟩, by instead driving |b⟩ ↔ |m′
J = 3/2,m′

I = 0⟩ which pumps the sample into |e⟩

permitting cycling on the σ+ transition |e⟩ ↔ |m′
J = 3/2,m′

I = 0⟩.

Work to optimize the resolution of the in situ vertical imaging of Li is currently on-

going at the time of this thesis, but the imaging is functioning. See Fig. 3.10 for images of

Li overlapped with Cs which display modification of the density profile due to interspecies

interactions.

Calibration of pixel sizes, cross-section, and saturation intensity

In this section, we discuss some of the experiments and analysis that we performed to cali-

brate aspects of the in situ imaging. We follow the overall strategy of Ref. [74]. We calibrated

our pixels first, using microwave spectroscopy, then used the size of a Bose-Einstein conden-

sate to calibrate the atom number. To calibrate the saturation intensity, we perform imaging

pulses at varying intensities and compare the scattered photon number to the observed op-

tical density (OD). The resulting slope can be used to extract the saturation intensity Psat

[74], according to

OD +
δP

Psat
= nσ0 = const., (3.3)

where δP is the CCD count difference between the atom and no atom shots. This allows

the calibration of the saturation intensity in terms of CCD counts Psat entirely from the

behavior of the atoms.

The current calibration being used on the experiment is based off data shown in Fig.

3.11 which establishes that for a 5 µs imaging pulse, the saturation intensity corresponds to

355(21) counts at our CCD. This must be adjusted depending on the imaging pulse length.

Typically we use 10 us pulse for science data, which we find only very slightly decreases our

imaging resolution while yielding a large benefit in SNR.

To calibrate the pixel sizes for both horizontal and vertical images, we take advantage of
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Figure 3.11: Calibration of saturation intensity. The optical density is compared to the
number of missing counts that correspond to photons scattered by the atoms at different
imaging powers. This permits calibration of Psat (see text and Eq. (3.3)) and gives Psat =
355(21) for a 5 µs imaging pulse.

our single shot field calibration [34] and our high quality long axis dipole oscillations [36]. By

measuring the separation between resonance peaks as a function of microwave frequency in

terms of pixels, then comparing the result to the field curvature which produces the observed

6.65 Hz trapping frequency we are able to calibrate our pixel sizes.

We perform this calibration in a few hundred nK Cs thermal gas in the final science trap.

It is necessary for the cloud to have sufficient extent to resolve multiple sets of resonance

peaks at different microwave frequencies. We use the final trap so that it is in focus for

the microscope, and we can directly perform this calibration looking at both the horizontal

and vertical imaging, which will see the same excitation peaks. To be more specific, this

calibration relies on the splittings of the |3, 3⟩ and |4, 4⟩ states in the ground manifold of Cs,

which can be evaluated directly using the Breit-Rabi formula [64].

The Cs feels a potential energy V (x) = µCsB(x) where µCs is the magnetic moment of Cs

in the absolute ground state, which near 900 G is a little bit different than the value in the

Zeeman regime. The Breit-Rabi formula gives µCs(900G) ≈ 0.85µB , compared to 0.75µB

in the Zeeman limit, where µB is the Bohr magneton. Then, from the trap frequency we

have that 6.65Hz =
ωB,x
2π = 1

2π

√
2µCs
mB

(B(x)−Bc) where Bc is the peak field value in the
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Figure 3.12: Camera pixel calibration. (a) Separation between the resonant portions of
the cloud as the microwave frequency is changed (blue circles). A fit (blue line) is used
to extract the pixel calibration 7.60(8) µm. This is consistent with the calibration obtained
from measuring the center of mass in free fall under gravity. (b) Separation between resonant
portions of the cloud as measured by alternating between horizontal (black circles) and
vertical (red circles) imaging. The vertical separation has been scaled to match the horizontal
separation. The shown image is a sample optical density image taken vertically from this
type of data set. The vertical calibration obtained is 0.78(1) µm.
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Figure 3.13: Calibration of DMD pixels. Column density (inset) and 1D density after diffrac-
tion from a 6 pixel on / 6 pixel off stripe pattern DMD illumination and a quarter period
hold time in the weak axis confinement. The distance between the diffraction peaks is mea-
sured to be 87.5(2) µm using a fit containing three gaussian peaks (black solid line), which
corresponds to a pixel size of 0.135 µm along the long direction (see text).

center of the trap. A fit to the peak separation as a function of microwave frequency then

yields the pixel calibration, see Fig. 3.12. Once the horizontal pixels have been calibrated

(7.60(8) µm, consistent with calibration from free-fall under gravity), the vertical pixels can

be calibrated by creating the same density distribution and comparing them. We chose to use

the same type of microwave excitation, fix the frequency, and alternate between horizontal

and vertical shots. Then, the separation between the resonant peaks was scaled to be equal

in the two cases, yielding the pixel calibration. The expected value based off the microscope

and camera was 0.8 µm, and we measured 0.78(1) µm.

To calibrate the pixels of the DMD, we used the DMD to place a 50% duty cycle stripe

pattern onto the condensate along the long axis, then turned it off and waited a quarter

trap period to observe the position of the diffraction peaks. The momentum imparted is

defined by kDMD = 2π
λ which allows us to calibrate λ based off our known trap frequency

and therefore the DMD pixel size, see Fig. 3.13.

Finally, to calibrate the atomic cross-section, we used the size of the condensate in our in

situ images. Due to the strong anisotropy of our trap, the kinetic energy can play a role in the
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Figure 3.14: Cross-section calibration. To calibrate the atomic cross-section, we prepare
condensates of varying number and measure their size. To calibrate the atomic cross section,
we scale the number such that the sizes agree with ground state GPE calculations for the
trap frequencies in the experiment. The black solid line is the Thomas-Fermi prediction,
and the blue circles are the output of the GPE simulation. The red line is an interpolation
of the simulated values, and the solid red circles are scaled experimental data. The atomic

cross section σ = 0.17(2)σ0, where σ0 = 3λ2

2π is the theoretical cross-section for the cycling
transition.

observed size even for fairly large interaction energies. Therefore, to perform our calibration,

we took a set of images of condensates prepared with different atom number at equilibrium

in the same confinement at sufficiently low peak optical densities to permit accurate number

counting. These atomic numbers were chosen by comparing the estimated atomic numbers

for in situ data to samples that had undergone time of flight, and confirming that there was

no discrepancy. Then, we performed imaginary time propagation to numerically simulate the

ground state BEC density distrbution in our trap (see Appendix C) and scaled the measured

atomic numbers to fit this prediction, see Fig. 3.14. After the calibration, we identify that

our atom number counting appears accurate for peak densities below about 3× 1013 cm−3,

but typical samples in our experiment have higher peak density. As a safe choice, 4 ms time

of flight expansion is typically sufficient to accurately count the number for samples prepared

near the Cs=|a⟩ Feshbach resonance ( aBB ∼ 250− 290a0).
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CHAPTER 4

LI-CS AT QUANTUM DEGENERACY

Much fascinating science has been done studying few-body physics using this apparatus in

the thermal regime, where the atoms are ultracold but their behavior was not yet dominated

by quantum mechanical effects, their temperature T ≫ Tc for condensation. This chapter

outlines the first scientific step taken in the Li-Cs lab from the few-body towards the many-

body. We have created the first dual degenerate mixtures of Li and Cs atoms in our lab,

and in this chapter we will describe our method to obtain degenerate samples, verify their

degeneracy, and an initial study of their interactions. This chapter is reproduced from the

following publication:

Brian DeSalvo, Krutik Patel, Jacob Johansen, and Cheng Chin. Observation of a de-

generate fermi gas trapped by a bose-einstein condensate. Phys. Rev. Lett., 119:233401,

2017

Abstract: We report on the formation of a stable quantum degenerate mixture of fermionic

6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Fes-

hbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified.

With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of

Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For

stronger attraction where mean-field collapse is expected, no such instability is observed.

Potential mechanisms to explain this phenomenon are discussed.
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4.1 Introduction

Mixtures of atomic quantum gases are an exciting platform to study a rich variety of physics,

such as the observation of heteronuclear molecules [75–81], Bose and Fermi polarons [22–27],

and superfluid mixtures[29–31]. Novel quantum phases have been suggested theoretically

[16, 49, 82, 83] and probed experimentally [15, 17, 84, 85]. Intriguing quantum excitations

[59–62], mediated long-range interactions [86, 87], and pairing behavior [88–90] are proposed

based on degenerate Bose-Fermi mixtures.

An extensive review of previous work and specific mixtures used is found in Ref. [14]. To

date, many experiments exploring quantum degenerate Bose-Fermi mixtures exhibit small

to moderate mass imbalance [16, 83, 91–93]. For larger mass imbalance, new phenomena are

expected to arise [31, 90, 94, 95]. Light fermionic 6Li and heavy bosonic 133Cs yields the

largest mass imbalance among stable alkali atoms. This combination offers rich interaction

properties that are well characterized [68, 96–99], and there exist interspecies Feshbach reso-

nances at magnetic fields where both the Cs Bose-Einstein condensate (BEC) and Li Fermi

gas are stable. This makes Li-Cs an excellent platform to investigate many-body physics of

Bose-Femi mixtures.

Here, we explore two novel regimes of dual-degenerate Bose-Fermi mixtures accessed by

this combination of atomic species by using the tunable interactions afforded by an inter-

species Feshbach resonance. First, we find that for small attractive interactions, degenerate

fermions are found fully trapped and confined by the Cs BEC. Second, at large attractive

scattering lengths, we find the mixture is stable in the mean-field collapse regime [49].

4.2 Reaching Degeneracy

Our experimental procedure to prepare a quantum degenerate Bose-Fermi mixture follows.

After initial laser cooling and optical trapping as described in Ref. [34], we obtain samples
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Figure 4.1: Simultaneous quantum degeneracy of 6Li and 133Cs. (a) Left panel: A bimodal
distribution of a Cs BEC is visible after a 30 ms TOF expansion. The blue curve indicates the
thermal fraction while the red curve shows a fit to the thermal and condensate fraction. Right
panel: For Li, a Gaussian fit to the high momentum tail of the atoms after a 1.5 ms TOF
overestimates the density at the center (blue curve). The full distribution is fit well using
a polylogarithm function (red curve) with T/TF = 0.2(1) [38]. For repulsive interactions
with aBF = 1000a0 (left panel (b)), the Li density is suppressed at the location of the Cs
BEC after a 1.5 ms TOF. Conversely, the Li density in the same location is enhanced for
attractive interactions with aBF = −580 a0 (right panel (b)).

67



of 2 × 106 Li atoms in a deep translatable optical dipole trap, and 2 × 106 Cs atoms in a

separate optical trap. At this point, we have a nearly equal spin mixture of Li atoms in the

F=1/2 hyperfine manifold, referred to here as Lia and Lib, and Cs atoms spin-polarized into

the |F,mF ⟩ = |3, 3⟩ state, where F is the total angular momentum quantum number and

mF is the magnetic quantum number. We then ramp the magnetic field to 894.3 G. This

corresponds to a scattering length for Cs of aBB = 290 a0 and aLia−Lib = −8 330 a0 for

Li, where a0 is the Bohr radius. This yields efficient evaporative cooling for Cs and the spin

mixture of Li. Both species are evaporatively cooled over 10 s to approximately 300 nK. We

then remove Lib with a resonant light pulse leaving only the absolute ground state of Li and

Cs in the optical dipole trap.

These two species exhibit an interspecies Feshbach resonance at 892.64 G [68, 97, 99]

that tunes the interaction between Li and Cs. Across the width of this resonance, the

Cs-Cs scattering length varies slowly from aBB = 220 ∼ 280 a0. In this range, good

evaporative cooling efficiency for Cs promises the ability to sympathetically cool Lia atoms

for suitable Li-Cs scattering length. To begin sympathetic cooling, we ramp the magnetic

field to 891 G (aBF = 20 a0) and sequentially load both species into a dual-color optical

dipole trap comprised of 785 and 1064 nm light [34]. This trap allows the cancellation of the

relative gravitational sag for Li and Cs and ensures good overlap between the species at low

temperatures [34]. To prepare a mixture with attractive or repulsive interspecies interactions,

once the samples are mixed we ramp the magnetic field over 10 ms to either 891.9 or 893.8

G, yielding an interspecies scattering length aBF = 120 or −180 a0, respectively. We then

perform evaporative cooling for 1.5 s to obtain degenerate samples.

Detection of quantum degeneracy is performed by analyzing time-of-flight (TOF) absorp-

tion images of both species. For Cs, after evaporation we obtain a BEC of 104 atoms with

low thermal fraction at a temperature TCs = 20 nK, as shown in Fig. 4.1(a) left panel. For

thermometry of Li, we first adiabatically ramp the interspecies scattering length over 25 ms
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to a small value (|aBF | < 30 a0) so the Cs BEC does not influence the Li cloud. We then

release the atoms and image the Li after 1.5 ms expansion, as shown in the right panel of

Fig 4.1(a). We determine the Fermi temperature TF = 480(50) nK from the known trapping

frequencies of ωF = 2π × (36, 430, 430) Hz, and T/TF = 0.2(1) from fitting the absorption

images using a polylogarithm function [38]. From these fits, we observe that sympathetic

cooling works well for attractive and repulsive interspecies interactions and both species

reach deep quantum degeneracy on either side of resonance.

4.3 Trapping a Fermi gas with a BEC

In the presence of strong Li-Cs interaction, the density distribution of Li is distorted. Ex-

ample images are shown in Fig. 4.1(b). Here, we shift the position of the Cs BEC to the

edge of the Li cloud to gain visual clarity of the effect. For repulsive interactions (Fig 4.1(b)

left panel), Li is repelled from the BEC. Conversely, for attractive interactions (Fig 4.1(b)

right panel), Li atoms are attracted to the Cs BEC.

Per mean field theory, the potential experienced by one atomic species due to interspecies

interactions is given by 2πℏ2aBF

(
1

mB
+ 1

mF

)
n(r⃗), where mF (B) is the mass of the fermion

(boson), ℏ is the reduced Planck’s constant, and n(r⃗) is the density distribution of the other

species. In our case, the density of the Cs BEC is over one order of magnitude larger than

the Li degenerate Fermi gas, so the potential experienced by the Li is significantly greater.

Given the typical density of a Cs BEC of nB = 5× 1013cm−3, for aBF = −500 a0 the trap

depth in temperature units felt by Li is 450 nK. This large depth suggests that Li can be

loaded into the Cs BEC even in the absence of another confining potential.

