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ABSTRACT

The understanding of quantum many-body physics is the key to develop new quantum tech-

nologies including novel quantum materials, high-precision sensors, and quantum computers.

However, understanding the general quantum many-body physics is extremely difficult, par-

ticularly when such systems are driven far from an equilibrium state. Ultracold atoms, a

clean, fully controllable, and coherent quantum many-body systems can provide useful in-

sights into the fundamental properties of quantum matter. This thesis discusses experiments

on studying nonequilibrium dynamics in driven ultracold bosonic atoms with fantastic static

and dynamical controls of the inter-particle interactions through Feshbach resonances and

external trapping potentials using optical lattices and digital micromirror device (DMD).

With this versatile apparatus, we first study the critical dynamics across a quantum phase

transition in shaken optical lattices. Across a ferromagnetic transition where the Z2 inversion

symmetry is broken, we are interested in how the system evolves toward the new ground

states generally with a different symmetry. Utilizing the phase imprinting technique with

DMD, we show that the macroscopic coherence is maintained across the phase transition, the

system undergoes a coherent population transfer of particles toward lower energy states and

quantum fluctuations determine the domain structure but do not destroy the macroscopic

coherence.

We then present the complex correlations rising from the matter-wave version of a high-

harmonic generation with oscillating interaction. This high-harmonic generation of mat-

terwave is a result of stimulated secondary collisions. The stimulated primary collisions,

two condensate atoms collide absorbing one energy quantum from the oscillating field, give

rise to the first observation of Bose fireworks. The scattered atoms from the primary colli-

sions can further collide with each other or the ground-state atoms from the condensate and

such secondary collisions promote atoms to higher momentum modes. Moreover, we show

the density-wave dynamics prior to the jets emission within the condensate with oscillating

interactions and explain the asymmetry in the jets emission pattern based on near-field in-

xi



terference. Besides, we further demonstrate the spatial and temporal phase coherence of the

emitted jets using matter-wave interference and connect our matter-wave jets emission to

the famous Unruh radiation in relativistic physics.
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CHAPTER 1

INTRODUCTION

My specific journey of exploring quantum physics starts with 87Rb atoms at room temper-

ature. I investigated the single-particle quantum coherence in a three-level Λ system with

electromagnetically-induced transparency (EIT)[38, 39, 72]. Although we had more than

1023 atoms in a glass vapor cell, they do not really sense the existence of each other since

the thermal de Broglie wavelength of a single atom is more than five orders of magnitude

smaller than inter-particle separation at room temperature. At this limit, having more atoms

simply means a large signal irrespective of whether they are bosons or fermions. This makes

it a great system for us to learn all the interesting properties of a single atom, the basic

constituents of matter in our universe.

At extremely low temperature when the thermal de Broglie wavelength of a single atom is

comparable with the inter-particle separation, the system enters the realm of quantum many-

body physics when quantum statistics start to matter. For bosons, the many-body system

transitions to a new phase of matter, called Bose-Einstein condensates (BECs) [3, 28, 86].

BECs exhibits quantum mechanical wave behaviors such as matter-wave interference since

the system can stay in a superposition of different momentum states. BECs with weak inter-

action also manifest superfluidity and flows around obstacles without friction. Meanwhile,

atoms in the BEC can still behave like particles and inter-particle collisions create interesting

excitations. ’More is different’, as suggested by P. W. Anderson [4], at such a macroscop-

ical level entirely new fundamental laws of physics are required to correctly describe the

many-body system although we understand everything about its constituents. Developing a

fundamental understanding of many-body behavior is an important and challenging goal in

modern physics.

Quantum many-body problems such as that with BECs are fundamentally difficult to

solve. The resources required to specify a general quantum many-body quantum systems

depend exponentially on the number of particles in the system, namely on the number of

1



degrees of freedom. Although statistical mechanics provides powerful tools to describe the

complex and interacting many-body system in equilibrium, understanding the dynamics

when a quantum many-body system is brought far away from equilibrium remains challeng-

ing.

This thesis focuses on the nonequilibrium dynamics of the weakly interacting ultracold

atoms with periodic driving. Recent researches suggest that such a driven quantum system

can exhibit interesting behaviors as rich as their static counterparts. Novel nonequilibrium

phases of matter, such as time crystals [109, 21], that are normally forbidden in equilibrium

can be realized in a periodically driven system. Typically we expect a driven quantum system

to absorb energy from its driving field and eventually heats up to an infinite temperature

state. Surprisingly the quantum coherence persists for a long period of time in such a

periodically driven system irrespective to the heating effect from driving. This quantum

coherent dynamics is the focus of the experimental studies presented in this thesis.

We explore the nonequilibrium physics in BECs with two different driving techniques: the

coherent critical dynamics across a quantum phase transition in shaken optical lattices and

the collective emission of matter-wave jets with oscillating interactions between particles.

This thesis is organized as follows: In Ch. 2, we describe the important features of the

experimental apparatus that we use to produce ultracold atoms. Most importantly the

improvement of the systems and driving techniques that is essential to the studies in this

thesis. In Ch. 3 we present an overview of the Floquet theory in shaken optical lattices

and two-mode squeezing in matter-wave jet emission. In Ch. 4, we present the coherent

inflationary dynamics when BECs are driven across a Z2 quantum phase transition. Here

the system evolves toward the new ground states with macroscopic coherence extending

beyond the domain size that seeded by the quantum fluctuations. In Ch. 5, we present the

high-harmonic generation of matter-wave jets that results from the stimulated secondary

collisions. Here we have developed a new pattern recognition algorithm to comprehensively

show the correlations between emitted matter-wave jets. In Ch. 6, we show the density-

2



wave dynamics prior to the formation of matter-wave jets within the BECs and provide an

intuitive explanation to the asymmetry of jets emission observed in the near-field limit. In

Ch. 7, we demonstrate spatial and temporal phase coherence of the emitted matter-wave jets.

Meanwhile, we show that the two-mode squeezing process during the matter-wave emission

can be used to simulate Rindler frame transformation and hence connect the Bose fireworks

to the famous Unruh radiation in relativistic physics. At last in Ch. 8, we discuss many

interesting future directions in studying coherent nonequilibrium dynamics with preliminary

results in our experiment.
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CHAPTER 2

SYSTEM

The apparatus, which creates ultracold cesium atoms, is an extremely robust and versatile

system. The cooling lasers and science chamber are set up on two separate stable optical

tables and all of the lasers are delivered to atoms via optical fibers. This isolation between

the two systems brings great convenience to daily operation and maintenance. We produce

ultracold atoms in one, two, or three dimensions with different setups of optical dipole traps.

We detect the atomic gas with a high-resolution imaging system based on resonant absorption

of light by atoms. We are also able to project arbitrary, dynamical potentials onto the atoms

using a digital micromirror device (DMD). Besides, we can actively correct the potentials

based on absorption images, creating trapping potentials such as a homogeneous box. Most

importantly, we can control the interaction between atoms using the magnetic field or optical

field through the Feshbach resonances. A lot of these great features are inherited from the

previous generations of outstanding colleagues and the details are comprehensively discussed

in their theses [56, 111, 46, 22]. In this chapter, we summarize the important features of the

system and some of the technical improvements we implemented.

2.1 General setup for cooling and trapping of BEC

Our experiments start with laser cooling and trapping of 133Cs atoms. We first heat the oven

with cesium atoms to 60◦C creating a large flux of atoms into the Zeeman slower. The atoms

are later decelerated by a counter-propagating laser in a spatially varying magnetic field. We

then trap the atoms in a Magneto-Optical Trap (MOT). Following MOT, we perform brief

durations of compressed MOT and molasses cooling. Afterward, we load atoms into a three-

dimensional optical lattice to perform degenerate Raman Sideband Cooling (dRSC) and

obtain roughly 6,000,000∼8,000,000 atoms at ∼3 µK. We further switch to a cigar-shaped

elliptical dipole trap and evaporatively cool our atoms to a Bose-Einstein condensate of

4



Figure 2.1: Overview of the apparatus. Top: A top-down view of the arrangement of the
dipole trap beams, the retro-reflections for forming horizontal optical lattices. This figure is
regenerated from Ref. [111]. Bottom: A side view of the experimental apparatus.

.
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typically 30,000∼120,000 atoms at ∼10 nK [56, 111, 46, 22]. After the evaporative cooling,

we transfer the atoms into different trapping potentials depending on the type of experiments,

such as optical lattices in Ch. 4 and box potential in Ch. 5.

The cigar-shaped dipole trap is formed by three intense 1064 nm laser beams from a

Mephisto Mopa laser, which we recently upgrade its output power to 25 W. The laser beam,

propagating along the x-axis (y-axis), has a round-shaped beam profile and provide dipole

trap for atoms along the y-axis (x-axis) and we call it XDT (YDT) beam. XDT and YDT

beams together form a cross dipole trap and play an important role in loading atoms from the

dRSC stage for later evaporation. A third laser beam (ZDT) propagating at 45◦ angle has an

elliptical intensity profile and primary vertical confinement in the z-axis. This ZDT beam is

more tightly focused and provides strong horizontal trapping in the xy-plane as well.Combing

XDT, YDT and ZDT beams, we make a cigar-shaped trap with typical trapping frequency

of (ωx, ωy, ωz) = 2π×(12,30,70) Hz, making the profile of the BEC highly elliptical.