To investigate this possibility experimentally, we perform a Stern-Gerlach sequence to

separate the Li atoms trapped by the Cs BEC from those that are not, as depicted in

Fig. 4.2a. We first prepare a degenerate Bose-Fermi mixture in a single beam trap by

performing our usual sequence and slowly ramping the intensity of the 785 nm beam to

69



Figure 4.2: Stern-Gerlach separation of Li atoms trapped in a Cs BEC. Shown schematically
in (a), strong attractive interspecies interactions confine a fraction of Li atoms (red dots)
within the Cs BEC (blue circle). At t = 0 we remove the optical trap and apply a magnetic
field gradient to separate those trapped from the rest of the sample. Example images of Li
after a short TOF are shown in (b). Dashed red circles indicate the position and size of the
BEC at the imaging time and the white dashed line indicates the Fermi radius.
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zero. In this simplified configuration, the overlap of the two species is controlled by the

magnetic field gradient, and we obtain trap frequencies of ωB = 2π × (6.5, 130, 160) Hz for

Cs and ωF = 2π × (36, 400, 400) Hz for Li. Next, we ramp the magnetic field gradient to 4

G/cm providing a force against gravity and simultaneously increase the interaction strength

to -650a0 over 30 ms. This deepens the potential so a reasonable number of Li are trapped

and shifts the Li up such that the Cs BEC sits on the lower edge of the Li cloud. We then

extinguish the optical trap while leaving the magnetic field and gradient on. The magnetic

field gradient is sufficient to over-levitate Li, but not the Cs atoms. Therefore, Li atoms

trapped by Cs BEC fall downwards.

Results of this experiment are shown in the absorption images of Li after a varying TOF,

see Fig. 4.2 (b). In each image, the white dashed curve shows the maximum extent of the

cloud from the calculated Fermi radius and the red dashed curve shows the position and

spatial extent of the Cs BEC. After a TOF, Li atoms trapped in the Cs BEC spatially

separate from the rest of the sample. These Li atoms are contained in the volume of the

Cs BEC and follow its trajectory over the entire TOF. Once spatially separated, Li atoms

trapped in the Cs BEC can be counted. By following the previously described Stern-Gerlach

procedure at different magnetic field values we measure the number of Li atoms trapped by

the Cs BEC as a function of aBF as shown in Fig. 4.3.

Owing to the Pauli exclusion principle, there is a limited number of Li atoms N < Nmax

that can be trapped within the Cs BEC. Assuming the density of the BEC is not perturbed

by Li atoms, the maximum number Nmax can be found analytically. Within the mean-

field and Thomas-Fermi approximations, the density distribution of the BEC is an inverted

parabola, yielding a harmonic trap for Li with trap depth U0 = 1
2(

mB
mF

+ 1)
|aBF |
aBB

µ and

trapping frequency ωtrap = [12
mB
mF

(mB
mF

+ 1)
|aBF |
aBB

]1/2ωB , where ωB is the trapping frequency

for Cs and µ is its chemical potential. Notably the trap frequency for Li ωF is 16 times

larger than the trap frequency for Cs due to mass imbalance alone. Therefore, the dynamics
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Figure 4.3: Number of Li atoms trapped in Cs BEC. As a function of the interspecies
scattering length aBF at the end of the magnetic field ramp, we measure the number of Li
atoms trapped in the Cs BEC after a 1.5 ms Stern-Gerlach separation (black dots). Within
the approximation described in the text, the grey shaded region represents the the region
excluded by Fermi statistics and the blue shaded area indicates the region where mean-field
collapse is expected. The red curve shows a fit based on a rate equation model describing
the steady-state number of atoms trapped by the Cs BEC (see text).

of Li in the Cs BEC are much faster than the condensate itself.

By setting the Fermi energy equal to the trap depth, one finds that for aBF < 0 the

maximum number of Li trapped by the Cs BEC is

Nmax =
1

12
√
2

[(
1 +

mF

mB

) |aBF |
aBB

]3/2(
µ

ℏωB

)3

. (4.1)

This limit is indicated by the grey shaded region in Fig. 4.3 and is consistent with our

measurement for |aBF | < 400 a0. For these weak interactions, since the number of Li

trapped is close to the maximum, the Li remains deeply quantum degenerate.
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4.4 Mean-Field Collapse?

For a large negative scattering length, mean-field calculations predict another limit on the

number of Li atoms that can be trapped by the Cs BEC. When the Li density exceeds a

critical value ncrit, theory predicts a collapse of the mixture due to the loss of mechanical

stability. For a homogenous gas, the critical density is [49]

ncrit =
4π

3

m3
Bm

3
F

(mB +mF )
6

a3BB

a6BF

. (4.2)

The condition for collapse in a trapped gas is found following the numerical procedure

described in Ref. [49]. We find that the system collapses when the peak density of the

fermions exceeds the critical density given in Eq. 4.2. This limit sets the lower boundary of

the shaded blue region in Fig. 4.3. Shown in Fig. 4.3 as well as observed in other experiments

including a longer hold time, for large negative scattering lengths aBF we find significantly

more Li atoms trapped in the Cs BEC than permitted by mean-field theory.

One possible explanation for the lack of mean-field collapse is beyond mean-field terms

similar to the Lee-Huang-Yang term for bosons [100]. Observed in dipolar quantum gases

[101], this effect leads to a short-range repulsion and stabilizes a collapsing BEC with dipolar

interactions, and likely a Bose-Bose mixture with strong interspecies attraction [44]. The

scenario to stabilize an attractive Bose-Fermi mixture with beyond mean-field effects [102]

requires further theoretical investigation.

In our system, another possible explanation for the lack of mean-field collapse is a dy-

namical process including three-body loss and Fermi statistics. The association of higher

particle number with collisional loss seems counterintuitive, but the strong density depen-

dence of three-body collisions is key to removing atoms preferentially from the high-density

region and preventing mean-field collapse.

To explore this possibility, we suggest the following model. Since the dynamical timescale
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for Li is much shorter than for Cs, we describe the density of Li atoms trapped in the Cs

BEC as

dn

dt
= Aa2BFnFnBf −Ba4BFn

2
Bn, (4.3)

where A and B are constants, nB is the density of the Cs BEC, n is the density of Li

confined in the BEC, and nF is the density of unconfined Li. The first term accounts

for elastic collisions that populate available states in the BEC potential with probability

f ≈ 1−N/Nmax given by Fermi statistics. The second term represents three-body loss due

to Li-Cs-Cs collisions [103].

Due to the small number of Li atoms trapped in the Cs BEC and the large separation in

dynamical timescales between the two species, we assume that the BEC density profile and Cs

number are not disturbed in the time the Li density profile reaches steady-state. Averaging

Eq. (4.3) over the extent of the Cs BEC, we obtain dn̄/dt = A′a2BF n̄Bn̄F f − B′a4BF n̄
2
Bn̄,

where x̄ is the averaged value of x, and A′ and B′ are constants incorporating geometric

factors from averaging.

In steady-state dn̄/dt = 0, we obtainN = Nmax/(1+Ca
2
BFNmax), where C is a constant.

Combining this expression with Eq. (4.1), we fit our data in Fig. 4.3 with C as the only fitting

parameter. The result yields good agreement. In the case of no collisional loss B′ = 0, the

fit function reproduces the limit where a deeply degenerate Fermi gas of Nmax Li atoms is

supported by the BEC.

In this picture, for large negative scattering length, Li atoms are quickly lost through

recombination. Since this process is the highest at the center of the BEC, the loss of Li

atoms prevents the runaway density build up at the trap center. Similar loss of Cs atoms

occurs predominately at the trap center. However, the loss of Cs is slowed by the limited

rate at which its volume is replenished with fermions from the surrounding Fermi gas.

In Fig. 4.4, we show the evolution dynamics of a Cs BEC immersed in the Li degenerate

Fermi gas. Here, we first create a degenerate mixture in the single beam dipole trap. After
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Figure 4.4: Loss dynamics of Cs BEC immersed in Li degenerate Fermi gas. (a) Atom
number in Cs BEC for aBF = -200 (black), -500 (red), and -620 a0 (blue). The data is well
described by smooth exponential loss (solid lines). The 1/e loss rates extracted from these
fits shown in panel (b) are well fit by the expected a4BF scaling including a constant offset in
the loss rate to account for measured Cs-Cs-Cs recombination (red line). An estimation of
the thermalization rate (see text) is indicated by the solid blue curve. The loss rate exceeds
the thermalization rate at aBF = −520a0, above which the system no longer reaches thermal
equilibrium.

quickly ramping the magnetic field to a desired value, we measure the number of Cs atoms

in the condensate after a TOF. The atom number in the BEC smoothly decays with a loss

rate proportional to a4BF as expected [104]. No dramatic drop in atom number associated

with collapse is observed.

Mean-field calculations assume that the system thermalizes quickly enough to reach equi-

librium. However, thermalization is known to be slow for systems with large mass imbalance.

Unlike atoms must undergo ξ = 3(mB +mF )
2/(4mBmF ) collisions to thermalize [105]. An

estimation of the collision rate between degenerate Bose and Fermi gases is in general compli-

cated, and we employ a model for thermal gases that offers an upper bound on the collision

rate given by γ = 4πa2BF v̄
∫
d3rn′F (r⃗)nB(r⃗), where n

′
F (r⃗) is the density of fermions available

for collisions and the averaged relative velocity of Li and Cs atoms is given by v̄ ≈
√

2EF /mF
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in our experiment. Combining the above results with the fermion density’s slow variation

across the BEC, we obtain the thermalization rate Γ =
N ′

F+NB

N ′
FNB

γ
ξ [106] as

Γ ≈ 3.74
mBm

2
F

(mB +mF )
2

(NB +N ′
F )

N
′1/3
F

a2BF ω̄
2
F

ℏ
, (4.4)

where ω̄F is the geometric mean of the trap frequencies of the fermions, NB is the number

of bosons and N ′
F is the the number of fermions participating in collisions. Using N ′

F ≈

g(EF )kBT = 3NF (T/TF ) where g(ϵ) is the single particle density of states we obtain the

thermalization rate, shown in Fig 4.4(b).

At large scattering lengths |aBF | > 520a0, the loss rate exceeds the thermalization rate,

suggesting the mixture will deviate from thermal equilibrium. Notably, the dominance of

inelastic loss is more likely to occur in a Li-Cs system due to its strong mass imbalance.

In comparison to the 40K-87Rb mixture in Refs. [16, 83] where mean-field collapse was

reported, our thermalization rate is two times lower (from Eq. (4.4)), while the three-body

collision rate increases by a factor of two [104] for the same trap frequency and atom numbers.

Consequently, our system with large attractive Li-Cs interactions likely reaches a dynamical

equilibrium where fast loss allows the mixture to survive for much longer than the mean-field

expectation.

In conclusion, we report the first quantum degenerate mixture of Li and Cs and use this

system to probe novel regimes of Bose-Fermi mixtures. For weak attractive interactions, a

degenerate Fermi gas with few hundred Li atoms is confined within the BEC. This represents

an intriguing quantum object well-suited for future study. For strong attractive interactions,

we observe that the system is stable against mean-field collapse. We present one possible

model to explain this observation based on the relative timescales of loss and thermalization.

Other possible explanations involving beyond mean-field effects are under investigation. The

lack of the mean-field collapse in our system allows us to explore a region of the Bose-Fermi
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mixture that was previously thought inaccessible.
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CHAPTER 5

FERMION-MEDIATED INTERACTIONS BETWEEN BOSONS

After establishing degeneracy in our mixtures, we sought to look for signs of fermion medi-

ated interactions which had been a long term goal of our experiment. They arise as outlined

in Section 2.5, and have been long-predicted in the literature. However, their direct confirma-

tion had never been reported. This chapter describes our measurement of these interactions,

and is reproduced from the following publication:

Brian DeSalvo*, Krutik Patel*, Geyue Cai, and Cheng Chin. Observation of fermion-

mediated interactions between bosonic atoms. Nature, 568:61–64, 2019. *These authors

contributed equally.

Abstract: In high energy and condensed matter physics, particle exchange plays an essen-

tial role in the understanding of long-range interactions and correlations. For example, the

exchange of massive bosons leads to the Yukawa potential [107, 108]. Phonon exchange be-

tween electrons gives rise to Cooper pairing in superconductors [109]. When a Bose-Einstein

condensate (BEC) of cesium atoms is embedded in a degenerate Fermi gas of lithium atoms,

we show that interspecies interactions can give rise to an effective trapping potential, damp-

ing, and attractive boson-boson interactions mediated by fermions. The latter, related to the

Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism [110], results from a coherent three-

body scattering process. Such mediated interactions are expected to form novel magnetic

phases [87] and supersolids [111]. We show that for suitable conditions, the mediated interac-

tions can convert a stable BEC into a train of “Bose-Fermi solitons” [59, 61]. The predicted

long-range nature of the mediated interactions opens up the possibility of correlating distant

atoms and preparing new quantum phases.
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5.1 Introduction

Interactions between cold neutral atoms are typically well-approximated by contact interac-

tions and are characterized by a single parameter, the scattering length a. Recent experi-

ments utilizing highly magnetic atoms [112], Rydberg atoms [113], and ground-state polar

molecules [76], have stimulated great interest to probe novel quantum many-body states

with long-range interactions. Examples include quantum droplets [101, 114] and lattice spin

phases [115–117].

Another class of many-body systems that exhibit long-range interactions are quantum

mixtures in which particle interactions are mediated by interspecies scattering. Here, we

consider the case of interactions between bosons mediated by a degenerate Fermi gas. In

the regime that the dynamics of the fermions are much faster than those of the bosons, an

effective description for the bosons applies. In this case, the mediated interactions are a

spinless analog [87, 118] of RKKY interactions [110],

U(R) ∝ −g2BF
sinR−R cosR

R4
, (5.1)

where R = 2kFRB , kF is the Fermi wavevector, RB is the separation between bosons,

gBF = 2πℏ2aBF (
1

mB
+ 1

mF
) is the interspecies interaction strength, aBF is the interspecies

scattering length,mB(F ) is the boson (fermion) mass, and ℏ is the reduced Planck’s constant.

The interaction is attractive at short distance regardless of the sign of gBF , and is oscillatory

at long-range with the length scale of π/kF , which corresponds to 1 µm in our experiment.

In this work, we demonstrate the effect of boson-boson interactions mediated by fermions

in a degenerate Fermi gas. By using a mixture of fermionic 6Li and bosonic 133Cs, our system

offers the tunability needed to observe the effect of such interactions, ultimately leading to the

formation of a Bose-Fermi soliton train. In our system, the combination of light fermions and

heavy bosons with their associated large Fermi energy EF =
ℏ2k2F
2mF

and small BEC chemical
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Figure 5.1: Mediated interactions between bosonic atoms by exchanging fermionic atoms
in a Fermi sea. a A Bose-Einstein condensate of heavy atoms (blue) is fully immersed in
a degenerate Fermi gas of light atoms (red). b Two bosons (blue balls) can interact with
one another directly with scattering length aBB or via secondary interactions with fermions
(red ball) near the Fermi surface with energy EF . By eliminating the fermionic degrees
of freedom, the bosons can be described by an effective trapping potential Veff and with
modified interactions characterized by an effective scattering length aeff (see text).

potential µB ensures a large separation of the relevant timescales (ℏ/EF ≈ 15 µs for fermions

and ℏ/µB ≈ 500 µs for bosons). Furthermore, the large mass imbalance and difference in

quantum statistics allows us to prepare a BEC that is fully immersed in the degenerate Fermi

gas, as shown schematically in Fig. 5.1a. For zero interspecies interactions, the density of the

fermions within the BEC is nearly constant. For weak interactions, one may eliminate the

fermionic degrees of freedom and obtain an effective energy density functional of the bosonic

field ΨB(r), given by [119–121]

E =
ℏ2

2mB
|∇ψB(r)|2 + Veff(r)|ψB(r)|2 +

geff
2

|ψB(r)|4, (5.2)

where Veff(r) =
∑

i
1
2mBω

2
eff,ir

2
i is the effective potential and ri = x, y, z. The effective

harmonic trapping frequencies ωeff,i and the effective interaction strength geff = 4πℏ2aeff/mB
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satisfy the relations [119, 120]

ω2eff,i = ω2B,i −
3

2

nF
EF

mF

mB
gBFω

2
F,i (5.3)

geff = gBB − ξ
3

2

nF
EF

g2BF , (5.4)

where nF = k3F /6π
2 is the density of the fermions, ωB(F ),i denote the bare harmonic trap-

ping frequencies of the bosons (fermions), and gBB = 4πℏ2aBB/mB is the boson-boson

interaction strength for scattering length aBB . We note that owing to the large mass im-

balance and large Fermi energy in our system, Eq. (5.3) is well approximated by a linear

dependence of ωeff on aBF for all scattering lengths probed in our experiment.

The dimensionless constant ξ in Eq. (5.4) characterizes the strength of the fermion-

mediated interaction. A calculation which takes a mean-field approach for the bosons and

a hydrodynamic approach for the fermions predicts ξ = 1 for the mixture in the ground

state [119]. The same result is also obtained based on a path integral formulation which

traces out the fermionic degrees of freedom [120], as well as a diagrammatic calculation of

the zero-temperature equation of state [121]. An alternative approach based on scattering of

two-bosons embedded in a zero-temperature degenerate Fermi gas predicts ξ = π3 ≈ 31 [87].

We note that this last prediction includes the assumption that the interparticle separation

between bosons is much larger than between fermions.

From Eqs. (5.2-5.4), it is apparent that the presence of the Li degenerate Fermi gas

is expected to alter the dynamics of the Cs BEC in two important ways. The BEC will

experience both a modified harmonic trapping force as well as a modified scattering length

aeff. The former effect can be understood in the mean-field picture. As the degenerate Fermi

gas is also trapped in a harmonic potential, the spatially dependent density yields a mean-

field potential on the BEC. For attractive (repulsive) interactions, the BEC experiences a

stronger (weaker) harmonic confinement.
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The mediated interaction, described by the second term of Eq. (5.4), is a genuine three-

body scattering effect with an energy E ∝ −g2BFn
2
BnF , where nB is the density of the

bosons. A microscopic picture giving rise to these mediated interactions is sketched in

Fig. 5.1b. They arise when two bosons exchange a fermion near the Fermi surface via the

usual two-body s-wave scattering (dashed lines). We note here that the mediated interactions

are always attractive regardless of the sign of gBF . This fact can be understood as a result

of second-order perturbation theory that the interspecies coupling lowers the energy of the

condensate [87]. An intuitive picture allows this be understood in the mean-field description

as follows: For repulsive interspecies interactions, fermions are repelled from the BEC, and

thus the BEC feels an additional attraction towards its center where the fermion density is

the lowest. On the other hand, for attractive interspecies interactions, fermions are attracted

to the center of the BEC, and as a result the BEC also experiences an additional attraction

towards its center where the fermion density is the highest.

To observe the effective trapping frequency as well as the mediated interactions, we per-

form measurements at different scattering lengths aBB and aBF near intra- and interspecies

Feshbach resonances [67, 68] (see Methods). In our system, following the procedure outlined

in Refs. [97, 122], we prepare quantum degenerate mixtures of 2 × 104 Li and 3 × 104 Cs

atoms in their absolute ground state at magnetic field B ≈ 900 G. Both species are radially

trapped in a single laser beam and weakly confined magnetically in the x−direction.

5.2 Dipole Oscillation Measurements

To measure the effective harmonic trapping frequency, we excite dipole oscillations of the Cs

BEC along the weakly trapped axis [30, 123, 124]. In the absence of Li, we observe long-lived

oscillations with a decay time of ≈ 30 s (see Fig. 5.2a). This low background damping rate

allows us to precisely determine the trapping frequency of the Cs (see Methods).

In the presence of Li, we observe small shifts in the oscillation frequency ωeff and enhanced
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Figure 5.2: Dipole oscillations of a Cs BEC immersed in a Li degenerate Fermi gas. aWithout
Li present, we observe long-lived dipole oscillations along the weakly confined x−axis. The
data is well described by damped harmonic oscillation with a very low damping rate Γ <
1/30 s (blue line). b When the BEC is embedded in the Fermi gas, a shift in the oscillation
frequency as well as an increase of the damping rate are observed. Example traces are shown
for aBF = 100 a0 (red) and aBF = 630 a0 (black). c Oscillation frequency and d damping
rate of the BEC. For small |aBF |,, the data are well fit by linear and quadratic curves (blue
lines) and are consistent with the predictions (red lines), see Eq. (5.3,5.4) and Methods.
Shaded areas show the magnetic field ranges where rapid three-body loss causes significant
heating of the BEC into a normal gas. Frequency and damping rate of a bare Cs BEC
(dashed lines) serve as references for comparison.
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damping rates Γ as aBF deviates from zero (see Fig. 5.2b). In the range of −100 a0 < aBF <

500 a0, we observe a linear dependence of the frequency of the oscillation on the scattering

length aBF (see Fig. 5.2c). A fit to the data in this range shows a negligible shift < 0.1%

at aBF = 0 and a slope of − 0.22(2) mHz/a0, in fair agreement with the prediction of

−0.18 mHz/a0 from Eq. (5.3) . Outside this range, a non-linear behavior develops and the

frequency shifts first reduce toward the bare Cs frequency. In this region of moderate |aBF |,

the dynamics are complicated by the crossover from collisionless to hydrodynamic motion

[125] as well as modifications of the density distributions. For very large |aBF |, the mixture is

strongly heated due to three-body recombination loss that preferentially removes atoms from

the BEC compared to the thermal component. In this region (see shaded area in Figs. 5.2c

and d), we observe that the BEC is heated to a normal gas and the data display even larger

shifts. Such non-linear behavior at large aBF shows the breakdown of the mean-field theory

and demands further theoretical investigation.

The damping of dipole oscillations shows interesting behavior as well. For small scattering

lengths, collisions between the BEC and the Fermi gas are scarce, yielding a weak friction

that damps the oscillation. The damping rate is expected to be proportional to the collisional

cross-section ∝ a2BF [51, 126]. In the range of −100 a0 < aBF < 100 a0, our data can be

compared with the prediction Γ = κa2BF (see inset of Fig. 5.2d and Methods). A fit to the

data in this range yields a curvature of κ = 8.5(2.1)× 10−6/s · a20, which excellently agrees

with the prediction of κ = 9 × 10−6/s · a20. At large scattering lengths, the damping rate

appears to saturate and then increases again when the sample is heated to a normal gas.

While a more complete model is needed to describe the motion of a BEC strongly interacting

with a degenerate Fermi gas, we note that for small scattering lengths (|aBF | < 100 a0), the

mean-field theory offers very good quantitative agreement.
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5.3 Effective Attraction Induced by Fermions

To measure the mediated interactions, we first characterize the bare scattering length of

the Cs atoms based on the equilibrium Thomas-Fermi radius RTF ∝ 1
ωx

(N0aBB)
1/5 in

the weakly confined axis, where N0 is the number of atoms in the BEC. In the relevant

range of magnetic field the scattering length is approximately linear with a zero crossing at

B = 880.29(8) G, as shown in Fig. 5.3a. Our result is in good agreement with the calculation

in Ref. [67].

Armed with the calibrated scattering length, we next determine the effective scattering

length of the BEC embedded in the degenerate Fermi gas. Since the mediated interactions

are weak, we perform the measurement in the range of |aBB | < |aBF | to enhance the effect.

We measure the change in the scattering length by directly comparing the BEC radius RTF

with and without the degenerate Fermi gas present near the zero crossing aBB = 0 (see

Methods). We find that the size of the BEC is systematically smaller when Li is present,

which is consistent with attractive mediated interactions (see Fig. 5.6). From our relative

measurements, the effective scattering length aeff displays a negative and constant offset

from the bare Cs scattering length throughout the measured range (see Fig. 5.3b). The

fitted offset is -4.4(3)(1.5) a0, where the first and second uncertainties are statistical and

systematic, respectively. Together with the known constant aBF = −60 a0 [68], the measured

offset yields a value of ξ = 1.7(6) in Eq. (5.4), in fair agreement with the calculations in

Refs. [119–121]. In our experiment, we deviate from the impurity scattering limit considered

in Ref. [87], and we believe that our disagreement with that prediction implies that a many-

body treatment is required.
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Figure 5.3: Bare and effective Cs-Cs scattering length. a We measure the in situ Thomas-
Fermi radius RTF of a Cs BEC in the weakly confined direction. Without the Fermi gas in
the trap (blue circles), we find good agreement with theory when scaled appropriately to the
number of atoms in the BEC N0 (blue line). Characteristic images from the measurement
are shown as insets. b At small aBB , we perform a relative measurement of RTF with and
without Li present to extract the effective scattering length aeff (red circles). Our result is
consistent with a small negative offset from aBB (blue line) indicating attractive mediated
interactions. A fit to the data (red line) yields fair agreement with theory (see text).
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Figure 5.4: Formation of Bose-Fermi solitons. a In situ images of a Cs BEC 75 ms after
a quench from B = 885.5 G (aBB = 120 a0) to lower fields indicated on the left. For
positive aeff, there is no qualitative difference when the Li degenerate Fermi gas is added
to the system. When aeff becomes negative, the BEC collapses into a train of solitons with
Li present, but remains stable without Li as shown for B = 880.32 G in the shaded red
panels. For aBB < 0, the BEC collapses with and without Li present. b Time sequence of
the induced collapse at B = 880.32 G. Without Li present, the BEC undergoes breathing
oscillations. With Li, the BEC first shrinks to a small size and afterwards breaks up into a
train of solitons.
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5.4 Bose-Fermi Solitons

These mediated interactions look minute, but can have a profound effect on the ground

state of the Cs atoms. Labeled as the red shaded area in Fig. 5.3b, in particular, when aBB

is small and positive, the mediated interactions can cause aeff to become negative. As an

harmonically trapped BEC with attractive interactions can experience dynamic instability

and collapse [39], one expects that in this regime, the mediated interactions can render the

BEC unstable as well. In our highly elongated trap, the BEC enters the quasi-1D regime

for scattering lengths aBB < 4 a0, and Bose-Fermi soliton trains are predicted to form in

this regime with sufficiently strong fermion-mediated attraction between bosons [59, 61]. In

our slow ramp experiments, however, we observe very large shot-to-shot fluctuations of the

shape and size of the cloud in this region, indicating the onset of the instability.

To probe the fermion-mediated instability, we perform a dynamic experiment by suddenly

jumping the scattering length from a large positive value to values near the zero crossing

of aBB (see Fig. 5.4 and Methods). In situ images taken 75 ms after the quench show a

qualitative difference for a bare Cs BEC and for a BEC embedded in the degenerate Fermi

gas. In the absence of Li, we observe the typical formation of a soliton train for a final

magnetic field below B ≈ 880.26 G, where aBB < 0.

In the presence of Li, we observe a collapse below B ≈ 880.34 G, where aBB > 0. This

observation is consistent with the results shown in Fig. 5.3 that at this field the effective

scattering length is negative aeff < 0 and thus the stability of the BEC has been compromised.

The observed soliton train is likely comprised of correlated bosonic and fermionic density

waves [59, 61]. However, we could not see a clear density modulation of the Fermi gas due

to limited signal-to-noise of our measurement.

The induced collapse in this interesting regime is further supported by the time evolution

of the BEC following a quench. After preparing the sample at B = 885.5 G where aBB =

120 a0, we abruptly change the field to 880.32 G, where the effective scattering length
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is expected to be negative aeff < 0. We then monitor the subsequent dynamics of the

BEC. Without the Fermi gas aBB > 0 the BEC undergoes breathing oscillations without

qualitative changes in the structure of the cloud. With Li present, the BEC first contracts

as if starting a breathing oscillation, however, upon expansion, the BEC is fractured into

a train of of 3 to 4 solitons. This observation clearly indicates that the fermion-mediated

interactions are able to destabilize a weakly-interacting BEC. In other words, the ground

state of the bosons may be drastically altered by the fermion-mediated interactions.

While the fermion-mediated interactions amount to only an effective change of the scat-

tering length by -4 a0 in our experiment, the scaling of the mediated interaction a2BFn
2
BnF

suggests stronger influence near an interspecies Feshbach resonance as well as in systems

with high local density, for example, in an optical lattice [87]. This promises exciting future

work exploring the long-range nature of such interactions to ultimately probe novel quantum

phases beyond contact interactions.

Acknowledgements We thank M. Gajda for useful discussions and M. McDonald for

a careful reading of the manuscript. This work was supported by NSF Grant No. PHY-

1511696 and the University of Chicago Materials Research Science and Engineering Center,

which is funded by the National Science Foundation under Grant No. DMR-1420709.

5.5 Supplementary Materials

Dipole Oscillation Experiments

For the frequency and damping measurements presented in Fig. 5.2, we begin our experiment

by preparing a quantum degenerate mixture of 2×104 Li and 3×104 Cs at rest in a harmonic

trap with trapping frequencies of ωB,i/2π = (6.65, 100, 140) Hz for Cs and ωF,i/2π = (34,

320, 320) Hz for Li. The sample is prepared near the interspecies Feshbach resonance at

either B = 892.3 G or B = 893.2 G with aBF = 300 a0 or −300 a0 , respectively (see
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Fig. 5.5). We then apply a magnetic field gradient of 26 mG/cm along the x-axis of our

trap which slightly displaces the center of both clouds by about 5 µm. The magnetic field

gradient is suddenly removed which starts a dipole oscillation of both species. Due to the

small displacement, the relative velocity of the center of mass of Li and Cs remains small

compared to the speed of sound of the Cs BEC.

After 200 ms, the Li oscillation damps to near zero at which time we rapidly jump the

magnetic field to the final target value. After a variable hold time, we measure the center

of mass position of the Cs BEC after a time-of-flight expansion. The center position as a

function of hold time is fit to a damped sinusoidal wave to extract the damping rate and

frequency.

Coupled Oscillator Model

To understand the damping rate of the oscillation measurements in the limit of small inter-

species scattering length aBF , we apply the coupled oscillator model described in Ref. [126].

In this model, the center of mass position xB of the BEC is described by

ẍB = −ω2xB − 4

3

mFNF

(mF +mB)(NF +N0)
ΓcollẋB , (5.5)

where NF is the number of fermions and Γcoll is the collision rate. The collision rate is given

by

Γcoll = σv

(
1

NF
+

1

N0

)∫
nBnF d

3x, (5.6)

where nF (B) is the density of the fermions (bosons), σ = 4πa2BF is the collision cross section,

and the relative velocity v is approximately given by the Fermi velocity, v ≈ vF = ℏkF /mF .