We make optical lattices by retro-reflating the XDT and YDT beams. Each of the retro-

reflected laser beams is controlled by a pair of acoustic-optical modulators (AOM) driven by

radio frequency (RF) wave. The AOMs are set up in a way that retro-reflected beams are

maximally suppressed when the RF wave is turned off. By tuning the power of the RF wave,

we adjust the power of the retro-reflected beams. The retro-reflected beams interfere with

the original dipole trap beams to form optical lattices with lattice spacing d = 532 nm. The

corresponding lattice momentum is qL = ~kL with wavenumber kL = π/d. In the rest of

the thesis, we use qL and kL interchangeable to refer to momentum in our system since their

difference is only the Planck constant ~. We also defined a recoil energy ER = ~2k2
L/2m as

the kinetic energy that atoms gain when they scatter lattice photon.

We can shake the lattice by modulating the phase of the RF wave to the second AMO

sinusoidally as θ(t) = θ0 sin(ωmt) with ωm the modulation frequency and θ0 the modulation

amplitude. The jth order diffracted beam from the AOM is phase shifted accordingly by

j(ft + θ(t)) with respect to the 0’th order beam from a single pass, where f is the carrier

6



Figure 2.2: Setup of acoustic-optical modulators (AOMs) to form optical lattices.
Optical lattices along both the x− and y−axis can be formed by retroflecting the the cor-
responding dipole trap beam with lattice period d = 532 nm. The depth and phase of the
optical lattice can be controlled using the AOMs. We use the -1 diffraction order of one
AOM and +1 order of the other so that there is not frequency shift between the dipole trap
beam and its retroflection. Lattice shaking can be achieved by modulating the phase of the
RF wave with θ(t) = θ0 sin(ωmt) with ωm the modulation frequency and θ0 the modulation
amplitude. The figure is regenerated from Ref. [24].

.

frequency of RF wave. In our setup, the retroreflected beam passes the first AOM twice

as -1 order and the second AOM twice as +1 order. The two AOMs are driven by the RF

waves from the same source and we only perform phase modulation on the second AOM. As

a result, the phase of the retro-reflected beam is shifted by φ(t) = 2(ft+ θ(t)− ft) = 2θ(t).

The lattice is correspondingly displaced by ∆x(t) = s
2 sin(ωmt) with shaking amplitude

s = 2θ0
π d.

In this thesis, we normally transfer our atoms to the dipole traps with much tighter

confinement in the vertical direction while small but symmetric confinement in the horizontal

direction to form a more circular sample. This dipole trap is realized by taking advantage

of the vertical lattice beams. Here two beams, split vertically from the same 1064 nm laser,

interfere with each other at an angle of 16◦ producing an optical lattice with a spacing

of ∼3.8 µm along the z-axis. The horizontal trapping from this lattice is negligible. We

load all of our atoms from the cigar-shaped trap to a single site of the lattice by carefully

tuning the power of the ZDT beam and magnetic field gradient during the transfer. Finally,

the ZDT beam is fully turned off and the vertical confinement is only given by the lattice

7



with a typical trapping frequency of ωz = 200 Hz and a depth of h×500 Hz. If we wish to

further compress the trap to get an effective two-dimensional gas, the vertical trapping can

be further increased to a maximum of ωz = 2 kHz, far beyond the typical chemical potential

or temperature of the gas [56, 111, 46].

2.2 Control of the interaction

The interaction between ultracold atoms is normally through s-wave scattering, characterized

by the scattering length a. If we only focus on low energy and long wavelength physics, the

interaction between atoms can be approximated by the Fermi pseudo-potential,

V (r) = gδ(r), (2.1)

with δ(r) the Dirac delta function. The interaction strength g can be parametrized using

s-wave scattering length a, which is given by

g =
4π~2a

m
. (2.2)

For positive scattering length a > 0, the interaction is repulsive. For negtiave scattering

length a < 0, the interaction is attractive.

In ultracold atoms, this scattering length can be tuned using the Feshbach resonance

[20]. Near Feshbach resonance, the scattering length can be easily adjusted to any desired

value by simply changing the magnetic field. This resonance happens at the magnetic field

B0 when a two-atom bound state in a closed scattering channel approaches the state of free

atoms in an open channel. The scattering length as a function of the magnetic field B has

the form of

a(B) = abg

(
1− ∆

B −B0

)
(2.3)

with abg the background scattering length far from the resonance and ∆ the width of the res-
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Figure 2.3: Saturated in situ absorption imaging. a The shadow image of atoms taken
after 20 µs exposure to the imaging laser beam.a The background image is taken without
atoms after 20 µs exposure to the imaging laser beam. C The column density image of
atoms extracted from the combined optical density image.

.

onance. In our experiment, we frequently make use of the Feshbach resonance at B0 = 11.7 G

with the width ∆ = 28.7 G and the background scattering length abg = 1720a0. Here a0 is

the Bohr radius.

2.3 Imaging of atoms

2.3.1 in situ imaging

In our experiment, the scattered light is collected to the CCD camera by an objective lens.

In the primary vertical direction, we have a high-resolution objective with a large numerical

aperture NA = 0.5, which locates less than one inch from the atoms. The magnification

is 21.5 in the vertical imaging setup and 1 pixel in the camera corresponds to 0.606 µm in

the atom plane. Here we can achieve a typical aberration limited resolution of 1.4 µm. In

the auxiliary horizontal direction, the objective is approximately 10 inches away from the

atoms. The magnification is only 1.2 and the resolution is 10.8 µm limited by the CCP pixel

size. We typically image our atoms in the vertical direction and only uses the horizontal for

diagnostic purposes.

9



Strong saturation absorption imaging is the base of all imaging techniques in our experi-

ment. Here cesium atoms are illuminated with a laser beam resonant to the transition from

F = 4 to F ′ = 5 with the intensity much larger than the saturation intensity, I � Isat. This

intense imaging beam is pulsed on for a short period of 20 µs to make an observation of the

instantaneous status of the atomic gas. The CCD camera captures the spatial intensity dis-

tribution of the laser in the image plane. With the atoms, we have a shadow image with an

intensity distribution of Iout(r). Here we define r = (x, y) in the image plane. Without the

atoms, we get the original distribution of the imaging beam Iin(r). Based on Beer-Lambert

law, the measured atomic density distribution is given by

nmeas(r) =
1

σ0

[
Iin(r)− Iout(r)

Isat
− ln(

Iout(r)

Iin(r)
)

]
, (2.4)

with σ0 the resonance scattering cross section (Fig. 2.3). This measured atomic density is a

result of the real atomic density distribution convoluted with the resolution of the imaging

system. The resolution of the imaging systems is characterized by points spread function

P(r) [56, 46]. The measured atomic density is given by

nmeas(r) =

∫
dr′n(r′)P(r− r′), (2.5)

where n(r) is the real atomic density distribution. If the point spread function is simply a

Delta function, the measured density is the real atomic density. With finite but spatially

narrow point spread function, the measured density is still a good approximation to the

atomic density.

In our experiment, we characterize the point spread function by measuring the modulation

transfer function (MTF) M(k) = |P̃(k)| with P̃(k) the Fourier transform of the point spread

function [56]. This MTF can be calculated from the measurement of the density fluctuation
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Figure 2.4: Time-of-flight imaging with focusing. a Atoms with different initial mo-
mentum ±ks focus on different positions in the trap after a quarter of the trapping period.
b Example images after time the time-of-flight with the focus in a harmonic trap along the
x-axis after momentum seeding. We pulse on an optical lattice with lattice momentum ks,
which is projected from a DMD device. This pulse partially transfers the condensates to
±nks momentum states with integer n = 0,1,2... These images provide a calibration to the
imaging.

power spectrum of a thermal gas, which is given by

M2(k) =
|〈δnmeas(k)〉|2

NS(k)
, (2.6)

where N is the total number of atoms and S(k) is the structure factor. For hot enough

thermal gas, the structure factor can be safely approximated to S(k) = 1. As a result, the

MTF is simply given by the power spectrum, M(k) =

√
|〈δnmeas(k)〉|2

N .
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2.3.2 Time-of-flight imaging with focus

Beside detecting atomic density in real space, we can also measure atomic distribution in

momentum space after a time-of-flight (TOF). By releasing the atoms into free space, the

atomic density distribution in momentum space can be measured after a long time-of-flight.

In our experiment, we perform the TOF imaging with an additional focus to further improve

momentum space resolution with a harmonic trap [97]. The principle of this method is

intuitively illustrated in Fig. 2.4. Consider atoms with momentum q are suddenly released

to the center of a harmonic trap in x-axis. The atoms oscillate in the harmonic trap with its

position relative to the trap center x(t) = q
mω sin(ωxt). After a quarter of the trapping period

T = 2π
ωx

, the initial momentum q relates to the position of the atoms by q = mωx(T/4).

Therefore, atoms with different initial momentum focus on different positions in the trap as

shown in Fig. 2.5. More intuitively, we can regard this harmonic trap to atoms as a lens

to a beam of light in Fourier optics. Like a lens, the harmonic trap transforms real space

wavefunction to the momentum space.

To implement this imaging technique, we first reduce the scattering length to zero by

switching the magnetic field right before time-of-flight to avoid atom collisions. At the same

time, we increase the magnetic field gradient to properly levitated the atoms into our imaging

plane while we turn off the dipole traps. During time-of-flight, all the dipole traps are turned

off except the focusing trap along the x-axis (XDT beam). By carefully tuning the intensity

of the dipole beam, we are able to focus the atoms in the same momentum state into a

sharp peak after a quarter of the trapping period of 60 ms. The calibration of the imaging

technique is shown in Fig. 2.5. We first pulse on an optical lattice with lattice momentum

ks before TOF, which is projected from a DMD device. This pulse partially transfers the

condensates to ±nks momentum states with integer n = 0,1,2... After the TOF, we extract

the position of every visible momentum peak and obtain a mapping between momentum

to position. With this technique, we achieve a resolution in the momentum space to δk =

0.08 kL, only limited by the anharmonicity of our trap. Based on the same principle, we can
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Figure 2.5: Calibration of momentum in time-of-flight imaging. a Integrated density
distribution of momentum-seeded condensates after the time-of-flight with focus, n(x) =∫
dyn(x, y) with different seed momentum ks. b The position of the density peaks as a

function of their corresponding momentum. Blue dots indicate experimental data and red
solid line is a linear fit the the data.

also turn on the harmonic trap along the y-axis at the same time to perform a time-of-flight

in a two-dimensional harmonic trap. This two-dimensional imaging technique is utilized in

Ch. 5 and Ch. 7.

2.3.3 Domain reconstruction imaging in shaken lattice

Imaging techniques described in Sec. 2.3.1 and 2.3.2 are generally applicable to both the

shaken lattice experiments and the experiments with oscillating interaction. The domain

reconstruction imaging in this section is a special case that can be only applied in shaken

lattice when the system form domains in the effective ferromagnetic phase (see Ch. 3). The

pseudo-spin up (down) domains in our experiments correspond to positive (negative) quasi-

momentum states. The purpose of domain reconstruction is to obtain the spatial quasi-

momentum distribution after a very short TOF. The previous study shows that atomic

density distributions among the Bragg peaks after a short TOF can be used to reconstruct
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Figure 2.6: Domain reconstruction imaging. To detect different the pseudo-spin states
in a shaken optical lattice in a ferromagnetic phase, we rapidly increase the shaking amplitude
over 0.5 ms before a TOF with a duration of 3 ms. The images shown here correspond to the
lattice depth V = 8.9 ER, the shaking frequency ωm = 8.0 kHz and amplitude s = 25 nm
right before amplification. a Sample TOF images showing occupation of each Bragg peak
with all of the atoms in pseudo-spin up (top) or down (bottom). For these images, we
use a longer TOF lasting 5 ms to clearly distinguish each Bragg peaks and use extracted
fractional occupation as a calibration. Here each spin predominantly occupies a different
Bragg peak. b We show the fraction of atom number Nj/Nt in each Bragg peak for the
spin up (red) and down (cyan), with Nj the atoms number in the jth Bragg peak and Nt
the total atom number. c A example image of the density distribution after 3 ms TOF with
amplification for condensate in the ferromagnetic phase. The ellipses mark the two dominant
Bragg peaks. textbfd The reconstructed domain image based on the fractions in panel b. e
The reconstructed overall atomic density image.
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the pseudo-spin domain structure after a short TOF [46]. However, the distortion during

the expansion of the gas limits the resolution of fine domains.

A significant improvement is achieved by adding an additional amplification stage [22].

During this amplification, the shaking amplitude is rapidly increased by as much as a factor

of 15 over 0.5 ms. By carefully choosing the final shaking amplitude and timing based on

the shaking amplitude right before the amplification, this fast ramp excites the atoms to the

second excited energy band without changing their quasi-momentums. After a brief TOF,

atoms with positive (negative) quasi-momentum mostly appear in the +1(-1) Bragg peak,

making it much easier to spatially distinguish the negative and positive momentum atoms.

To apply this imaging technique, we first bias all the atoms to the same pseudo-spin (finite

quasi-momentum state) and take TOF images of condensates (Fig. 2.6a). We use these

images to calibrate the projection of each pseudo-spin state onto Bragg peaks (Fig. 2.6b).

Therefore, we can reconstruct the domain image based on this calibration for a condensate

with arbitrary domains (Fig. 2.6c and d).

2.4 Fixing fringes in dipole trap

During the effective ferromagnetic quantum phase transition, we identified two types of

systematic noises that biasing the domain formation. These two technical noise cause an

offset of the initial velocity of the condensate leading to an artificial symmetry breaking. As

a result, the most of the atoms become complete pseudo-spin up or down instead of forming

domains as we drive the system across the critical point at a finite speed. The most dominant

source is the fringes in the YDT beam path. In our experiment, the YDT beam is delivered

to our system via an optical fiber. The beam propagates forward and passes the atoms. It

is then retroreflected and interferes with the forward-propagating beam forming the optical

lattices. The issue is that the retroreflected beam is reflected by the fiber tip once more and

interferes with the forward-propagating beam at a small angle producing fringes with a large

spacing of 37 µm. These fringes drift due to thermal effects and offset of the initial velocity

15



-20 0 20
-60

-40

-20

0

20

40

60

Po
si

tio
n 

y 
(

m
)

0

10

20

30

40

50

60

C
olum

n density (¹m
  ) -2

-20 -10 0 10 20
Position x ( m)

0

2

4

6

Ti
m

e 
t (

hr
)

-50 0 50
Position y ( m)Position x ( m)

a b

Figure 2.7: Moving fringes from XDT beam. a Condensate atoms trapped in the
XDT trap shows fringes in the beam path based Thomas-Fermi approximation. Here the
vertical lattice trap is also turn on giving a very thin sample along the vertical direction.
The scattering length between atoms are tuned to 41a0. The white dashed lines indicates
cuts shown in panel b. b Motion of the fringes can be seen from the horizontal (left) and
vertical (right) cut of the image in a due to thermal drift. The black dashed lines indicate
the moment when the main field coil is switched on, which is the major heating source in
our system. The fringes are initially stationary but quickly drift as soon as we turn on the
coils.
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Figure 2.8: Eliminating fringes from XDT beam: Part I. a Our setup only allows us
to adjust the incident angle of the XDT beam by less than 1◦. We change both the fiber
mount and a mirror together to change the incident angle while keeping the atoms at the
same location on the camera.b After 0.4◦ adjustment of the incident angle, the fringes are
greatly reduced. The scattering length is set to be 41a0.

of the condensate. This scenario is thoroughly addressed in Ref. [22].

Another minor source of the noise is the fringes in the XDT beam path. In this beam

path, we install an optical isolator at the fiber output to eliminate any reflection due to

the fiber tip. However, we still get the checkerboard-like fringes with large spacing drifts

as the system warms up after running the main magnetic field coil (our magnetic field coils

are not subjected to water cooling and is the major heating source). These fringes are

detected by loading atoms only to the XDT trap and changing the scattering length to a

small positive value based on Thomas-Fermi approximation, n(r) =
√

µ−V (r)
g . As a result,

the local density corrugation captures the weak trapping potential from the fringes. We

later find that these fringes result from the interference between the main beam and the

weak reflections from the window of the science chamber.

The XDT beam is initially aligned near perpendicular the surface of the window. As a

result, window reflections can easily overlap the main beam and interfere. To eliminate the

fringes, we thus need to tilt the incident angle of the XDT beam. However, we still would

like to keep the atoms at the same location. To do so, we adjust the fiber mount and the

17



mirror together to change the incident angle while keeping the atoms at the same location

on the camera (see Fig. 2.8). After 0.4◦ adjustment of the incident angle, the fringes are

greatly reduced at 40a0.

To improve the sensitivity and perform further improvement, we reduce the scattering

length to even lower value of 17a0. We see much weaker features showing the remnants of the

fringes. Fourier transformation of the atom images is shown in Fig. 2.9, where we can clearly

see two peaks (peak 1 and 2) indicating two sets of fringes roughly along the diagonal and

off-diagonal directions (Although the images show four peaks, only two of them contains

non-redundant information due to inversion symmetry of the Fourier transform). Peak 2

reduces as we continue to increasing the incident angle. Peak 1 reduces at the beginning

but increases as we further increase the incident angle. This observation suggests that the

diagonal and the off-diagonal fringes are due to reflections from different surfaces. At last,

we choose the incident angle at which the overall fringes are minimized.

2.5 Aberration in DMD projection

In Chin Lab, we use a digital micromirror device (DMD) to project arbitrary repulsive

potential to our atoms (see Fig. 2.10). The DMD is an array of micromirrors and each

micromirror can be controlled by a computer to orient at either of the ”on-state” angle or

”off-state” angle, which are separated by 24◦. We shine a blue-detuned 788 nm laser beam

on the DMD and the on-state mirrors direct the light to the atoms while the off-state mirrors

reflect light into a beam dump. The specific DMD we use is DLP3000 with 608×684 pixels

with each pixel a square mirror of 7.6µm. This device also supports the dynamical switch

of the programmed pattern up to a speed of 4 kHz. We work in the image plane and the

pattern on DMD is projected to the atoms through the high-resolution imaging system with

an overall demagnification factor of 36 so that pixel length 7.6µm on DMD corresponds to

a length of 0.21µm on atoms.