For a BEC immersed in a degenerate Fermi gas, the damping rate is approximately

Γ = κa2BF , (5.7)
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Figure 5.5: Cs-Cs scattering length aBB (blue line) and Li-Cs scattering length aBF (red line)
over the magnetic field range studied in this work. The interspecies Feshbach resonance near
B = 892 G is used for sample preparation and the effective trapping frequency measurements,
indicated by the light green shaded area. The Cs-Cs zero crossing near B = 880 G is used
for the effective scattering length measurements, indicated by the blue shaded area. In this
region, the Li-Cs scattering length is nearly constant aBF = −60 a0 [68].

where κ = 8π
3

mF
mF+mB

vFnF .

In situ Size Measurements

To measure the size of the Cs BEC we perform in situ absorption imaging. We first apply

a 20 µs resonant microwave pulse to transfer some population from the |F,m⟩ = |3, 3⟩

ground state to |4, 4⟩, where F and m denote the total angular momentum and the magnetic

quantum number, respectively. We then apply a 100 µs imaging pulse resonant with the

|4, 4⟩ → |5, 5⟩ transition.

We use a short microwave pulse to keep the optical density low and minimize imaging

artifacts, as well as to prevent the sample from spending too long in the |4, 4⟩ state, where

strong intraspecies repulsion [73] increases the cloud size.

Scattering Length Characterization

To characterize the bare scattering length of a pure Cs BEC, we evaporatively cool Cs at

B = 893.5 G, and after forming a BEC we adiabatically ramp the magnetic field to a target
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Figure 5.6: Raw data for the scattering length difference measurement. Top: Measured
radius of the Cs BEC with (red circles) and without (blue circles) Li. Bottom: Measured BEC
number with (red circles) and without (blue circles) Li. At every field, the size of the BEC
with Li present is smaller than the corresponding measurement without Li. However, overall
experimental drift makes absolute comparison difficult. Calibrating each measurement point-
by-point as described in the text allows us to extract the difference in scattering length
cleanly, as can be seen in Fig. 5.3b.

value over 1.4 s. Finally, we hold for 300 ms before taking an in situ absorption image.

To extract the BEC width from the in situ image, we fit a line-cut through the center of

the cloud to a bimodal density profile with a Thomas-Fermi distribution for the BEC and a

Gaussian distribution for the thermal fraction.

Guided by the model presented in Ref. [67] for the value of the Cs scattering length, we fit

our width measurements as a function of magnetic field assuming that the scattering length

is approximately linear through the zero crossing. The data in Fig. 5.3a was obtained from

two experimental runs, and to account for drift in our experiment we perform a joint fit of

the two data sets with different atom number calibrations for each set. Additionally, we omit

data taken at very small scattering lengths (below B = 880.60 G), where we find departures

from the Thomas-Fermi approximation due to the limitations of our imaging resolution and

possible effects of the quasi-1D geometry.
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Scattering Length Difference Measurement

For the scattering length shift measurements presented in Fig. 5.3b, the mixture is first

prepared at a magnetic field of B = 892.1 G and ramped over 50 ms to B = 890.6 G where

aBF = 0 (see Fig. 5.5). At this field, we either remove Li atoms with a 100 µs resonant light

pulse or leave them in place. This procedure ensures the number of Cs atoms in the BEC is

similar with or without Li present. The rest of the experiment is identical to the experiment

described in the previous section.

The BEC number and raw width measurements associated with Fig. 5.3b are shown in

Fig. 5.6. The observed BEC sizes are clearly smaller when Li is present for each magnetic

field, which is due to the slightly decreased number and the negative contribution from the

mediated interactions. The decrease in cloud size at larger fields is due to atom number

variation.

Using the Thomas-Fermi approximation and the model in Ref. [67] with a zero-crossing

chosen according to our experimental determination, the BEC number can be calibrated as

[39]

N =
aho

15aBB

(
mBω

2
xR

2
x

ℏω̄

)5/2

, (5.8)

where aho =
√

ℏ
mω̄ is the mean harmonic oscillator length, ωx/2π = 6.65 Hz is the measured

long-axis trap frequency, and RTF is the long-axis Thomas-Fermi radius. The transverse

trap frequencies are ωy/2π = 130 Hz and ωz/2π = 150 Hz, and ω̄ = (ωxωyωz)
1/3 is the

geometric mean of the trap frequencies.

We use the above calibration from in situ images in the absence of Li to in turn calibrate

measurements of N0 from time-of-flight images. This way, the combined measurements of

time-of-flight and in situ imaging allow independent measurement of Rx and N0 when Li is

present. By performing these measurements with and without Li present, we can account

for the change in size due to variation in N0 and therefore accurately measure the change in
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the scattering length due to mediated interactions.

Soliton Experiments

For the experiments shown in Fig. 5.4, we begin the experiment by preparing our mixture

at B = 892.1 G. Then, we ramp the field to B = 890.6 G (aBF = 0) and either remove the

Li atoms or leave them in place. Afterwards, we adiabatically ramp the field over 1.4 s to

B = 885.5 G where the Cs-Cs scattering length aBB = 120 a0. We then suddenly jump the

magnetic field to a target value. The magnetic field settles in 5 ms, which is fast compared

to the trap oscillation period 2π/ωx = 150 ms.

For the images shown in Fig. 5.4a, we perform the experiment for the target fields indi-

cated in each panel, then allow the atoms to evolve for 75 ms before in situ imaging the Cs

BEC. For the images shown in Fig. 5.4b, we instead choose one target field and hold for the

duration indicated in each panel before imaging the BEC.
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CHAPTER 6

SOUND PROPAGATION IN A BOSE-FERMI MIXTURE

After we completed the experimental upgrades which were described in Chapter 3, we were

interested in learning more from in-situ studies of the condensate with our improved imaging

system. The measurement we made near the zero-crossing was slightly larger than the per-

turbative prediction, and we suspected higher order effects might play a role. They might

have been detectable in the density profiles of the condensate near the zero crossing (see

Appendix C.4). We were unable to resolve this experimentally, but motivated by similar

questions we began to perform measurements near the Feshbach resonance using the DMD

to probe the condensate. The resulting experiments, described in detail in this chapter,

ended up being quite rich and interesting. This chapter is reproduced from a manuscript

currently under submission. A preprint version can be found at:

Krutik Patel, Geyue Cai, Henry Ando, and Cheng Chin. Observation of sound propa-

gaion in a strongly interacting Bose-Fermi mixture. arXiv 2205.14518, 2022.

Abstract: Particle-like excitations, or quasi-particles, emerging from interacting fermionic

and bosonic quantum fields underlie many intriguing quantum phenomena in high energy

and condensed matter systems. Computation of the properties of these excitations is fre-

quently intractable in the strong interaction regime. Quantum degenerate Bose-Fermi mix-

tures offer promising prospects to elucidate the physics of such quasi-particles. In this work,

we investigate phonon propagation in an atomic Bose-Einstein condensate immersed in a

degenerate Fermi gas with interspecies scattering length aBF tuned by a Feshbach reso-

nance. We observe sound mode softening with moderate attractive interactions. For even

greater attraction, surprisingly, stable sound propagation re-emerges and persists across the

resonance. The stability of phonons with resonant interactions opens up opportunities to
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Figure 6.1: Bosonic quasi-particles (phonons) coupled to a fermionic quantum field. (a)
Diagrammatic representation of phonons (blue) coupled to excitations of a fermionic field
(red). The lowest order diagram contains a single loop and is second order in the phonon-
fermion coupling gk. Higher order corrections are indicated by the hatched area. (b) In our
experiment, a cigar-shaped Bose-Einstein condensate (BEC) of cesium-133 is immersed in a
much larger degenerate Fermi gas of lithium-6. (c) As a phonon with momentum k (black
dashed ellipse) propagates, the coupling results in the density modulation of both species
and the modification of the sound speed c.

investigate novel Bose-Fermi liquids and fermionic pairing in the strong interaction regime.

6.1 Introduction

Interactions between excitations of bosonic and fermionic quantum fields play an important

role in understanding fundamental processes in high energy and condensed matter physics.

In quantum electrodynamics, for example, the coupling between the photon and virtual

electron-positron pairs polarizes the vacuum, which contributes to Lamb shifts [127] and the

anomalous magnetic moments of the electron and the muon [128]. In condensed matter,
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interactions between phonons and electrons are central to Cooper pairing in conventional

superconductors [129], as well as charge ordering and superconductivity in strongly correlated

materials [130, 131].

Ultracold mixtures of atomic Bose and Fermi gases offer a complementary experimental

platform for elucidating these quantum phenomena. Cold atoms are exceptionally flexible,

allowing for the control of interactions between the atomic species using Feshbach resonances

[42]. These capabilities have been used to study phase transitions in lattices [15, 16, 18],

polarons [28, 132], and superfluid mixtures [30, 133]. Many exciting theoretical predictions

for quantum simulation remain to be tested, e.g. Refs. [88, 134, 135].

In this work, we investigate sound propagation in a quantum degenerate Bose-Fermi

mixture from the weak to the strong interaction regime. We optically excite density waves

in the gases and measure their velocities and damping rates from in situ images of the Bose-

Einstein condensate (BEC). We see significant changes in the speed of sound for interspecies

attraction and negligible shifts for repulsion. This asymmetry indicates strong deviation

from the perturbation prediction. Intriguingly, we find stable propagation of sound waves in

mixtures with resonant interspecies interactions. This observation offers promising prospects

to explore new quantum phases of Bose-Fermi mixtures in the strong interaction regime.

The Hamiltonian for the phonons coupled to a single-component Fermi gas is given by

[53, 136]

H =
∑
k

ϵFk c
†
kck +

∑
k

ℏωkα
†
kαk +

∑
k,q

gk(αk + α
†
−k)c

†
qcq−k, (6.1)

where ϵFk is the dispersion of the fermions, ℏ is the reduced Planck’s constant, ωk is the

phonon dispersion, gk is the phonon-fermion coupling constant, ck and αk refer to fermion

and phonon annihilation operators respectively, and k and q are momenta (see Fig. 6.1a). In

our degenerate Bose-Fermi mixture, the kinetic energy of a bare fermion is ϵFk = ℏ2k2/2mF,

where mF is the fermion mass. The bare phonons are low energy excitations of the BEC
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with the Bogoliubov dispersion [37] ωk ≈ c0k, where the sound velocity c0 =
√
gBBnB/mB

is determined by the boson-boson coupling constant gBB, condensate density nB, and boson

mass mB. The phonon-fermion coupling constant is gk = gBF
√
nBℏk2/2mBωk [136, 137],

where gBF = 2πℏ2aBF/mr is the interspecies coupling constant, aBF is the interspecies

scattering length and mr is the reduced mass of the two unlike atoms. The phonon-fermion

coupling gk can thus be tuned by controlling aBF using an interspecies Feshbach resonance

(see Fig. 6.1c).

Perturbation theory shows that the velocity of phonons is reduced when the BEC interacts

weakly with the Fermi gas. This can be understood as a result of a fermion-mediated

interaction between bosons analogous to the Ruderman-Kittel-Kasuya-Yosida mechanism

[87, 110]. The mediated interaction has been observed in cold atom experiments [36, 138].

To leading order in gBF, the sound velocity is predicted to be [54]

c = c0

√
1− 3

2

g2BF
gBB

nF0
EF0

, (6.2)

where nF0 and EF0 are the density and Fermi energy of the Fermi gas in the absence of

the condensate. This correction is quadratic in the coupling strength gBF, and corresponds

to the one-loop diagram shown in Fig 6.1a. The sound speed is expected to be reduced

regardless of the sign of the interspecies coupling strength gBF. The perturbation result is

valid in the weak coupling regime |gBFnB| ≪ EF0.

At stronger interactions, the density profile of each species can be significantly modified

by the other species. This effect can be captured in a mean-field model. Under the Thomas-

Fermi approximation for both species, the local mean-field chemical potential of the bosons

depends on the fermion density as [137]

µTF = gBBnB + gBFnF0

(
1− gBFnB

EF0

)3/2

, (6.3)
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where the second term is set to zero when the mean-field interaction energy exceeds the Fermi

energy, gBFnB > EF0. In our system, it is a good approximation that the light fermions (Li)

follow the heavy bosons (Cs) adiabatically. This permits the evaluation of the mean-field

sound speed c =
√
nB/mBκ in terms of the effective compressibillity κ = ∂nB/∂µTF as

c = c0

√
1− 3

2

g2BF
gBB

nF0
EF0

√
1− gBFnB

EF0
. (6.4)

Compared to Eq. (6.2), the additional factor in Eq. (6.4) captures the density changes in the

mixture caused by interspecies interactions.

6.2 Exciting Density Waves

Our experiments begin with mixtures of a pure BEC of 30,000 133Cs atoms and a degenerate

Fermi gas of 8,000 6Li atoms, each prepared in their lowest internal state [35]. The mixture

is trapped in a single beam optical dipole trap at wavelength 1064 nm with trap frequencies

ωCs = 2π × (6.53, 100, 140) Hz and ωLi = 2π × (36, 330, 330) Hz in the axial and two

transverse directions. The bosons and fermions have a temperature of about 30 nK and

chemical potentials of about kB × 30 nK and kB × 300 nK respectively, where kB is the

Boltzmann constant. In the dipole trap, the BEC is fully immersed in the degenerate Fermi

gas (see Fig. 6.1b). We tune the interspecies scattering length near a narrow Feshbach

resonance at magnetic field 892.65 G [68, 72, 137]. Across the resonance, the boson-boson

interactions are moderately repulsive with a nearly constant scattering length aBB = 270 a0

[67], where a0 is the Bohr radius. At these temperatures, the interactions between the single

component Li atoms are negligible. In our experiment, the mixture is in the weak coupling

regime when the interspecies scattering length is |aBF| < 200a0.

To study sound propagation in our system, we optically excite density waves in the

mixture [139–141]. We introduce a narrow repulsive potential barrier of width δ = 4 µm
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Figure 6.2: In situ imaging of the phonon propagation. (a) A local density depletion
ϵ is created in the center of the cesium BEC by a projected laser beam (bottom panel,
red shaded area). The optical potential is abruptly switched off at t = 0 and the density
dip splits into density waves propagating in opposite directions (top panel, black arrows).
Average column densities are shown for three values of the hold time t = 0, 2, 4 ms along with
sample normalized one-dimensional (1D) densities n′1 for t = 0 ms and t = 4 ms. Data is
shown for the Cs-Li Bose-Fermi mixture with interspecies scattering length aBF = −335 a0.
(b) Normalized 1D densities n′1 show density wave dynamics for mixtures prepared at various
interspecies scattering lengths. Red dashed lines are a guide to the eye.
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by projecting blue-detuned light onto the center of the BEC, resulting in a density dip. At

time t = 0 we suddenly turn off the repulsive barrier and record the dynamics of the density

waves in situ [137]. We observe that the initial density depletion splits into two density

waves that counter-propagate at the same speed along the axial direction (see Fig. 6.2a).