One application of the DMD in our experiment is to project dynamical optical lattices and
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Figure 2.9: Eliminating fringes from XDT beam: Part II. By reducing the scattering
length to a lower value of 17a0, we improve our sensitivity to detect much weaker remnants
of the fringes. a By performing Fourier transformation of the atomic density image (top),
we see two sets of fringes indicated by peak 1 and 2 in Fourier amplitudes (bottom). b The
different dependance of the peak value on incident angle suggests that the two sets of fringes
are likely caused by reflections from different surface. We finally pick an optimal angle at
0.47◦.
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Figure 2.10: Setup of digital micromirror device (DMD). A schematic of the DMD
integrated in the vertical high-resolution imaging path in our apparatus. The figure is
regenerated from Ref. [24].

.

perform Bragg spectroscopy [46]. Another application is to form arbitrary dipole traps with

fine details for the atoms. Precise control of such optical potential can be achieved using

feedback from images of atoms. The trapping potential can be inferred from the atomic

density of Bose condensates. This information is further transferred to the computer control

of the DMD. Therefore the projected DMD pattern can be further improved. However, the

precision of the control is limited by the aberration of the projection.

We can characterize the aberrations by measuring the phase shift profile Θ(k) for differ-

ent projection wavenumber k in the atom plane. Ideally, within the resolution of an imaging

system, the phase shift is uniform for any transverse wavenumber k. However, any tiny

misalignment and imperfections cause wavenumber dependent phase shift. In our experi-

ment, we can characterize this phase shift by projecting static optical lattices to atoms. A

programmed lattice on DMD scatters light into different orders, k0 and k0±k. By blocking

the k0 ± k order, the projected lattice at atom plane reflects the phase shift between the

k0∓k order and k0 (see Fig. 2.11a). This projected lattice potential is thus reflected in the
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Figure 2.12: BEC with flat density profile. The BEC is initially prepared in XDT,
YDT and ZDT cross dipole traps. a Density profile of BEC when a round-box trap with
the initial guess for compensating the harmonic potential. b Density profile of BEC after
iterations of correction on the DMD potential based on feedback from atomic density. The
radius of the round-box trap is 11.7 µm. The total number of atoms trapped in the box is
approximately 25,000. The scattering length between atoms is set to 40a0. The top panels
show the two-dimensional density profile and the bottom panels show the line cuts along the
corresponding colored dashed lines.

density profile of the condensates. Taking a differential measurement (measure the difference

between the density profile of condensates with and without the projected lattice), we can

cleanly extract the phase shift (see Fig. 2.11b and c for examples). In all the measurement

the center position of the programmed lattice pattern is the same and thus the phase of the

zeroth order beam k0 is fixed. Therefore we can comprehensively obtain the aberration of

the projection (see Fig. 2.11d). The best approach to fix this issue is to use adaptive optics

to compensate for the phase shift. Currently, we attempt to phase shift the programmed

pattern on DMD to remove the effect from aberrations instead.
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Without the phase shift information and the corresponding compensation of the DMD,

the feedback control over optical potential always gives fine fringes along the direction with

maximal phase aberration. As we implement the phase compensation on DMD by phase

shifting the corresponding Fourier modes by −Θ(k), we can thus achieve very precise control.

One example is shown in Fig. 2.12, where we use DMD to project a potential to cancel

the horizontal harmonic trap producing a flat density profile for BEC. From the spatial

fluctuation of the density profile, we can estimate the standard deviation of the potential

fluctuation to be approximately 0.2 nK.
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CHAPTER 3

DRIVEN BOSE-EINSTEIN CONDENSATES

Ultracold atom is a well-known great platform to perform the quantum simulation. In order

to simulate different physics, careful engineering is required. Floquet engineering is a widely

implemented technique in ultracold atoms to shape the original Hamiltonian to that as

designed by periodically driving the system. In this chapter, we present two methods in

our system to coherently drive the Bose condensates as to modify the behavior of atoms

at both the single-particle level and interacting many-body level. Particularly, by shaking

the optical lattices, we can create novel single-particle dispersion from the hybridization of

various bands in the original static lattice; by modulating inter-particle interactions, we can

enable inelastic collisions which are normally forbidden due to energy conservation. In the

following sections, we give an introduction to both of the driving methods and review the

interesting physics that have been investigated before the experiments in this thesis in our

system.

3.1 Shaken optical lattice

3.1.1 Optical lattices and band structure

Optical lattices can be created by interfering laser beams. For simplicity, we first consider

the one-dimensional case where the optical lattices are generated by interfering with two

counter-propagating laser beams. These two laser beams thus form a standing wave with

the intensity of light varies in space as I(x) = I0 cos2(kLx), where wavenumber kL is given

by kL = 2π/λ with λ the wavelength of the laser beam and I0 the intensity of the laser

beam. Based on a two-level model, this standing wave traps atoms to its node or anti-node

depending on whether the laser frequency is blue or red detuned. We thus obtain a periodic
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tapping potential given by

V (x) =
3πc2

2ω3
0

Γ

δ
I(x), (3.1)

where c is the speed of light, ω0 is the resonant transition frequency, Γ is the linewidth of

the transition, and δ is the laser detuning from the resonant transition frequency.

The Hamiltonian of a single quantum particle with mass m moving in such a one-

dimensional periodic potential that oriented along the x-axis is given by

H0(x) = − ~2

2m

d2

dx2
+
V0

2
cos(2kLx), (3.2)

By introducing the dimensionless energy uk = Ek/ER, the lattice depth v = V0/ER, with re-

coil energy ER =
~2k2

L
2m , and the dimensionless coordinate z = kLx, we rewrite the eigenvalue

equation as (
d2

dz2
+ εκ −

v

2
cos(2z)

)
ϕ(z) = 0 (3.3)

with ϕ(z) = ψ(z/kL)/
√
kL.

Note that the equation above is the standard form of Mathieu equation and its famous

stability chart gives the band structure. Specifically, the stable solution of the form eiκzuκ(z)

with characteristic value εκ is just the Bloch waves with wavenumber k = κkL, which can

be written as

ψk(x) = eikxuk(x), (3.4)

where the function uk(x) inherits the periodicity of the lattice potential uk(x) = uk(x + d)

with d = π/kL the lattice constant. When we restrain the wavenumber within the first

Brillouin zone, the energy bands are simply given by E
(n)
k = ε−|κ|−nER for even integer

n and E
(n)
k = ε|κ|−(n+1)ER for odd n, with κ = k/kL ∈ [−1, 1]. And the corresponding

eigenstate wavefunction has the form of ψ
(n)
k (x) = eikxu

(n)
k (x).
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Figure 3.1: One-dimensional lattice shaking and band structure. a Lattice shaking
by periodically translating lattice back and forth with a shaking amplitude s and shaking
frequency ωm. b We choose a near-resonant shaking frequency that is slightly blue detuned
from the bandgap at zero momentum. c Such choice of shaking parameters allows a sig-
nificant mix of the excited band to the ground band in which the condensates are initially
prepared. The ground band starts with the single minimum at zero momentum at s = 0
nm and flattens as we increase the shaking amplitude. After a critical value sc the single
minimum bifurcate into two minimums at finite momentum ±q∗ with q∗ ∼

√
s− sc.
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3.1.2 Shaken lattice

We shake the lattice by translating the whole optical lattices back and forth as shown in

Fig. 3.1. This periodic translation is implemented by sinusoidally modulating the phase of

the RF wave driving the acoustic modulator, shown in Fig. 2.2. Therefore the Hamiltonian

is periodic not only in space but also in time, which can be written as

H(x, t) = − ~2

2m

d2

dx2
+
V0

2
cos (2kL [x+ ∆x(t)]) , (3.5)

where the time-dependent displacement ∆x(t) = s
2 cos(ωmt) corresponds to the lattice shak-

ing with the amplitude s at the frequency ωm. Since the Hamiltonian is time-dependent,

we can not simply diagonalize it to obtain the band structure and the eigenstates. Here the

eigenstates at time t1 is not necessary the eigenstates at time t2. However, it is possible to

absorb the time-dependence into the eigenstates themselves and obtain a time-independent

effective Hamiltonian using Floquet states.

Before diving into a comprehensive description based on Floquet theory, we first develop

an intuitive two-level model. We choose a shaking frequency that is slightly blue-detuned

from the band gap between the ground band and the first excited band that is shown in

Fig. 3.1b. The lattice shaking primarily couples the ground band to the excited state in

a perturbation regime where the shaking the shaking amplitude is much smaller than the

lattice period, kLs � 1. By expanding the shaking lattice potential to the first order, we

separate the Hamiltonian of the system and have H = H0 + H ′, where the time-dependent

perturbation is given by H ′ = −kLsV0
2 sin(2kLx) sin(ωmt).

In a deep lattice the Bloch waves look very similar to harmonic oscillator states on each

lattice site and we can safely approximate the coupling matrix as 〈ψe(k)|H ′(t)|ψg(k)〉 ≈

−W sin(ωmt) with the coupling strength W = −kLsV0√
2

(
ER
V0

)1/4
independent of wavenumber
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k. We thus write the approximate form of the full Hamiltonian as

HTL =

 E
(1)
k −W sin(ωmt)

−W sin(ωmt) E
(2)
k

 . (3.6)

For a two-level model with sinusoidal coupling, we can easlily bring the system into a rotating

frame with the transformation |ψ̃g(k)〉 = |ψg(k)〉 and |ψ̃e(k)〉 = e−iωmt|ψe(k)〉. We further

ignore the fast rotating terms at frequency 2ωm. As a result, we obtain a time-independent

Hamiltonian

HRWA =

E(1)
k W/2

W/2 E
(2)
k − ~ωm

 . (3.7)

By diagonalizing the Hamiltonian, we the energy of the hybridized bands given by

ε±k = E
(1)
k +

~δk ±
√
~2δ2

k +W 2

2
, (3.8)

with the detuning δk = (E
(2)
k − E

(1)
1 )/~ − ωm. The corresponding eigenstates are time-

dependent in the lab frame,

|ψ±(k, t)〉 =
1√

2W ′(W ′ ∓ ~δk)

(
−~δk ∓W ′

W
|ψg(k)〉+ eiωmt|ψe(k)〉)

)
, (3.9)

with W ′ =
√
~2δ2

k +W 2. It is interesting to note that such eigenstates are actually time

periodic, |ψ±(k, t)〉 = |ψ±(k, t + 2π
ωm

)〉. The time evolution of an arbitrary state is given

by |ψ(k, t)〉 = a+e
iε+
k t|ψ+(k, t)〉 + a−eiε

−
k t|ψ−(k, t)〉 with coefficients a± time-independent.

In Sec. 3.1.3 we shall see that such states eiε
±
k t|ψ±(k, t)〉 are just examples of the Floquet

steady states.

In our experiment, we always prepare our atoms in the zero-momentum state in the

ground band of the static lattice. In the perturbation regime desrcibed above, we expect

the atoms to stay in the ground band even after the hybridization from lattice shaking. The
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effective ground band, which is now ε+
k has higher energy because of blue-detuned shaking,

results from the interplay between the momentum-dependent detuning δk and the normal

single-well structure of the unperturbed ground band. Close to the center of the band at

k = 0, the detuning is small and level repulsion cause the energy to shift up; away from the

center, the detuning increases quickly and the band is barely perturbed. This level repulsion

also depends on the shaking amplitude. As the shaking amplitude increases, the center of

the band starts to flatten but the band still has a single minimum at k = 0. Beyond a

threshold value sc, the level repulsion is strong enough to cause the bifurcation of the lone

minimum at k = 0 into two at finite momentum ±k∗, shown in Fig. 3.1c.

3.1.3 Floquet theory

This two-level model already captures the essence of the double-well band due to lattice shak-

ing with large amplitude. However, to comprehensively obtain the effective band structure,

we thus resort to the Floquet theory which takes all the unperturbed bands into account.

In a system with time-independent Hamiltonian, we can simply diagonalize Hamiltonian

to obtain the eigenstates and each of the eigenstates evolves in time with a simple phase

winding given by the corresponding eigenvalue. But this simple method no longer works

for a time-dependent Hamiltonian. However, in a special case where the Hamiltonian is

time-periodic H(t) = H(t + T ), we might be able to find some states which also return to

itself up to a complex phase after a single Floquet period T . Particularly when we are only

interested in stroboscopic dynamics in intervals of the period T , these time-periodic states

just look like ordinary eigenstates. Such examples are presented in Sec. 3.1.2 in which we

introduced the two-level toy model.

Floquet theory gives a comprehensive calculation of such states that can form a complete

basis [53, 33]. As we mentioned above, such steady states should return to itself after

a Floquet period T with some extra phase winding. Therefore these states must be the

eigenstates of the time evolution operator U(T, 0), and satisfy U(T, 0)|n〉 = e−iε
(n)T/~|n〉
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in the Schrödinger picture. This equation gives a set of the eigenvalues {e−iε(n)T/~} and

the corresponding set of eigenstates {|n〉}. We can rewrite the time evolution operator for

single period as U(T, 0) = e−
i
~HeffT , where Heff is Hermitian, possessing real eigenvalues.

This suggestive form implies e−
i
~Heff t|n〉 = e−iε

(n)t|n〉 and we can treat Heff as a effective

Hamiltonian that describes the slow (compared with 2π/T ) dynamics with Floquet bands

given by ε(n). We further introduce an extra unitary kicking operator P (t) to capture the fast

dynamics, which is also periodic P (t) = P (t+T ). Combing the slow and fast evolutions, we

obtain the complete time evolution operator at an arbitrary time as U(t, 0) = P (t)e−
i
~Heff t.

Applying U(t, 0) to a initial state |ψ(0)〉 =
∑
n an|n〉 with an time-independent constant, we

get

|ψ(t)〉 = U(t, 0)|ψ(0)〉 (3.10)

=
∑
n

anP (t)e−
i
~Heff t|n〉

=
∑
n

ane
− i

~ε
(n)t|u(n)(t)〉,

with the Floquet function defined as |u(n)(t)〉 ≡ P (t)|n〉. Note that such Floquet functions

are periodic in time, |u(n)(t + T )〉 = |u(n)(t)〉, which is temporal analogue of the Bloch

functions in space. Therefore the Floquet states are given by {e−
i
~ε

(n)t|u(n)(t)〉}. If we only

plan to look at the slow dynamics of the system, we can simply isolate such slow evolution

by doing a transformation |ψ̃(t)〉 = P−1(t)|ψ(t)〉. As a result, we have

i~
d

dt
|ψ̃(t)〉 = Heff |ψ̃(t)〉. (3.11)

To calculate the Floquet bands numerically, we diagonalize the single-period time evolu-

tion operator U(T, 0). We first solve the eigenvalue problem for the time-averaged Hamilto-

nian Hav = 〈H(t)〉 and obtain the bands given by eigenvalues {E(n)
k } and the corresponding

Bloch waves {|ϕ(n)
k 〉}. Then we write the full Hamiltonian of the system in this basis.
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The Hamiltonian can be separated into two terms, H(t) = Hav + H ′(t) with H ′ being the

time-dependent part. To calculate the time-evolution operator Uk(T ) for different quasi-

momentum states, we use the Lie-Trotter product formula eA+B = lim
N→∞ (eA/NeB/N )N

where A and B are two not necessarily commuting operators. We can divide any time

interval t into N segments with ∆t = t/N and obtain the time evolution operator

Uk(t) = e−
i
~
∫ t

0 H(t′)dt′ (3.12)

≈
N∏
j=1

(
e−

i
~Hav∆te−

i
~H
′(j∆t)∆t

)

≈
N∏
j=1

e−
i
~Hav∆t

(
1− i

~
H ′(j∆t)∆t

)
.

In the last step, we used the first order approximation of the time evolution for H ′(t). We

then solve diagonalize the single period time evolution operator U(T, 0) to obtain the quasi-

energy bands. Compared with the two-level model, the Floquet theory significantly improves

the accuracy of the calculated quasi-energy bands.

3.1.4 Quantum phase transition

So far we have only discussed the effect of lattice shaking on a single atom. Lattice shaking

can dramatically change the single particle dispersion. Particularly when we shake the

lattice beyond a critical amplitude, the single minimum of the ground band dispersion even

bifurcates into two. The interesting question is how the bosons would react to such a change

of dispersion. When we start with a condensate at the k = 0 state in the ground band |ϕ(1)
0 〉,

non-interacting atoms stay at the k = 0 Floquet state e−
i
~ε

(1)t|u(1)
k (t)〉. This is guaranteed

when we choose proper shaking parameters to stay away from avoided crossings, where atoms

can be excited to other excited bands. As a result, nothing interesting happens even in the

case with the double-well dispersion beyond the critical shaking amplitude.

It is the interaction between particles that introduces interesting dynamics by exciting
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pairs of atoms into finite momentum states within the ground band (Ch. 4). Particularly for

repulsively interacting bosons, we would naturally expect these bosons to condense to the

state with minimal energy. At the single-particle level, there are numerous minimal energy

states beyond the critical shaking amplitude. Such states include the finite momentum

states at ±k∗ and the superpositions of them. However, the interaction between atoms will

break the degeneracy of these single-particle minimal energy states. This breaking of the

degeneracy can be demonstrated with a toy model where we use the plane waves as an

approximation of the Floquet function in an infinitely large one-dimensional system. In this

model, we parametrize these single-particle ground state wavefunction as

ΨG =
√
n0(ε+e

ik∗x + ε−e−ik
∗x) (3.13)

with n0 the average density and |ε+|2 + |ε−|2 = 1 . For bosons with positive interaction

strength g > 0 the interaction energy per particle is given by [20],

Eint =
g

2

∫
dxΨ∗G(x)Ψ∗G(x)ΨG(x)ΨG(x)/

∫
dxΨ∗G(x)ΨG(x) (3.14)

=
gn0

2

(
1 + 2|ε+|2|ε−|2

)
.

The minimal interaction energy is obtained if (|ε+|2, |ε−|2) = (1, 0) or (0, 1). This indicates

that interaction spontaneously breaks the symmetry such that the atoms only occupy either

of the ±k∗ states as the absolute many-body ground state. Such spontaneous symmetry

breaking makes the double-well side an effective ferromagnetic phase. We can treat the

Bose condensate as a pseudo-spin system in which spin-up (-down) corresponds to finite

momentum states k∗ (−k∗). Just like a regular ferromagnet whose energy is minimized

when all spins aligned into the same direction, the condensate minimizes its energy if all

atoms occupy the same quasi-momentum state. Such continuous phase transition was the

first experimentally investigated in a one-dimensional lattice in Chin Lab in 2013 [85].
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Figure 3.2: Kibble-Zurek mechanism textbfa When the condensate is taken across the
critical point, the evolution becomes diabatic in the frozen regime (cyan) if the remaining
time for the system to reach the critical point becomes less than the relaxation time. Because
the relaxation time diverges near the critical point, faster ramps cause freezing farther from
the critical point, limiting the system to smaller domains. Sample domain images are shown
for slow, medium, and fast ramps. b Constrain of the critical exponents extracted from the
temporal unfreezing dynamics (magenta) and spatial measurement of the domain size and
correlation length (green). The cross marks the best values of z = 1.9(2) and ν = 0.52(5)
with contours of 68% and 95% fitting confidence. Theoretical prediction based on mean-field
theory gives z = 2 and ν = 0.5. Both of the figures appear in Ref. [24].