From the images, we extract the velocity v and damping rate Γ of the density waves [137].

We repeat the experiment at different interspecies interaction strengths (see Fig. 6.2b).

The density wave velocity v in a bare elongated condensate is given by the sound speed

c0 through [137, 142]

v ≈ c0√
2

√
1− ϵ

2
, (6.5)

where ϵ is the initial density depletion due to the potential barrier (see Fig. 6.2a) and c0 is

the sound speed at the center of the BEC.

In the presence of fermions, we measure the dependence of the density wave velocity

on the initial density depletion ϵ and find agreement with Eq. (6.5) [137]. Thus, we adopt

Eq. (6.5) to link the density wave velocity to the sound speed. In the following experiments,

the initial density depletion is set to ϵ = 0.5.

6.3 Sound Speed Shift and Damping due to Interactions

We summarize the measured density wave velocities and damping rates in Figs. 6.3a and

6.3b. As we increase the interspecies attraction from zero, the density waves propagate

slower and decay faster. The enhanced damping of the density waves is consistent with the

perturbation calculation for a zero-temperature Bose-Fermi mixture [53, 137]. When the

scattering length exceeds the critical value of ac = −790(10) a0 [137], we no longer observe

stable propagation of sound. Our finding is consistent with the sound mode softening in

the Bose-Fermi mixture with increasing attraction. Our measured critical value shows clear
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Figure 6.3: Sound wave dynamics in Bose-Fermi mixtures with tunable interspecies scat-
tering length aBF. (a) Orange data points indicate samples prepared on the attractive side
of the Feshbach resonance aBF < 0. Measurement for a pure BEC is shown as the orange
square. Red data points are prepared on the repulsive side with aBF > 0. The crosses
indicate samples with no stable sound propagation. Inset shows the ratio of density wave
velocities for samples prepared with and without the fermions. The ratios are obtained from
the separation of density waves after 8 ms hold time. Calculations from perturbation (black
line) and mean-field (magenta line) theory are shown for comparison. The green shaded
area represents the phase separation region. The grey area indicates the region where no
stable sound propagation is observed. (b) Damping rates of the density waves are compared
with the perturbative prediction (black line) evaluated for momentum k = 2π/(4µm) [137].
Insets: Cartoon representation of the Cs (blue) and Li (red) density profiles in different
regimes. (c) Density wave velocity for BECs prepared without the Fermi gas (black squares)
and with the Fermi gas at aBF = −350 a0 (red circles) and aBF = −580 a0 (blue circles).
Lines are fits of the data to a model with both two- and three-body effective interactions
between bosons (see text). (d) Colored circles are the effective scattering lengths and hyper-
volumes extracted from panel (c). The magenta lines are the mean-field predictions and the
black line is a cubic fit to the data. The error bars in (a)-(c) are standard errors calculated
from fits to averaged experimental density profiles. The error bars in (d) are standard errors
calculated from fits to the data in panel (c).
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deviations from the perturbation prediction −710 a0 and the mean field prediction −510 a0

for the collapse of the mixture [49].

For repulsive interspecies interactions, on the other hand, the density waves propagate

with low damping and no significant change in velocity over the range we explore (see

Figs. 6.3a and 6.3b). This is in stark contrast to our observations for attraction. The

clear asymmetry with respect to the sign of the interaction goes beyond the perturbation

prediction, see Eq. (6.2), which only depends on the square of the scattering length a2BF.

The asymmetry can be understood from the mean-field picture. For attractive inter-

actions, fermions are pulled into the BEC, and the higher fermion density further reduces

the sound velocity. On the other hand, for repulsion, fermions are expelled from the BEC,

reducing their effect on the sound propagation. For strong enough repulsion, the bosons

and fermions are expected to phase separate [49–51]. The observed nearly constant sound

velocity for strong repulsion is consistent with the picture that most fermions are expelled

from the condensate. For our system, the mean field model predicts phase separation near

the scattering length aBF ≈ 180 a0.

This asymmetry comes fundamentally from effective few-body interactions in the BEC

that go beyond the perturbation calculation [143, 144]. The change of the density overlap,

described in the mean-field picture, is a consequence of the few-body interactions. The

three-body interaction strength can be experimentally characterized by writing the chemical

potential in orders of the boson density

µ = g2nB + g3n
2
B + ..., (6.6)

where g2 = 4πℏ2aeff/mB and g3 ≡ ℏ2νeff/mB are effective two- and three-body coupling

constants between bosons, aeff is the effective scattering length, and νeff is the effective

scattering hypervolume. From the effective chemical potential µ we obtain the sound speed

as c ≈
√

(g2nB + 2g3n
2
B)/mB.
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Figure 6.4: Sound propagation across the Feshbach resonance. (a) Normalized 1D densities
illustrating the revival of sound propagation at strong interactions. The arrows on each
data set indicate whether the system is ramped towards the resonance starting from the
attractive side (orange arrow) or repulsive side (red arrow). (b) Density wave velocity of
the Li-Cs mixture across the Feshbach resonance. Data taken from samples prepared on
the attractive (repulsive) side are orange (red) in color. The arrows indicate the direction
of the scattering length ramp. The blue and green regions indicate the resonant and phase
separation regimes respectively. The vertical black dotted line indicates the position of the
Feshbach resonance. (c) Damping from the same data set. The black and magenta lines are
the same perturbation and mean field predictions as shown in Fig. 6.3. All shown error bars
are standard errors calculated from fits to averaged experimental images.
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To determine the effective two- and three-body interaction strengths, we measure the

density wave velocity at various boson densities and scattering lengths. The results are

shown in Fig. 6.3c. From fits to the density wave velocities and Eqs. (6.5) and (6.6), we

extract the effective scattering length aeff and effective scattering hypervolume νeff (see

Fig. 6.3d).

As the interspecies attraction increases, we observe a reduction of the effective scattering

length, consistent with Ref. [36], and an emerging scattering hypervolume. Mean-field theory

predicts νeff = λa3BF with λ ≈ 159k−1
F set by the Fermi momentum and mass ratio [137].

Fitting the data, we determine λ = 35(8)k−1
F , see Fig. 6.3d. This value shows clear deviation

from the mean field prediction. Notably, the three-body interaction g3n
2
B ∝ a3BF is the

leading order process that breaks the symmetry between positive and negative scattering

length.

6.4 Sound Mode Survival at Feshbach Resonance

By ramping our magnetic field across the Feshbach resonance, we explore the sound propa-

gation in the strong interaction regime, where the scattering length exceeds all length scales

in the system. Surprisingly, we observe stable sound propagation with low damping for all

scattering lengths |aBF| > 3, 000 a0 (see Fig. 6.4) regardless of which side of the resonance

the samples are initially prepared on [137]. We label this range the resonant regime. An ex-

ample of the sound propagation with aBF = 35, 000 a0 is shown in Fig. 6.4a. An interesting

scenario occurs when we approach the resonance from the attractive side: the sound propa-

gation first becomes unstable beyond the critical value ac, and then recovers its stability at

aBF = −3, 000 a0 as the system enters the resonant regime.

The stable sound propagation we observe across the interspecies Feshbach resonance

goes beyond the mean-field picture and offers promising prospects for future discoveries in

the strong-coupling regime. At strong interactions, mean-field corrections are predicted to
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support a novel quantum liquid phase for scattering lengths aBF < −750 a0 [145]. An Efimov

resonance observed at the scattering length aBF = −3, 330 a0 [72] could also provide three-

body interactions that stabilize sound propagation in the resonant regime [144]. Finally,

at strong coupling, p-wave fermionic superfluidity is conjectured when fermions are paired

through the exchange of bosonic excitations [88, 136, 146], which we estimate would occur in

our system in the range aBF = −2, 000 a0 to −10, 000 a0. The stable phonon propagation we

observe near the Feshbach resonance offers promising prospects to explore these intriguing

physics with strongly interacting Bose-Fermi mixtures.

In conclusion, we have performed in situ measurements of sound propagation in a Bose-

Einstein condensate immersed in a degenerate Fermi gas near an interspecies Feshbach

resonance. At interspecies attraction, we observe a reduction in the BEC sound speed

consistent with a perturbation prediction arising from fermion-mediated interactions. At

interspecies repulsion, we observe only negligible shifts in the sound speed, consistent with

phase-separation of the components. Our measurements suggest that effective elastic three-

body interactions between the bosons induced by the fermions play a role in the system.

Finally, at resonant interactions, we observe that the sound mode of the BEC survives,

permitting future studies of strongly interacting fermions and phonons.

6.5 Supplementary Materials

A. Experimental set-up and procedures

We perform experiments with both Cs and Li atoms in their absolute internal ground state

loaded into a single beam optical dipole trap at a wavelength of 1064 nm. For Cs, this is

the state |F = 3,mF = 3⟩, where F is the total angular momentum quantum number and

mF is its projection along the magnetic field direction. A more detailed discussion of the

system preparation can be found in Ref. [35]. From our measurements of trap frequencies
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and beam parameters, we estimate a possible displacement between the vertical centers of

each cloud of about 8 microns due to gravity. However, the mean-field potential felt by the

Li due to the Cs has a trapping effect on the attractive side of resonance that improves the

overlap of the two species.

In Fig. 6.5 we show the Cs-Cs and the Li-Cs scattering length as a function of magnetic

field in the range where we perform the experiments. The models for the scattering length

are from Refs. [67, 98, 147] and have been adjusted based on experimental measurements

[36, 72].

To perform an experiment at a target interspecies scattering length aBF, we first prepare

the mixture at either aBF = −180 a0 on the attractive side or aBF = 120 a0 on repulsive side

of resonance [35]. Then, we ramp the magnetic field to the target value in two steps. For

samples initially prepared on the attractive side, shown as orange circles in Figs. 6.3, 6.4,

6.8, and 6.9, we first ramp to aBF = −150 a0 in 110 ms (see Fig. 6.5), then hold for 15 ms,

then ramp to our target value starting at t = −5 ms to allow the magnetic field to settle

before we turn our optical barrier off at t = 0. For samples prepared on the repulsive side

(red circles in Figs. 6.3, 6.4, 6.8, and 6.9), we ramp first to aBF = 0 a0, then ramp to the

target value, following the same timing procedure. For each data point, we determine the

magnetic field using microwave spectroscopy of the |3, 3⟩ ↔ |4, 4⟩ transition in the ground

state manifold of Cs.

The boson-boson scattering length aBB slightly varies over the range of magnetic fields

that are studied in this work (see Fig. 6.5). This contributes an overall variation in the

background bare boson sound speed value c0, which is not included in the presented theo-

retical predictions and would be interpreted as a sound speed shift in the experimental data.

The sound speed change due to intraspecies scattering length variation is most significant

at small |aBF|, where aBF varies more slowly with magnetic field. This effect is negligible

for the majority of our data, but is likely responsible for the small drop in observed sound
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Figure 6.5: Interaction strength between atoms. The scattering length between the Cs
atoms aBB is shown in blue and the Li-Cs scattering length aBF is shown in magenta near
the interspecies Feshbach resonance. The Cs-Cs scattering length is from the model in Ref.
[67] adjusted by measurements made in Ref. [36]. The Li-Cs scattering length is from the
model of Ref. [147] adjusted by measurements in Ref. [72]. The red and orange circles
indicate the initial magnetic field before the ramp to each target interspecies scattering
length for data prepared on the repulsive and attractive side of the resonance, respectively.
The shaded green area indicates the region of scattering lengths probed in this work.

speed and increase in damping at small positive values of aBF in Figs. 6.3a and 6.3b.

To make the measurements shown in Figs. 6.3c and 6.3d, we linearly ramp the trap depth

down to a target value then back up to its original value over 400 ms. The number of Cs

atoms that escape the trap depends on the target value, allowing control over the density.

We confirm that this procedure does not result in appreciable heating of the bosons or loss

of the fermions.

108



B. In situ imaging and DMD potential projection

To obtain sufficient signal for absorption imaging of Cs, we first transfer some population

from |3, 3⟩ to |4, 4⟩, where we can take advantage of the cycling transition on the D2 line from

|4, 4⟩ ↔ |5′, 5′⟩. We perform this state transfer using light resonant with the |3, 3⟩ ↔ |3′, 3′⟩

transition. We image the atoms by exposing them to 2 µs of pumping light and 10µs of

imaging light with an overlapping leading edge. Our imaging is performed at an intensity

I/Isat ≈ 6, where Isat is the saturation intensity of the cycling transition.

We perform imaging using a custom microscope objective from Special Optics with nu-

merical aperture NA=0.6. The microscope is designed for diffraction limited performance at

the D2 line of both Cs (852 nm) and Li (671 nm). The image is then captured on a CCD

camera (Andor iKon M 934), see Fig. 3.7. To project the repulsive barrier onto the atoms,

we reflect 635 nm light off a DMD (Texas Instruments DLP3000) and send it through the

microscope using a dichroic mirror. With our imaging system, we resolve features down to

0.78(2)µm for 852 nm imaging light, which is sufficient to resolve the 4µm wide density

waves as they travel.

C. Determination of density wave velocity and damping

We extract velocities v of the density waves from images in two steps. For a given hold time

t, we first integrate the images along the tight direction then normalize by the measured peak

value to obtain n′1 (see Fig. 6.6a). Then, we perform a bimodal fit of the density distribution

according to the fit function

nfit(x) = n0

[
1−

(
x2

R2
x

)]2
+ nthe

−x2

2σ2 + C,

where n0, Rx, nth, σ and C are fit parameters capturing the peak 1D density of the con-

densate, the condensate Thomas-Fermi radius, the thermal fraction 1D peak density, and an

109



72.7 124 175.3
-0.5

0

0.5

1

N
or

m
al

iz
ed

1D
 D

en
si

ty

-40 0  40 
x (µm)

10

5 

0 

H
ol

d 
T

im
e

 t 
 (

m
s)

-0.4 -0.2 0

n'
1

10

5 

0 

H
ol

d 
T

im
e

 t 
 (

m
s)

0 0.5 1

n'
1

0 2 4 6 8 10 12
Hold Time t (ms)

0

0.1

0.2

A
m

pl
itu

de

0
1
2
3

W
id

th
(µ

m
)

0

5

10

S
ep

ar
at

io
n

(µ
m

)

a

d

b

c

Figure 6.6: Data analysis procedure for the extraction of sound speed and damping from
the experimental data. Sample analysis is shown for interspecies scattering length aBF =
−335 a0. (a) Dynamics of normalized 1D profiles n′1. (b) Sample profiles for t = 5 ms. The
measured 1D density n′1 (blue circles) is fit to a bimodal fit function (blue line, see text).
The fit is subtracted off to produce the density wave profile δn′1 (red circles). The red line
is obtained from the full 2D fit shown in (c). (d) Amplitudes, widths and separations of the
density waves versus time extracted from δn′1 compared for 2D fits (lines) and independent
1D Gaussian fits (circles). The lines are the separation vt, the width σ0+bt and the amplitude
Ae−Γt from the 2D fit (see text).
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offset that accounts for possible detection noise. We subtract the fit from the data to obtain

the density profile of the density waves δn′1 = n′1 − nfit (see Fig. 6.6b).

We then perform a 2D fit to the evolution of the density wave profiles δn′1 using the

function

δnfit(x, t) = Ae−Γt

[
e
−(x−x0+vt)2

2(σ0+bt)2 + e
−(x−x0−vt)2

2(σ0+bt)2

]
+ C,

where A, Γ, x0, v, σ0, b and C are fit parameters representing the initial amplitude, the decay

rate, the position of the initial depletion, the density wave velocity, the initial depletion width,

the rate at which the depletion widens over time, and an offset that accounts for possible

detection noise (see Fig. 6.6c).

The fit function δnfit assumes constant velocity motion of the depletions, an exponential

decay of their amplitude, and a linear increase in their width. These constraints are chosen

based off the observed behavior of the depletions when the density wave profile δn′1 for each

hold time is fit independently by a pair of Gaussian functions. The extracted amplitudes,

widths, and separations of the waves from 2D fits and independent 1D fits are compared in

Fig. 6.6d, for hold times after the peaks have separated enough to yield reliable results for

both methods.

While both methods yield compatible results for the extracted velocities, we find that

the full 2D fits are more robust against noise in the data. Additionally, performing the 2D

fits allows us to extract information from early times before the two peaks have become

separated, permitting measurement of the damping rate Γ without additional assumptions.

The background subtraction process is imperfect, due to large length scale variation of

the BEC density profile. This corresponds to some uncertainty in which parts of the density

profile are the density wave and which parts are the background. We attribute an uncertainty

of 5% to this systematic, which is estimated by comparing extracted velocities for different

viable background subtractions. This is the largest estimated systematic uncertainty in our
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analysis.

D. Dependence of density wave dynamics on depletion

In our elongated geometry, density waves propagating along the long axis of the condensate

can be described as waves in the 1D density n1 that travel with a velocity v0 [142], given by

v20 =
n̄BgBB
mB

= c20
n̄B
nB

,

where n̄B = n1/A is the mean 3D density over the transverse cross-section A and nB is the

3D density evaluated along the symmetry axis. For harmonic transverse confinement, the

Thomas-Fermi approximation gives n̄B = nB/2 and thus v0 = c0/
√
2.

For a density wave with significant density depletion δn1, the propagation speed is re-

duced due to the lower mean density. Assuming the cross-section A is constant during the

propagation, the density wave velocity v is given by

v ≈ c0√
2

√
1− δn1

n1
≡ c0√

2

√
1− ϵ

2
,

where ϵ ≡ 2δn1/n1 is the fractional depletion of the 1D density induced by the optical

barrier. The factor of 2 accounts for the splitting of the initial density depletion into two

equal amplitude density waves propagating in opposite directions.

We compare the measured density wave velocities v to this prediction by varying the

optical power in the potential barrier, see Fig. 6.7a. The depletion ϵ is extracted from a

single Gaussian fit to the initial perturbation density profile δn′1 at hold time t = 0. In the

absence of fermions, we find fair agreement with Eq. (6.5). A linear fit to the squared velocity

v2 = ν20+mϵ gives ν0 = 0.91(2) mm/s, and thus c0 = 1.28(3) mm/s. This value is consistent

within 10% of our estimate. From the fit, we determine the slope to be m = −0.5(1)ν20

consistent with the prediction −0.5 ν20 .
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Figure 6.7: Effect of initial depletion on density wave velocity and damping. (a) The mea-
sured density wave velocity is shown for samples with no fermions present (blue circles) and
in the presence of fermions with aBF = −400 a0 (red circles). In both cases, the dependence
of the squared sound velocity is well captured by a linear fit (blue and red lines). The black
line is the analytical result Eq. (6.5) and the green line is from the hydrodynamic simulations
(see Section G), both evaluated in the absence of fermions. (b) Measured damping for the
same data sets shown in the same colors. The blue and red lines are linear fits to the data.
The green line is from the hydrodynamic simulation without fermions. All error bars are
standard errors calculated from fits to the experimental images.
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Figure 6.8: Change in initial depletion due to interspecies interactions. Orange and red
circles are data from the attractive and repulsive side, respectively. The green solid line is
simulated from the hydrodynamic model (see Section G). The black dashed line indicates the
initial experimentally set depletion ϵ = 0.5 for interspecies scattering length aBF = −150 a0.
The region shaded in grey indicates where we observe unstable sound propagation, and the
region in green indicates phase separation of the components. Error bars are standard errors
calculated from fits to averaged density profiles.
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Figure 6.9: Loss of Cs and Li atoms across the Feshbach resonance. Experimental data
showing the fraction of Cs atoms (panel (a) and (c)) and Li atoms (panel (b) and (d))
remaining after a hold time of t = 6 ms. The orange and red circles indicate experiments
performed by preparing on the attractive and repulsive side of the Feshbach resonance,
respectively. The Cs atom data is taken after a 4 ms time of flight, and the Li data is taken
in situ. The region shaded in grey indicates the region where no stable sound propagation
is observed. The region shaded in green indicates the phase separated region. The region
indicated in blue indicates the resonant regime. The dotted line in panels (c) and (d) indicate
the position of the Feshbach resonance. Error bars are the standard error.
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The same experiment in the presence of fermions at scattering length aBF = −400 a0

with similar particle number yields an overall reduction of the density wave velocity. Using

the same fit function, we obtain ν0 = 0.81(2) mm/s and the slope m = −0.5(1)ν20 , consistent

with Eq. (6.5).

The initial depletion ϵ also has a significant effect on the damping rate, as shown in Fig.

6.7b. This effect is much weaker in our simulation, which suggests that it does not come

from the nonlinearity present in that model. To characterize the damping quantitatively,

we perform a linear fit to each data set while constraining the y-intercept to be positive.

This gives a slope 0.17(2) ms−1 without Li and 0.12(2) ms−1 with Li at scattering length

aBF = −400a0.

For the data in the main text figures, we prepare our gas with an initial density depletion

of ϵ = 0.5± .05 (see Fig. 6.2) near the initial sympathetic cooling field, prior to our magnetic

field ramp at time t = −5 ms. However, due to the change in interspecies interactions during

the ramp, the level of depletion when the optical barrier is switched off can vary as a function

of the target interspecies scattering length. This variation for the data in Figs. 6.3a and

6.3b is shown in Fig. 6.8.

The increase in the depletion ϵ at negative aBF is likely due to interspecies interactions,

but the increase at small positive aBF is likely due to the reduction of the intra species

scattering length aBB for those data points (see Fig. 6.5). Comparing the results in Fig. 6.7 to

those in Fig. 6.8 suggests that this depletion dependence can contribute about 10% additional

reduction in the depletion velocity v and an additional 0.05 ms−1 to the damping rate near

the unstable region where the change in density depletion is greatest.

In Figs. 3b and 4b we compare the experimental data to a perturbation prediction [53]

Γ = Im[ω] = kc0

√
π(1 + w)2

4w2

a2BF
a2BB

√
nBa

3
BB,

where w = mB
mF

is the mass ratio between the species. To provide comparison to the data, we
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evaluate the perturbation prediction for a phonon momentum k = 2π
δ , where δ is the width

of the density waves. Our measurements do not distinguish the origin of the damping, but

we note that the maximum contribution from the measured depletion dependence is about

0.15 ms−1, which is smaller than the largest measured values shown in Figs. 6.3 and 6.4.

E. Atom loss

The atom loss rate due to three-body recombination can change both due to changes in the

three-body loss rate coefficient and the overlap of the two species. The high atomic densities

in the in situ images lead to complications in the direct determination of the atom number.

We therefore perform a complimentary experiment where we control the interspecies

interactions identically as for the data in the main text, but do not excite sound waves using

the optical barrier. We count the atom number after a hold time of t = 6 ms, imaging the

Cs atoms after a 4 ms time of flight expansion and the Li atoms in situ. The results are

presented in Fig. 6.9. The peak of the loss in each case appears close to the pole of the

Feshbach resonance, rather than in the region highlighted in grey where we do not see stable

sound propagation.

We note that the measured velocities at resonance are slightly lower for samples prepared

on the negative side compared to the positive side (see Fig. 6.4). We attribute this to the

stronger particle loss on the attractive side of the resonance.

F. Phonon-fermion coupling

In this section, we briefly summarize a portion of the discussion of Ref. [53] to obtain the

phonon-fermion coupling in the Bose-Fermi mixture. We start from the Hamiltonian for the

uniform mixture in the Bogoliubov approximation
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H =
∑
k

ϵFk c
†
kck + EB +

∑
k

ℏωkα
†
kαk + gBF

∫
dr⃗ nBnF,

where ϵFk = ℏ2k2
2mF

is the kinetic energy of a fermion, EB is the ground state energy of the

bosons, nF is the average fermion density, nB is the average boson density, and ℏωk =√(
ϵBk
)2

+ 2gBBnBϵ
B
k is the Bogliubov dispersion, where ϵBk = ℏ2k2

2mB
is the kinetic energy of

a boson. The first term is the total kinetic energy of the Fermi gas, the next two terms

are the energy of the Bose gas, and the last is the total interaction energy between the two

components.

The annihilation and creation operators αk and α
†
k for the phonons are related to the

corresponding operators for the bosonic atoms ak and a
†
k through the Bogoliubov transfor-

mation

ak = ukαk + vkα
†
−k

a
†
k = ukα

†
k + vkα−k,

with coefficients defined by

u2k =
1

2

(
ϵBk + gBBnB

ℏωk
+ 1

)

v2k =
1

2

(
ϵBk + gBBnB

ℏωk
− 1

)
.

The interaction term is rewritten by defining density fluctuation operators at momentum k

ρBk =
1√
V

∫
dr⃗ eik⃗·r⃗[nB(r⃗)− nB] =

1√
V

∑
q

a
†
qaq+k

ρFk =
1√
V

∫
dr⃗ eik⃗·r⃗[nF(r⃗)− nF] =

1√
V

∑
q

c
†
qcq+k.

where nB(r⃗) and nF(r⃗) are the local boson and fermion densities, respectively. The ground
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state energy of the bosons is EB = gBBnBNB/2, where NB is boson number. The interaction

term is now:

gBF

∫
d3rnBnF = gBFNBnF + gBF

∑
k

ρBk ρ
F
−k.

Using the Bogoliubov approximation, the boson density fluctuation operator is given by

ρBk ≈
√
nBℏk2/2mBωk(αk + α

†
−k).

Substituting this into the interaction term, we arrive at the Hamiltonian in the form

H =E0 +
∑
k

ϵFk c
†
kck +

∑
k

ℏωkα
†
kαk

+ gBF
√
nB
∑
k,q

√
ℏk2/2mBωk(αk + α

†
−k)c

†
qcq−k,

which is Eq. (6.1) referred to in the main text with the explicit form of the coupling gk and

overall energy offset E0 = EB + gBFNBnF0 included.

G. Coupled hydrodynamic model and numerical simulation

A coupled hydrodynamic model that corresponds to a typical Gross-Pitaevskii equation for

bosons and a hydrodynamic treatment for fermions can be used to approximate the long

wavelength dynamics of the system. This type of treatment has been studied in detail

theoretically [145, 148]. The system is described by a pair of equations:
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Figure 6.10: Coupled hydrodynamic simulations and comparison of all models. (a) Sample
normalized 1D density profiles n′1 generated from the coupled hydrodynamic simulations for
aBF = −300a0. The lower and upper profiles are for t = 0 ms and t = 2.8 ms respectively.
(b) Density wave velocities fit from 3D simulations of the experimental dynamics using the
coupled hydrodynamic model are shown as the green line. The discontinuity at aBF = 0
is due to different preparation of the sample for aBF > 0 and aBF < 0 in the numerical
simulation (see text). The result is compared with the perturbation (black line) , see Eq.
(6.2), and mean-field prediction (magenta line), see Eq. (6.7).
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iℏ
∂ψB
∂t

=

(
− ℏ2

2mB
∇2 + gBB|ψB|2 + gBF|ψF|2

)
ψB

iℏ
∂ψF
∂t

=

(
− ℏ2

2mF
∇2 +

ℏ2ξ′

2mF

∇2|ψF|
|ψF|

+
5

3
κF|ψF|4/3

+gBF|ψB|2
)
ψF,

where ψB is the condensate wavefunction, ξ′ = 8/9 is a factor arising from the VonWeiszacker

gradient correction [149], κF = (3/10)(6π2)2/3 ℏ2
mF

and ψF =
√
nFe

iϕ is the fermion pseudo-

wavefunction where the local velocity of fermions is − ℏ
m∇ϕ. We evaluate the model using

the split operator method [150]. In Fig. 6.10a, we show an example of 1D densities n′1 vs

hold time t numerically calculated using this model. The dynamics are similar to those seen

in the experiment (see Fig. 6.2).

We perform two sets of numerical simulations which capture the different experimen-

tal procedures on the negative and positive side of resonance. For these simulations, the

intraspecies scattering length is held fixed at aBB = 270a0, but the dynamics of the inter-

species scattering length aBF during the experimental magnetic field ramp are included. The

evolution of the system is simulated for the duration of the 5 ms magnetic field ramp then

2.8 ms of evolution after the optical quench. A fit is performed to the simulated density wave

dynamics to obtain the density wave velocity. There is an estimated systematic error of 5%

in the obtained density wave velocity that arises from the choice of simulation duration. The

discontinuity at aBF = 0 is due to small changes in the boson density resulting from the

different initial values of the scattering length aBF at t = −5 ms (see Section A).

In Fig. 6.10b we compare the predicted sound velocities from the hydrodynamic simula-

tions to Eq. (6.2) and (6.4) discussed in the main text. We see fair agreement between our

analytical models and the hydrodynamic simulations. We note that for our system parame-

ters, our simulations suggest that there is no stable ground state for aBF < −450 a0, which
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Figure 6.11: Density wave velocity near instability transition. The measured density wave
velocities on the attractive side near the instability transition (orange circles) are fit to
v = α

√
aBF − ac (orange line) to determine the critical scattering length. The red shaded

area represents the standard error from the fit. For comparision, the perturbation (black
line) and mean-field (magenta line) predictions are also shown. The grey area indicates the
region where no stable sound propagation is observed.

we identify with instability towards collapse.

H. Thomas-Fermi approximation

In this section, we provide a more detailed explanation Eq. (6.3) and (6.4) in the main text.

We use a Thomas-Fermi approximation for both species, which allows us to ignore all of the

spatial gradient terms in the hydrodynamic model. We write the chemical potential of each

species

µ = gBBnB + VB + gBFnF

EF =
ℏ2

2mF
(6π2nF)

2/3 + gBFnB + VF,

where VB and VF are the external potentials felt by the bosons and fermions, respectively. If
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the number of fermions pulled into or pushed out of the BEC by the interspecies interaction

is small compared to the total fermion number, the fermion chemical potential EF is close

to its bare value EF0, so EF ≈ EF0, where EF0 = ℏ2
2mF

(6π2nF0)
2/3. This approximation is

justified in our experiment because only about 1% of the fermions are overlapped with the

BEC for our system parameters.