3.1.5 Kibble-Zurek scaling of domain formation

Previously we only focuses on the static properties of the phase transition such as the many-

body ground states at the ferromagnetic side. In a realistic experiment, we always dy-

namically drive the system across the quantum critical point with a ramp of the shaking

amplitude. Such a dynamical ramp is often non-adiabatic, which means that the system can

not go to the many-body ground states at the end of the ramp. Instead, the system tends to

form domains just as a regular ferromagnet. We observe that both the time for the formation

of the domains and the size of the domains after crossing the critical point clearly depend on

how fast we go across the phase transition. We understand that such critical dynamics are

fully captured by the Kibble-Zurek mechanism [24], an universal principle that governs all

critical phenomena near a continuous phase transition across various systems in condensed
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matter, cosmology and beyond.

Kibble-Zurek mechanism, which is first discussed by T. Kibble in cosmology [64] and later

extended to condensed matter by W. Zurek [113], provides an intuitive picture of quantum

critical dynamics as shown in Fig. 3.2. In the Kibble-Zurek picture, when the remaining

time for the system to reach the critical point becomes shorter than the relaxation time,

the dynamics becomes effectively frozen. According to Landau theory of second order phase

transitions, both the correlation length and relaxation time of the system diverge near the

critical point. As are a result, the suspension of the dynamics is inevitable when the system is

driven across the critical point at a finite speed due to such divergence of the relaxation time.

The dynamics eventually unfreezes after a delay tKZ once passing the critical point and the

system can effectively react to the ramp because the relaxation time becomes shorter than the

elapsed time after the system passes the critical point. When system unfreezes, topological

defects (domain walls) start to form with a typical separation of dKZ , proportional to the

equilibrium correlation length. Kibble and Zurek predict an important universal power-law

scaling of both the formation time of the defects tKZ and the size of domains dKZ on the

ramp rate ṡ,

tKZ ∝ ṡ−
zν

1+zν , (3.15)

dKZ ∝ ṡ−
ν

1+zν , (3.16)

with z and ν the dynamical and correlation length exponents in equilibrium given by the

universality class of the phase transition.

We can test this universal scaling symmetry near the effective quantum phase transition in

our system [24]. Here we adiabatically load Bose condensates into a one-dimensional optical

lattice and linearly ramp up the lattice shaking amplitude at ramp rate ṡ. The unfreezing

dynamics is investigated by monitoring the quasi-momentum fluctuation at various times

during the ramp. Thus we test the temporal scaling of unfreezing time with the linear
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ramp rate. After the system unfreezes, we image the domain structure of pseudo-spins. We

extract both the average size of the domain and the correlation length to test the spatial

scaling symmetry. By combining the scaling exponents from both the temporal and spatial

measurements, we obtain the critical exponents z = 1.9(2) and ν = 0.52(5). Prediction based

on mean-field theory gives z = 2 and ν = 0.5, which agrees very well with our experiment.

Although the Kibble-Zurek picture gives universal scaling predictions across various sys-

tems, it provides little information on the details of the microscopic dynamics in a particular

system. During a quantum phase transition, a many-body system, originally prepared in the

ground state with macroscopic coherence, is suddenly transferred to a metastable state after

passing the critical point. How does the system evolve toward the new ground states with a

different symmetry? A complete understanding of the processes that underlie the quantum

critical dynamics is one of the focuses of this thesis and the detailed study is presented in

Ch. 4.

3.2 Oscillating interaction

We can test this universal scaling symmetry near the effective quantum phase transition in

our system [24]. Here we adiabatically load Bose condensates into a one-dimensional optical

lattice and linearly ramp up the lattice shaking amplitude at ramp rate ṡ. The unfreezing

dynamics is investigated by monitoring the quasi-momentum fluctuation at various times

during the ramp. Thus we test the temporal scaling of unfreezing time with the linear

ramp rate. After the system unfreezes, we image the domain structure of pseudo-spins. We

extract both the average size of the domain and the correlation length to test the spatial

scaling symmetry. By combining the scaling exponents from both the temporal and spatial

measurements, we obtain the critical exponents z = 1.9(2) and ν = 0.52(5). Prediction based

on mean-field theory gives z = 2 and ν = 0.5, which agrees very well with our experiment.

Although the Kibble-Zurek picture gives universal scaling predictions across various sys-

tems, it provides little information on the details of the microscopic dynamics in a particular
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system. During a quantum phase transition, a many-body system, originally prepared in

the ground state with macroscopic coherence, is suddenly transferred to a metastable state

after passing the critical point. How does the system evolve toward the new ground states

generally with a different symmetry? A complete understanding of the processes that un-

derlie the quantum critical dynamics remains evasive. The answer to this question is one of

the focuses of this thesis and the detailed study is presented in Ch. 4.

Ultracold atomic gases provide a powerful platform. It not only allows precise and ver-

satile controls on single particles but also enables controls over pair-wise interactions. This

controllability over inter-particle interaction empowers us to investigate scattering in quan-

tum many-body systems. In this section, we explore an interesting phenomenon, which

we call it ”Bose fireworks”, induced by periodically modulated interactions between atoms.

This interesting observation turns out to be a surprise for us as we originally try to engi-

neer density-dependent tunneling in shaken optical lattices with modulated interaction [23].

After modulating the scattering length between atoms for some time, on the order of few

milliseconds, atoms are suddenly ejected out of the condensates. Such drastic emission of

atoms is first observed in a harmonic trap and it does not really look like fireworks. When

we later switch to a cylindrically symmetric disk-shaped trap to only study the effect from

the modulated interaction, the beautiful emission patterns like fireworks are clear to us for

the first time. In this section, we shall discuss the key elements of the Bose fireworks in

Ref. [25] and the knowledge of these key points are essential to understanding the physics in

Ch. 5, 6, and 7.

3.2.1 Condensates with oscillating interaction in disk-shaped trap

In Cs lab, we start with cigar-shaped condensates in a cross dipole trap made of three beams

of a high-power 1064 nm laser. To make the sample like a thin disk, we first carefully turn

off this cross dipole trap and transfer atoms into a vertical optical lattice trap with a spacing

of 4 µm. The timing and trap depth is carefully tuned during the process so that all the
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Figure 3.3: Bose fireworks in driven condensates a Emission of matter-wave jets after
modulating the scattering length for various times τ . Each image corresponds to a single,
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frequency f = 3.5 kHz, DC offset adc = 5a0 and AC amplitude aac = 60a0. All the figures
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atoms are transferred into a single layer of the vertical lattice trap, which locates close to

the focus of the high-resolution objective. Meanwhile, a ring-shaped barrier is first created

with a large radius of 30 µm using the DMD with a 780 nm laser and slowly shrinks down

to the desired size by switching preloaded patterns. At last, we have Bose condensates in

a disk-shaped trap with the typical horizontal barrier height of h×150 Hz and the vertical

harmonic trapping frequency of 2π×210 Hz and the depth of h×500 Hz.

After preparing the condensates in this trap, we modulate the magnetic field around

17.22 G, close to the zero-crossing near the Feshbach resonance, at frequency f . This mod-

ulation causes the pair-wise s-wave scattering length a to oscillate with the amplitude aac.

Here we also need a small positive average scattering length adc to avoid the collapse of BEC.

Meanwhile, we want this offset as small as possible to reduce heating from elastic collisions.

As a result during the compression of the horizontal ring-shaped barrier, we slowly ramp the

magnetic field to continuously change the scattering length from 40a0 to 5a0, in terms of the

Bohr radius a0. For typical experiments, we apply the modulation amplitude of aac much

larger than the offset adc so that the interaction between atoms alternates between repulsion

and attraction. After modulating the interaction for ∼10 ms, the jets emerge and fly out

radially from the condensates in the horizontal plane. The emission pattern appears to be

random from shot to shot in the experiment but every jet looks to have the same angular

width and often emerges in company with a partner moving the opposite direction.

3.2.2 Stimulated inelastic collision

By monitoring the speed of these emitted jets after they leave the condensates, we can pre-

cisely measure the kinetic energy of the atoms inside the jets. We find that the kinetic energy

of each atom in the jets equals to half of the quantum of the modulation field hf/2. This

implies that these emitted atoms are created from pair-wise inelastic collisions within the

condensates. Two atoms with zero momentum absorb the energy quantum of hf from the

modulation field and scatter into opposite directions with exactly the same amount of mo-
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Figure 3.4: Inelastic collision and correlation function. a Illustration the microscopic
process leading to jets: two atoms collide, absorb one energy quantum from the oscillating
field and are ejected in opposite directions. b Azimuthal density-density correlations of jets
emitted from condensates driven at f = 1.9 kHz and aac = 60a0 for modulation durations
of τ = 4.4 ms (green diamonds), 5.6 ms (red squares) and 8.0 ms (blue circles). The cor-
relation function is remarkably consistent throughout the amplification process, even when
the number of atoms in jets grows by an order of magnitude as we increase the modulation
duration. The solid curve shows the theoretical correlation function. All the figures are
modified version of that in Ref. [25].
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mentum ~kf =
√
hf/m to conserve both energy and momentum, shown in Fig. 3.4a. Such

collisions are normally suppressed in unperturbed condensates since they do not conserve

energy.