We consider the local chemical potential of the bosons, and define µTF = µ − VB .

Combining the expressions for the bosonic and fermionic chemical potentials yields

µTF = gBBnB + gBFnF0

(
1− gBFnB

EF0

)3/2

,

when gBFnB/EF0 < 1, as in Eq. (6.3) in the main text. This expression provides the

relationship between the local boson density nB and the local fermion density in the absence

of the condensate nF0 [151].

To provide the mean-field prediction for the effective two- and three-body coupling con-

stants g2 and g3 in Fig. 6.3d, we expand the chemical potential µTF to second order in nB,

which gives

µTF ≈ g2nB + g3n
2
B + ...,

where g2 = gBB− 3g2BFnF0
2EF0

and g3 =
3g3BFnF0
8E2

F0
. These coupling constants can be expressed as

an effective two-body scattering length aeff = aBB− mBmF
m2

r

kF
2πa

2
BF and an effective scattering

hypervolume νeff = 2π
mBm

2
F

m3
r
k−1
F a3BF.

We evaluate the density wave velocity from the compressibility and Eq. (6.5) of the main

text. We obtain the final expression for the density wave velocity along the symmetry axis

of an elongated Bose-Fermi mixture as

v =
c0√
2

√
1− ϵ

2

√
1− 3

2

g2BF
gBB

nF0
EF0

√
1− gBFnB

EF0
. (6.7)
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This expression is used to generate the mean-field predictions (magenta lines) in Figs. 6.3,6.4,

6.10, and 6.11. To do so, we approximate the fermion density nF0 and the boson density nB

as the bare peak densities of each species. We use the peak densities because the densities

do not change significantly over the axial distance that the density waves propagate. We

additionally make the assumption that the peak boson density is unchanged as we change

the interspecies scattering length.

In the above derivation, we assume that there is no significant radial motion of the

condensate. In our experiment, we do not see clear signs of such dynamics. Furthermore,

the sound speed evaluated from 3D hydrodynamic simulations (see Fig. 6.10) is in fair

agreement with this simplified mean-field model.

I. Determination of the critical scattering length

As the interspecies attraction increases, both perturbation theory, see Eq. (6.2), and mean-

field theory, see Eq. (6.7), predict the softening of the sound mode as v ∝
√
aBF − ac ,

where ac is the critical scattering length. This dependence well captures the behavior of

the data near the transition to the region of unstable sound propagation (see Fig. 6.11).

We perform a fit to the 5 lowest density wave velocitiy measurements using the fit function

v = α
√
aBF − ac, where α and ac are fit parameters representing the velocity scale and the

critical scattering length. The fit yields the critical scattering length ac = −790(10) a0 and

the coefficent α = 32(1) µm/s × a
−1/2
0 .
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CHAPTER 7

OUTLOOK

7.1 Long-ranged interactions between bosons

While our work published in Ref. [36] demonstrates the existence of fermion mediated

interactions, it does not explicitly demonstrate their functional form or long-ranged nature.

Some ideas for how this may be done are outlined below.

1. The most experimentally satisfying method would be to create two BEC’s separated

by a controllable distance, for example using the DMD array, and attempting to couple

the two gases through the mediated interactions. However, the effect of their coupling

must be impossible to explain through contact interactions. One way to do this is to

kick one of the condensates and look for a coupling of its motion into the other well.

Or, alternatively, one could try to look for a relative shift in the frequency of the in-

phase and out-of-phase modes for the motion in the wells, since only the out-of-phase

mode would be sensitive to the coupling. This experiment is similar in spirit to that

proposed in Ref. [118] for fermion mixtures. Preliminary simulations suggest that

for realistic conditions in our experiment, the shift would be less than a percent and

therefore difficult to resolve.

2. It is also possible to obtain evidence of the long ranged interaction by performing Bragg

spectroscopy. Contact interactions are delta functions in real space, meaning that they

are uniform in momentum space. Therefore, long ranged interactions have a momen-

tum cut off set by their range. Signs of this fall off can be seen in Fig. 2.8, where the

modified dispersion approaches the bare dispersions at high momentum. By perform-

ing Bragg spectroscopy on the mixture and verifying that the mediated interaction

vanishes at high momentum in a manner which is inconsistent with contact interac-

tions, it can be shown that they are long ranged. Based off preliminary calculations,
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our DMD projection resolution is not sufficient to resolve this effect when estimates

of broadening are included for the condensate alone [152]. However, by modifying the

trapping geometry or adding in additional beams to make a shorter wavelength lattice

on the atoms this may be resolvable in the future.

3. Alternatively, one can seek to explicitly look for Friedel oscillations themselves in the

density distribution of the gases. As discussed in Ref. [153], these Friedel oscillations

are very difficult to see in a Fermi gas in general. However, it may be possible to resolve

them using the condensate as a sort of amplifier for these low contrast features, due to

its low energy scale and coherence. Even resolving them in response to, for example,

an optical barrier would be a very interesting result. With the right choice of geometry

it may be possible to resolve those caused by a tightly trapped condensate.

7.2 Three-body Physics at Degeneracy

Previous work in Chicago and Heidelburg has studied Efimov resonances in Li-Cs experimen-

tally in ultracold, yet still thermal gases. However, there is a fascinating connection between

Efimov physics and the many-body problem of polarons. When the bosons are degenerate,

Ref. [154] suggests that the spectrum of the Bose polaron can be modified by Efimov physics,

and that this may be observable through spectroscopy. The mass imbalance in the Li-Cs

system is predicted to be favorable for the observation of these three-body correlations.

When the fermions are degenerate, the Fermi sea plays a role in the three-body physics.

The RKKY interaction potential is the weakly interacting, long distance limit of a more

complicated interaction between 2 bosons and a single fermion in the Fermi sea [155]. At

strong interactions, the potential can be significantly modified [144, 155, 156]. Additionally,

there is an interesting interplay between the length scales of the scattering length a and the

inverse Fermi momentum 1/kF that influences whether an Efimov like bound state is possible,

and how the induced interactions behave [156]. Specifically, if the size of the Efimov trimers
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is large compared to the interfermion spacing, the Fermi sea shifts the Efimov resonances to

weaker interaction strength. If instead the reverse is true, the trimers are suppressed. The

relevant dimensionless parameter is kF a, which in our system reaches unity at ∼ 7000a0.

Furthermore, in the vicinity of an Efimov resonance, the induced interactions can be made

resonant [144]. We have access to both a narrow and broad Feshbach resonance depending on

whether we use Cs-|a⟩ or Cs-|b⟩, respectively, in the regime that we can create condensates.

This may provide further avenue for study of these topics.

7.3 Bose-Fermi Liquids

Since the discovery of Bose-Bose liquid droplets [44, 45], theoretical work led by M. Gajda’s

group [145] has suggested that beyond mean field corrections are capable of supporting Bose-

Fermi droplets as well. The leading order beyond mean field correction, analogous to the

LHY correction for bosons, may also produce the required repulsion at large densities to

stabilize a droplet phase. In particular, including additional interaction terms beyond mean

field yields the energy:

EBMF/V =
3

5
EFnF + gBBn

2
B/2 + gBFnBnF + CLHY n

5/2
b + CBFnBn

4/3
F A(w, α) (7.1)

where the coefficient CLHY = 64
15(

√
π)
gBBa

3/2
BB , the coefficient CBF = (6π2)2/3ℏ2a2BF /2mF ,

and the dimensionless parameters w = mB/mF and α = 2wgBBnBEF enter through the

integral A(w, α) given by:

A(w, α) =
2(1 + w)

3w

(
6

π

)2/3 ∫ ∞

0
dk

∫ +1

−1
dΩ[

1− 3(k2(1 + w)√
k2 + α

∫ 1

0
dq q2

1−Θ(1−
√
q2 + k2 + 2kqΩ√

k2 + α + wk + 2qwΩ

] (7.2)

where Θ is the Heaviside step function. By evaluating the pressure, one can find that the
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region of mechanical instability in the Li-Cs system occurs when the ratio aBF /aBB =

−700a0 for aBB = 250a0.

The major challenge in reaching this droplet phase in Li-Cs is that they are predicted

to stabilize at very large particle boson densities of about 1020 m−3 based on the above

calculation, which would lead to very short lifetimes due to the scaling of Cs-Cs-|a⟩ 3-body

loss∼ n2bnfa
4
BF of about 1 ms. However, it may be possible to detect the onset of this droplet

phase, either through a dynamic measurement such as the sound measurement described in

Chapter 5 or through some other non equilibrium probe. Such liquids would be a fascinating

novel quantum phase that have never been created in experiment.

7.4 Boson-Mediated Interactions Between Fermions and

Fermion Pairing

We have studied fermion mediated interactions in this thesis, but these Bose-Fermi mix-

tures also support boson mediated interactions more directly analogous to BCS pairing in

materials. Much theoretical work has been done studying the feasibility of observing boson

mediated pairing in Bose-Fermi mixtures [88, 146, 157, 158], although accurate calculations

do not currently exist in the literature for the Li-Cs system. The simplest estimate in the

static limit (using Eq. (2.33) ) for the critical temperature for p-wave pairing [88] suggests

that aBF ≈ −2000a0 could be sufficient to observe pairing at our current temperature, but

this neglects retardation effects. Our mass-imbalance is unfavorable for the critical tem-

perature, but it may still be possible near the Feshbach resonance pole at higher values of

|aBF|. The superfluidity would be limited to the region where the two gases overlap, which

in our system represents only a small volume of the Fermi gas. However, with our new high

resolution microscopy, it may be possible to identify local pairing and/or superfluidity in

that region of the gas.
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7.5 BEC-BCS Superfluid Mixtures

In recent years, several groups have demonstrated for the first time mixtures of BCS and

BEC superfluids in quantum gases. This requires a mixture of spin states in the fermions to

create the BCS component, and a boson to create the BEC. In our system, the scattering

length between Li |a⟩ and |b⟩ is about -8000 a0 where we create our mixtures, suggesting

that we are in the appropriate regime. The major concern is that mixing the gases creates

additional loss channels: in additional to the typical Cs-Cs-|a⟩ and Cs-Cs-Cs loss, there can

additionally be Cs-Cs-|b⟩ loss and Cs-|a⟩-|b⟩ loss. Therefore, work must be done to check

whether the evaporation process can be optimized to create mixtures in this phase. The

predicted pairing temperature is given by [37]

TBCS ≈ 0.28TF e
π

2kF aFF

where TF is the Fermi temperature, kF is the Fermi momentum, and aFF is the fermion-

fermion scattering length. For our system parameters this gives TBCS ≈ 25 nK, which is

not far from our working temperature. This pairing temperature can be affected by the

interspecies interactions as well, and demonstration of a shift in the pairing temperature due

to interactions with the condensate [86, 158] which would also be very interesting to observe

experimentally. Due to the variety and tunability of the various scattering lengths between

components near 900 G (see Fig. 3.4) there may be a rich system to explore with three

components [159–162].
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APPENDIX A

CHANGES TO CONTROL COMPUTER

The old control computer that powered the NI cards died, and around the same time so did

some PCI cards with it. Presumably the two are related, but we may never know. It was

replaced with a computer with many PCI slots from Electronic Voice Services (EVS), which

is now running a slightly different set of NI cards from the previous record. The labview

code has been ported over to a much newer LabView version and OS. In order to do this,

the section which generated the array of values to load onto the PCI cards needed to be re-

written. This was previously written in IDL using a now unsupported third-party LabView

script. With the help of Joey He, this functionality was replaced with native LabView VI’s

and only requires the base software.

As of 05/09/2021, the following NI cards are present, and have the following names in

the control computer software:

1. PCI-6733 : “AOutFastA”

2. PCI-6723 : “AOutSlowA”

3. PCI-6723 : “AOutSlowB”

4. PCIe-6536 : “DOutA”

5. PCIe-6536 : “DOutB”

where the PCI cards are analog and the PCIe cards are digital. The 6733 has better voltage

resolution, but only 9 channels compared to the 6723 which has 32. The signals which rely

the most on the higher resolution are currently reserved on the 6733, and the rest are on

the sufficiently accurate 6723’s. As of this thesis, there are about 20 open low resolution

channels for future control, and still some additonal unused PCI slots. Please note that any
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Figure A.1: Schematic of the computer control hardware.

experimental sequences loaded from before this time will not work, and if they are to be

loaded should be carefully checked to not send any inadvisable commands to the Bitter coils

which could damage them or the control electronics.

There is, additionally, at the time of this thesis a working spare experimental computer

from EVS in middle lab with one PCI-6733 and one PCI-6536 that can be used in the event

of another crash, or for general testing purposes. There is a test version of the Li-Cs exper-

imental code which has all of the functionality of the real control system currently up and

running. The overall signal flow is that there is a 100 kHz clock to the digital card (in the

real experiment this is synced to the 60 Hz line voltage) which is set to trigger each voltage

update in the analog card. The LabView code builds the array of voltages which need to be

contained in the onboard card memory, but only updates based off changes in the voltages

which are signified by a digital pulse. This allows for longer and denser experimental se-

quences, because the onboard memory is a significant limitation in our experimental control.

It is hard to avoid, since we have 20 µs timing resolution but 30 s long experiments. See

Fig. A.1 for a schematic.
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APPENDIX B

CHANGING THE OVEN

Our Li flux dropped basically to zero during September of 2017. Through process of elimina-

tion, we decided that this was likely because our atomic source ran out of material, since the

previous oven change had been several years before. Replacing the ovens is no small task,

because it requires breaking vacuum, which is always a risky and time consuming process in

an experiment under UHV. It must be done as quickly and carefully as possible to minimize

contamination. In this appendix, we will discuss our method for replacing the oven and the

oven design.

We first constructed the replacement oven, which was based on the previous design. The

only major difference is that we removed a spacer piece of metal that may have been used

to keep the Cs oven far away from the Li oven so that it wouldn’t get too hot. We instead

now only actively heat the Li oven, and let conduction through the vacuum components

provide the heat to the Cs oven. Professor Philippe Guyot-Sionnest loaded the oven with

source material inside of his nitrogen glove box, which is necessary since both Cs and Li are

reactive in air. Unfortunately, in nitrogen the Li still formed a black surface layer, however

this did not seem to cause problems for our flux once heated. After it was loaded, we

tightened it fully and leak-checked it to verify our seals were good.

In an attempt to reduce overall contamination, we made a simple “glovebox” in which

to perform the oven replacement. We laser cut circular plastic rings with mounting holes

and attatched them to plastic sheeting. Latex gloves were clamped into the circular plastic

rings, which allows the insertion of hands into the gloves. The edges of the plastic sheeting

were then taped to the vacuum chamber at the base of the ovens, in order to contain inert

gas and shield a small area from the room air.