However, with only spontaneous inelastic collisions, we should expect the modulation of

interaction to only generate a diffuse, spherical shell of atoms propagating out of the con-

densate. The fact that emission only prefers the horizontal plane and the inhomogeneous

jets structure suggest a collective collision process happening throughout condensate. In this

collective process, excited atoms generated from a previous inelastic collision stimulate fur-

ther scattering to populate atoms into the same momentum modes. This process accelerates

as more atoms populates the same mode and finally atoms emit our in a particular direction

and manifest as jets. As a result, angular directions which initially has more spontaneously

atoms will end up to have stronger jets.

This runaway process is only possible when the excited atoms can stimulate further

collisions while leaving the condensates. Given a modulation frequency f , the speed of the

excited atoms is v =
√
hf/m. Their escaping rate can be approximated as Γ = αv/R

with α a dimensionless constant. While the scattering rate inside the condensates, at which

atoms can stimulate further collisions, is given by γ = 2hn0aac/m with n0 the density of

the condensates. Escaping and scattering compete so that the runaway stimulation can only

occur if the collision happens faster than the escape of atoms, γ > Γ. Based on this intuitive

understanding, we can obtain the threshold condition,

n0aacR√
f
≥ α

2

√
m

h
, (3.17)

where the left side contains parameters that can be controlled experimentally while the right

side is just a constant. This intuitive treatment of the threshold behavior offers excellent

guidance to further experiments presented in the following chapters.
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3.2.3 Width of jets and asymmetry in correlation function

To further test this pair-wise inelastic scattering of atoms, we can calculate the angular

correlation function suggest a correlation

g(2)(φ) =
〈n(θ)[n(θ + φ)− δ(φ)]〉
〈n(θ)〉〈n(θ + φ)〉

, (3.18)

where n(φ) is the angular density of atoms emitted at an angle of θ, see inset of Fig. 3.4,

δ(φ) is the Dirac delta function and the angle brackets indicate averaging over angle θ first

and then over ensembles of many images. We observe two peaks in this measured correlation

function. Peak at φ = 0◦ results from stimulated collisions due to bosonic statistics leading

to bunching of excited atoms in the same momentum mode. Peak at φ = 180◦ results from

the pair-wise scattering process discussed above and backward and forward jets mutually

stimulate to conserve total momentum.

One important piece of information we can get from the correlation function is the angular

width of the jets from the peak at φ = 0◦. It turns out to be limited by the Heisenberg

uncertainty principle. Given a finite size of the condensates with radius R, the uncertainty

of the momentum is given by ∆p ∝ ~
R . This momentum uncertainty reflects in the angular

direction as ∆θ = ∆p
p ∝

1
kfR

. In our experiments, we find that the angular width follows

∆θ ≈ 1.63

kfR
. (3.19)

Another interesting piece of this correlation function is the much lower peak value at

φ = 180◦. Conservation of momentum in pair-wise scattering in principle guarantees that

each jet is accompanied by a counter-propagating partner, which gives g(2)(0◦) = g(2)(180◦).

This asymmetry attracts attention not only from condensed matter physics [108] and but

also from high energy physics [7]. In Ch. 6, we will address such asymmetry in detail. In

short, this asymmetry is caused by the near-field interference between jets. In the far-felid
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observation where the jet structure can faithfully reflect the momentum space distribution,

the symmetry recovers.
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CHAPTER 4

COHERENT INFLATIONARY DYNAMICS IN DRIVEN

CONDENSATES

Quantum phase transitions, transitions between many-body ground states, are of extensive

interest in research ranging from condensed matter physics to cosmology [91, 79, 65, 104].

Key features of the phase transitions include a stage with rapidly growing new order, called

inflation in cosmology [45], followed by the formation of topological defects [64, 113, 29].

How inflation is initiated and evolves into topological defects remains a hot debate topic.

Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical

dynamics [87, 13, 32]. In particular, critical behaviors have been studied in normal Bose gas

to superfluid phase transition [68, 81], Bose-glass to condensate transition [75], and Dicke

phase transitions [10, 66]. Remarkable studies on the dynamics crossing a ferromagnetic

phase transition [92, 9], miscible to immiscible phase transition [83], and polar to the broken-

axisymmetry phase transition [6] have been done in spinor condensates.

In this chapter we discuss the observation of coherent inflationary dynamics across a

quantum critical point in a paramagnetic to ferromagnetic phase transition in driven Bose-

Einstein condensates. During such a quantum phase transition, a many-body system, origi-

nally prepared in the ground state with macroscopic coherence, is suddenly transferred to a

metastable state after passing the critical point [91, 64, 32]. An example shown in Fig. 4.1

is a ferromagnetic transition where the Z2 inversion symmetry is broken. How does the

system evolve toward the new ground states generally with a different symmetry? One can

hypothesize two possible scenarios: 1. Fluctuations break the system into locally coherent

segments which evolve toward the new ground states independently. After relaxation, the

system forms domains with local coherence [79, 32]. 2. Maintaining the macroscopic coher-

ence, the system undergoes a coherent population transfer of particles toward lower energy

states. Here fluctuations determine the domain structure but do not destroy the macroscopic
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erent Coherent
Figure 4.1: Paradigms of dynamics crossing a ferromagnetic quantum critical
point. Two scenarios describing the quantum phase transition: (Left) In the incoherent
picture, the system is broken into locally coherent segments by fluctuations. Each segment
evolves independently toward a new ground state. Particles eventually rethermalize at the
energy minima to form domains. (Right) In the coherent scenario, the system evolves toward
the new ground states with macroscopic coherence extending beyond the domain size.

coherence.While both scenarios support rapid evolution toward new ground states, the key

differences are the time and length scales of the coherence in the dynamical process.

In our system, the inflation manifests in the exponential growth of density waves and

populations in well-resolved momentum states. After the inflation stage, extended coherent

dynamics is evident in both real and momentum space. We present an intuitive description

of the quantum critical dynamics in our system and demonstrate the essential role of phase

fluctuations in the formation of topological defects.

4.1 Experimental setup

We utilize three-dimensional Bose-Einstein condensates of 30,000 cesium atoms confined in

an optical dipole trap. The trap is tightly confined in the gravity direction with a trapping

frequency of 2π×226 Hz. Trapping frequencies in the two in-plane directions are 2π×6

and 2π×9 Hz. The s-wave scattering length is 50 a0, where a0 is the Bohr radius. We

adiabatically load the BEC into a one-dimensional optical lattice with a depth of 8.9 ER

and period d = 532 nm, where ER = h× 1.3 kHz is the recoil energy.

Our experiment is based on such cesium Bose-Einstein condensates loaded into a one-
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dimensional phase-modulated optical lattice [85]. The modulation translates the lattice

periodically with displacement ∆x = s
2 sinωt, where s is the shaking amplitude and ω is the

shaking frequency. The shaking frequency is fixed to ω = 2π×8 kHz, which is 2π×0.87 kHz

above the gap at zero-momentum between the ground and the first excited Bloch band in the

lattice. Shaking hybridizes the ground and excited Bloch bands and results in an effective

dispersion εq for the condensate [85], where the lowest energy state at quasi-momentum q

= 0 bifurcates into two ground states at +q∗ and −q∗ (named pseudo-spin up and down),

when s exceeds a critical value sc. When the system is driven across the critical point in

finite time, domains of pseudo-spins form in accordance with universal Kibble-Zurek scaling

[24] and excitations within a domain display a roton dispersion [47], however, a complete

understanding of the processes that underlie the quantum critical dynamics remains evasive.

To reveal the nature of the quantum phase transition, we exploit three schemes to ana-

lyze the critical dynamics of the condensate: 1. in situ imaging to record the atomic density

profile, 2. time-of-flight with a focusing technique [97] to probe the momentum space distri-

bution nq, and 3. pseudo-spin reconstruction to reveal domain structure [24].

4.2 Dynamics in slow ramp experiment

There are various ways to drive the system across the critical point. In this experiment, we

linearly ramp up the shaking amplitude s across the critical value at a constant speed. Here

the slow ramp is still fast compared to an adiabatic ramp where the system always stays in

the many-body ground state, therefore we still expect to see formation of magnetic domains

as the system goes across the critical point. Here the linear ramp starts at s = 0 nm with

ramp rate ṡ = 0.64 nm/ms. Given the lattice depth and shaking frequency mentioned above,

the critical shaking amplitude sc = 13.1 nm.