Using the spare vacuum connection which we typically reserve for baking out the ion

pump, we connected to a gas cylinder of Argon. We also closed the gate valve which blocks
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Figure B.1: First bake log after replacing the ovens. Pressure is measured at the typical
cold cathode gauge on the oven side of the experiment. Over about 6 days, we brought the
pressure down to the 100’s of microtorr and then deemed it clean enough to open the main
gate valve. Since we heated up the entire back end of the oven, we did a round of hi-potting
to help clean out the ion pump as well.

off the scientific chamber. The gate valve is capable of holding against ambient air pressure.

In this configuration, opening the gas cylinder allows argon to flow through the pressure

gauge, the 2D MOT chamber, the oven side ion pump, and the ovens. When we remove

the ovens from the experiment, argon will flow out through the edges of our glovebox while

preventing contaminating air from filling the chamber.

Once the ovens were on, we performed an initial bake-out of the surrounding vacuum

system over several days. The result of that bake is shown in Fig. B.1.

The new oven is made out of the following parts:

• 1 Custom Tee from Lesker

• Elbow: MDC P/N 40300
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Figure B.2: Picture of the unwrapped ovens.
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• Custom blank MDC P/N 140000-2000 (0.5” thick)

• Cup (Lesker HN-SPL333)

• 6x 8-32 1.25” bolts

• 6x 8-32 05” bolts

• 6x 8-32 0.75” bolts

• 6x platenuts

• shortened hex-key

• 2 Ni Gaskets CF 1.33”

• 2 Cu Gaskets CF 1.33”

The nickel gaskets are for the seals on the Li tee, and they are chosen to better respond to

the ∼ 350C temperature change that the oven experiences typically twice a day of operation.

It is worth noting that in the end, it turned out that we had not used up our Li source

material, but it had instead rather collected in the cooler spots between the heater tape

wrapping on the oven. Eventually, it had mostly plugged the available aperture for Cs, and

we therefore lost most of our flux for both species.

In wrapping the replacement ovens, Geyue took great care to minimize the available

locations that are not being heated well by the tape. If we find this problem to arise in the

future, it may be worthwhile to try re-wrapping the ovens or otherwise redistributing the Li

inside to buy time before the next oven replacement.
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APPENDIX C

NUMERICAL SIMULATIONS

In this appendix, we will outline some of the various methods of numerical simulation that

we have employed while studying this system. None of our major results rely on these types

of numerics, but they are useful tools for us to plan experiments and for future graduate

students working on the experiment.

C.1 TF Ground State Solutions by Iterating Chemical Potential

The most straightforward and computationally cheapest method to obtain reasonable ground

state density profiles of the trapped mixture is iterating starting from the coupled Thomas-

Fermi equations (see Chapter 2):

nB(r⃗) =
1

gBB
(µB − gBFnF (r⃗)− VB(r⃗))

nF (r⃗) =
(2mF )

3/2

6π2ℏ3
(µF − gBFnB(r⃗)− VF (r⃗))

3/2

where nB andnF are the boson and fermion densities, gBB and gBF are the coupling con-

stants. µB and µF are the chemical potentials, and VB and VF are the external potentials.

The chemical potentials are fixed by

NB =

∫
nBdr⃗

NF =

∫
nF dr⃗.

To be specific, one defines a grid of points to represent spatial coordinates, then beginning

from an initial guess (typically we take the non-interacting ground state) evaluates both nB

and nF , then calculates µB and µF , then re-inserts them into the coupled equations. This
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process is repeated until their change per iteration is below some specified tolerance which will

determine the accuracy of the simulation. If the system is in a regime which is mechanically

unstable, the simulation will not converge and instead the densities will blow up.

This type of numerical solution contains no kinetic energy contribution for either species,

and does not permit modelling of dynamics. However, it is still quite useful and can give

reasonable predictions for densities and collapse, especially if aBB is reasonably large as is

the case for Li-Cs at the |a⟩-Cs Feshbach resonance. It does a rather poor job near the boson

boson zero crossing where boson kinetic energy is important.

C.2 Coupled Hydrodynamic Equations

To more accurately model the ground state, and to find dynamics of the mixture, we typi-

cally utilize a coupled hydrodynamic model following Ref. [145]. In this type of treatment,

the bosonic component is modeled using the Gross-Pitaevskii equation and the fermionic

component is modelled in a hydrodynamic approximation. This hydrodynamic approxi-

mation is not necessarily well satisfed for non-interacting fermions in the mixture, but it

provides the most straightforward method of simulation and can still yield useful results.

There is a more sophisticated numerical method for handling the non-interacting fermions

with the Boltzmann-Vlasov equation [151], which we have not yet compared to the outcome

of our hydrodynamic model. The Boltzmann-Vlasov model is likely to more faithfully cap-

ture the fermion dynamics, but in the static limit we expect good agreement between the

models. Furthermore, we note that the hydrodynamic approach does not contain dissipa-

tion, although this has been investigated in Ref. [163] in numerical simulations of individual

fermion trajectories.

In the approach discussed here, the system is described by a pair of equations:
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iℏ
∂ψB
∂t

=

(
− ℏ2

2mB
∇2 + gBB|ψB|2 + gBF|ψF|2

)
ψB

iℏ
∂ψF
∂t

=

(
− ℏ2

2mF
∇2 +

ℏ2ξ′

2mF

∇2|ψF|
|ψF|

+
5

3
κF|ψF|4/3

+gBF|ψB|2
)
ψF,

(C.1)

where ψB is the condensate wavefunction, ξ′ = 8/9 is a factor arising from the VonWeiszacker

gradient correction [149], κF = (3/10)(6π2)2/3 ℏ2
mF

and ψF =
√
nFe

iϕ is the fermion pseudo-

wavefunction where the local velocity of fermions is − ℏ
m∇ϕ. We evaluate the model using

the split operator method [150].

To elaborate further, the split step operator is implemented by defining a spatial grid and

a time step, then advancing the real space and kinetic energy terms of the Hamiltonian in

separate steps. The advantage of this method is that instead of using discrete derivatives to

evaluate the kinetic energy term, two FFTs (fast Fourier transforms) and a simple product

are used instead. The time step is performed sequentially for each component of the mixture.

The spatial grid must be chosen to be large enough in size to include the expected

dynamics without hitting the boundaries and the spacing should be chosen to comfortably

include the relevant momenta. If not, numerical instabilities and artificial fringes can appear

in the simulations. The time step δt should be chosen based off the energy scales of the

simulation. As a diagnostic, the advancement per time step (for example Hδt) can be

output and kept to a suitably small level. Making δt larger helps computation cost but it

can also introduce instabilities and fringes.

Generally speaking, the Li-Cs system is quite expensive to propagate because of the large

difference in energy and length scales between the BEC and the DFG. Since the Fermi energy

is an order of magnitude higher than the chemical potential, the time steps must be very fine

in order to prevent instability in the Fermi gas. Additionally, the length scales of features in
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the BEC are frequently micron scale with our high resolution objective, but the Fermi gas

is quite large which requires large spatial grids.

We perform our simulations using MATLAB’s GPU support. Most of the computation

time is the FFTs and IFFTs which can gain enormous speed up on good hardware (a whole

order of magnitude.)

The ground state of the system can be found by performing the split-step operator in

imaginary time, which turns the time dependence of each eigenstate into exponential decay

rather than oscillation. If the system is iterated this way (and renormalized at some interval)

then eventually all components of the solution other than the ground state will decay away,

and a tolerance can be specified for convergence.

Frequently, we use this ground state as the initial state from which we perform time

propagation, since this is most similar to the case of the experiment. However, it is possible

to time propagate from any initial state as defined by the first time step using this type of

simulation method.

Since the ground state for static potentials will not be evolving in time, there are no

phase gradients. This permits simplification of the equations which speeds up the fermion

computation.

For dynamics simulations, this simplification is inappropriate and the second term on the

right hand side in the fermionic equation must be taken into account. This term cannot be

evaluated as an FFT, so we instead must evaluate it in real space. Additionally, we must

manually specify a numerical cutoff to stabilize the denominator and prevent numerical

divergences. This operation reduces numerical stability and increases computation time,

and typically only manifests as a small quantitative change in the density profiles.

In general, this hydrodynamic approach for the fermions is a very heavy-handed approx-

imation. However, in the static regime, it is likely to produce accurate results for the BEC

component. Since the energy scales are so seperated, the gradient terms are necessary to
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allow the fermions to respond to changes in the BEC density profile, but they are basically

responding by following in their ground state determined by the real space terms. For this

reason, the details of these kinetic energy terms are likely not very important in the regime

of our experiment.

C.3 GPE Simulations With Effective Long-Ranged Interactions

As discussed in Section. 2.2, the interaction term in the Hamiltonian for the condensate

atoms is approximated as a delta function. It originates from a mean-field interaction term

of the form (
∫
dr′U(r − r′)|ψ(r′)|2)ψ(r) = gBB |ψ(r)2|ψ(r) for U(r − r′) = gBBδ(r − r′).

The RKKY interactions can be accounted for in a mean-field way by adding an additional

component to U(r − r′) of the form VRKKY, giving the effective GPE:

[
− ℏ2

2mB
+ VB(r) +

(
gBB|ψ(r)|2 +

∫
dr′VRKKY(r − r′)|ψ(r′)|2

)]
ψ(r) = µψ(r), (C.2)

where we have assumed that we are in the static limit with respect to the fermionic gas. In

a simulation, this can be straightforwardly handled in momentum space, where we can add

the static Lindhard function into each time step as we iterate using the split-step method. In

the long-wavelength limit, this will naturally reduce to the effective scattering length limit.

This type of simulation can be useful, because it is possible to perform identical numerics

while including or excluding the explicit k dependence to look for effects that only arise due

to the long ranged nature of the interaction.

These effects tend to be small for geometries that we have tested so far, but it is useful

to establish this baseline for future assessments of experimental feasibility using our high

resolution potential projection.
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C.4 Numerical Studies Near the Boson-Boson Zero Crossing

During the early quarantine days of the pandemic, we performed a series of numerical in-

vestigations of the mixture near the boson-boson zero crossing at 880.3 G. We were curious

about the role of kinetic energy in the collapse process, the possible formation of a solitonic

ground state, and the modification of the density profile due to effective higher-body interac-

tions induced in the condensate. The experimental studies that we attempted never yielded

useful signal, but I have included some figures here that we created in case a future student

is interested in re-visiting this topic.

We numerically studied the collapse paramters for our system near 880.3G where aBB ∼

0a0 and aBF = −64 a0. To do so, we performed numerical simulations of the ground state

in both the Thomas-Fermi approximation for both species and using the hydrodynamic

approach, see Appendix C. As in the case of a bare BEC, the kinetic energy has a stabilizing

effect which prevents the gas from collapsing precisely when the interaction energy vanishes.

The critical conditions for collapse are compared to the Thomas-Fermi theory in Fig. C.1.

For stable systems, we extracted the size of the BEC using a Gaussian fit to compare the

outcome to the perturbative prediction from the RKKY limit, see Fig. C.3. The simulated

density profile has a sharp deviation from the prediction for a bare BEC with density-

independent effective interactions. This point is more clearly seen in Fig. C.3, where at

(inaccessibly) high particle numbers the profile is very clearly modified from either a Gaussian

or TF parabolic profile.
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Figure C.1: Critical density for collapse of a Bose-Fermi mixture. The region above the red
and black circles is unstable. The black points indicate the critical point of collapse for the
mixture in neglecting the kinetic energy of both species completely. The red points show
the critical density for collapse taking into account the full GPE for bosons and an effective
GPE for fermions as indicated in the text. For all data the number of fermions is 2 × 104
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APPENDIX D

DMD TROUBLESHOOTING

This appendix discuss some trouble we were having with the control of our DMD, in the

hopes that it may be useful to a future grad student if they run into some of the same

problems.

An issue which we ran into some times with regards to our network configuration was that

the default IP address of the DMD could cause problems, since it auto sets to 192.168.1.100.

Using the LightCrafter software, you can reassign the IP address such that it has no conflicts.

The bigger problem that we had was that some aspect of the onboard memory failed,

preventing the DMD from properly functioning. We will discuss some of the ways in which

we troubleshot the board and the end solution. Unfortunately, the DLP3000 model DMD

that we use in the lab does is no longer sold by Texas Instruments. We have one spare

DMD which was broken that we were able to resurrect using these methods, but as far as

we know it’s the only other one we have access to. It should therefore only be used in case

of emergency.

To talk to the DMD, you have to access it over RS232 from the UART terminal on the

board. It uses a 2.5 mm stereo plug, which just looks like a smaller version of a standard

headphone cable. You can solder one of these to the pins in a D-SUB connector to connect

to the RS232 input available on most desktops, or use a USB-RS232 adapter for a laptop.

Connect to the board using some kind of telnet/ssh client. The free option of choice in

our lab is PuTTy, but there are many available options. Set the correct session parameters

as defined in the manual (Baud: 115200, Data bits: 8, stop bits: 1, Parity: none, Flow

control: none) and you will get read-out from the board.

If the DMD is not performing correctly, the output can indicate to you where it is

failing. For the board which is currently in the system, the output would hang or fail when

attempting to boot from the on-board NAND.
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The extent of our repair knowledge of the DMD is to interact with the firmware. You

can download files from TI, then purchase a micro-sd card, format it to FAT-32, and either

create a bootable sd card or a card which will flash the firmware onto the DMD. There is

a switch on the DMD which can toggle between these two options. In the first case, the

DMD loads from the SD card instead of its onboard memory, and in the other it allows the

firmware to be overwritten, which may be able to return functionality to a broken device.

A significant irritation in this whole process is that many SD cards fail this process

completely, for reasons that are completely unclear. There is a list of some compatible SD

cards on the TI website. In our case, we went to the nearest Target and bought many

different kinds, and were successful with only one of the models that we tried. It was a

SanDisk Ultra Plus 128 GB microSDXC UHS-I Card. If all else fails, this card should work.

In the end, using this SD card, we found that re-flashing the firmware fixed one broken

DMD in our lab. However, the one on our actual experiment has a hardware failure which

we skirt by keeping the bootable SD card in the DMD and always booting from it using the

toggle switch. So far, the DMD is functioning as intended in this configuration.
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APPENDIX E

LIST OF PUBLICATIONS

Krutik Patel, Geyue Cai, Henry Ando, and Cheng Chin. Observation of sound propagaion

in a strongly interacting Bose-Fermi mixture. arXiv 2205.14518, 2022.

Brian DeSalvo*, Krutik Patel*, Geyue Cai, and Cheng Chin. Observation of fermion-

mediated interactions between bosonic atoms. Nature, 568:61–64, 2019. *These authors

contributed equally.

Brian DeSalvo, Krutik Patel, Jacob Johansen, and Cheng Chin. Observation of a de-

generate fermi gas trapped by a bose-einstein condensate. Phys. Rev. Lett., 119:233401,

2017

Jacob Johansen, Brian DeSalvo, Krutik Patel, and Cheng Chin. Testing Universality

of Efimov physics across broad and narrow Feshbach resonances. Nat. Phys., 13:731-735,

2017.
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