We observe two key features indicating coherent evolution. First, from in situ images, the

density wave emerges about 20 ms after passing the critical point. Quantified with the density

structure factor Sq [58], the density wave shows an almost fixed wavenumber. Second, from
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Figure 4.2: Development of density waves and momentum space population across
the quantum critical point. Density waves and sharp peaks in momentum space emerge
when we linearly ramp up the shaking amplitude s with a ramp rate ṡ = 0.64 nm/ms
across the critical point sc = 13.1 nm at time t = 0. a, Single shot in situ images of the
condensate. b, Momentum distribution nq from time-of-flight measurement(black). Here nc
is the averaged peak density in the momentum space of unshaken condensates. Averaging
over repeated experiments gives two broad peaks centered around q = 0 (red). c, Domain
structure from reconstruction [24], where jz = nq∗−n−q∗ is the spin density. d, The density

structure factor Sq =
〈
∆n2

q

〉
/N , extracted from the Fourier transform of the density

fluctuation ∆n(x) = n(x)−〈n(x)〉 integrated along y axis. Here N is the total atom number
and 〈.〉 indicates an average over repeated measurements. Peaks appear at ±qd = ±0.14 qL
with qL = π~/d being the lattice momentum and d being the lattice period. e, The averaged
population distribution 〈nq〉 in momentum space. Solid black curves in both d and e show
the instantaneous, theoretical ground state momenta ±q∗. f, Fractional population excited
out of q = 0 state (blue square) and the density variance δn2 from integrating the structure
factor Sq. Solid lines are guides to the eye. The error bars indicate 1σ standard error.
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time-of-flight images, the atomic population forms sharp side peaks in individual samples;

over repeated measurements the side peaks average to broader features. These observations

suggest that atoms occupy a coherent superposition of well-defined momentum states and

the density wave emerges from their interference. Though the density wave diminishes after

30 ms, the persistent narrow momentum peaks in atomic population nq suggest a long-lasting

coherence. In addition, the period of the density waves approximately matches twice the

averaged domain size. Both features will be further discussed in later section 4.4.

A more comprehensive analysis of the density wave and the population distribution in

momentum space suggests that the system evolution can be separated into two stages: in-

flation and relaxation. To see this, we evaluate the density variance δn2 =
∫
dqSq from

in situ images as well as the total population in finite momentum states ∆N =
∑
q>0Nq

from time-of-flight measurements, where Nq is the total atom number in the ±q states. For

short times after the phase transition, both quantities show a characteristic exponential-like

growth; we name this period the inflation stage, see Fig. 4.2f. After inflation, all atoms relax

toward non-zero momentum states at q = ±q∗ while the density wave diminishes. In the

following section 4.4, we investigate the two stages, inflation and relaxation, separately.

4.3 Theory of inflation

Here we start with the many-body Hamlitonian in the second quantization form [86],

H =
∑
q

εqâ
†
qâq +

U0

2V

∑
q,q′,p

â
†
q+pâ

†
q′−pâqâq′ , (4.1)

where εq is the single atom dispersion, U0 is the two-body interaction energy, V is the volume

of the system and â
†
±q and â±q are bosonic creation and annihilation operators of an atom

with momentum ±q. Shaking of the optical lattice dramatically change the single particle

47



dispersion and in the ferromagnetic phase it is given by

εq = ε

[(
q

q∗

)2

− 1

]2

− ε, (4.2)

where ε is the kinetic energy barrier hight. Thus the dispersion is in a double-well shape in

momentum space and has two minima at q = ±q∗ sparated by the kinetic energy barrier

(Fig. S2b) [85, 24].

4.3.1 Hamiltonian of inflaton and solution

Under Bogoliubov approximaton, we introduce a new quasi-particle field, inflaton, to rewrite

the Hamiltonian of Bose-Einstein condensates. At the beginning of the phase transition, we

assume that the q = 0 state is macroscopically occupied. Thus the condensate consists of

N atoms and has a chemical potential µ = U0N/V . The many-body Hamiltonian Eq.(4.1)

reduces to

H =
1

2
Nµ+

∑
q>0

(µ+ εq)(â
†
qâq + â

†
−qâ−q) +

∑
q>0

µ(â
†
qâ
†
−q + âqâ−q). (4.3)

Conventional Bogoliubov transformation to diagonalize the Hamiltonian using bosonic

operators fails in our case because of εq < 0. Instead, we adopt a different approach by

introducing the following transformation

ι̂±q = uqâ±q + νqâ
†
∓q, (4.4)

where ι̂
†
±q and ι̂±q are the creation and anihilation operators of an inflaton with momentum
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±q and the coefficients uq, νq > 0 for εq < 0 satisfy

u2
q =

1

2
(
µ

~λq
+ 1) (4.5)

ν2
q =

1

2
(
µ

~λq
− 1) (4.6)

~λq =
√
−εq(2µ+ εq). (4.7)

The inflaton field operators obey bosonic commutation relations: [ι̂q, ι̂q′ ] = [ι̂
†
q, ι̂
†
q′ ] = 0 and

[ι̂q, ι̂
†
q′ ] = δqq′ .

As a result, the Hamiltonian reduces to

H =
∑
q>0

~λq(ι̂†q ι̂
†
−q + ι̂q ι̂−q) +

1

2
Nµ−

∑
q>0

(µ+ εq). (4.8)

Beside the two constant terms, the Hamiltonian shows that inflatons are created and anni-

hilated in pairs with opposite momentum. Here the inflation dispersion λq is related to the

growth rate of the inflatons (Fig. 4.3a).

To show the exponential growth, we look at the dynamics of the inflaton in the Heisenberg

picture, which yields

∂tι̂±q(t) =
i

~
[H, ι̂±q(t)] = −iλq ι̂†∓q(t) (4.9)

∂tι̂
†
±q(t) =

i

~
[H, ι̂

†
±q(t)] = iλq ι̂∓q(t). (4.10)

The solutions of the above equations are

ι̂±q(t) = ι̂±q(0) coshλqt− ι̂†(0)∓qi sinhλqt (4.11)

ι̂
†
±q(t) = ι̂

†
±q(0) coshλqt+ ι̂∓q(0)i sinhλqt. (4.12)

Based on these solutions, the inflaton population m±q(t) ≡< ι̂
†
±q(t)ι̂±q(t) > evolves accord-
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Figure 4.3: Inflaton growth rate and single particle dispersion. Here the shaking
amplitude s = 25 nm with atoms in an 8.9 ER lattice. The chemical potential µ = h×150
Hz. We shows the inflaton growth rate λq (a) and the single particle dispersion εq (b). The
green dashed line (in b) indicates the zero-crossing of εq.

ing to

m±q(t) = m±q(0) cosh2 λqt+m∓q(0) sinh2 λqt+ sinh2 λqt, (4.13)

where the first two terms on the right-hand-side correspond to Bose stimulation and the last

term originates from spontaneous emission of inflatons.

We further simplify the results by defining the total inflaton population in ±q modes

Mk = mq +m−q and have

Mq(t) + 1 = [Mq(0) + 1] cosh 2λqt. (4.14)

From this result we see that the inflaton population, including the contribution from spon-

taneous emission, grows exponentially with a rate of 2λq.
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4.3.2 Experimental observables

The exponential growth of inflaton fields is reflected in the momentum population in the time-

of-flight measurements, and the structure factor of the density wave. First of all, we define

the population in momentum state ±q as Nq = 〈â†qâq〉 + 〈â†−qâ−q〉. To calculate the atom

population from inflatons, we use the inverse inflaton transformation â±q = uq ι̂±q − νq ι̂†∓k.

We thus rewrite the atom population as

Nq + 1 =
µ

~λq
(
Mq + 1

)
−
µ+ εq
~λq

(
〈ι̂q ι̂−q + ι̂

†
q ι̂
†
−q〉
)
. (4.15)

Since ι̂q ι̂−q+ ι̂
†
q ι̂
†
−q commutes with the Hamiltonian and does not vary with time, the number

of atoms in an inflaton is given by ∂Nq/∂Mq = µ/~λq .

Secondly, the structure factor, defined as the Fourier transform of the density-density

correlation function [69], can be expressed in terms of the correlations in the momentum

space as

Sq =
1

N

∑
p,p′
〈â†p+qâpâ

†
p′−qâp′〉. (4.16)

For small number of excitations 〈â†qâq〉 � 〈â†0â0〉 ≈ N and εq < 0 , one can rewrite Sq as

Sq =
−εq
~λq

(
Mq + 1 + 〈ι̂q ι̂−q + ι̂

†
q ι̂
†
−q〉
)
. (4.17)

Based on Eqs.(4.15) and (4.17), we futher determine the time evolution of the observables.

In the beginning of the phase transition, we assume that there is no net source of correlated

inflatons in a regular Bose-Einstein condensate

〈ι̂q ι̂−q〉 = 〈ι̂†q ι̂†−q〉 = 0. (4.18)
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As a result, the initial value of inflaton population at t = 0 is

Mq(0) + 1 =
~λq
µ

[Nq(0) + 1]. (4.19)

Finally, we obtain the time evolution of Nq(t) and Sq(t),

Nq(t) + 1 = [Nq(0) + 1] cosh(2λqt) (4.20)

Sq(t) =
−εq
µ

[Nq(0) + 1] cosh(2λqt). (4.21)

This result explains the similar exponential-like growth of both observable in Fig. 4.2f. This

is because that shortly after passing the quantum critical point, the q = 0 state remains

microscopically occupied, which justifies the Bogoliubov approximation.

4.4 Inflation and relaxation in fast quench experiment

To further test the inflation theory, we perform quench experiments by suddenly driving

the system across the critical point, and measure the growth rate of the population in dif-

ferent momentum modes. Right before the quench, we seed a small initial population in

the desired momentum states ±q′ by imprinting a sinusoidal phase pattern on the conden-

sate δφ sin(q′x/~). Here δφ is the seed amplitude and the wavenumber q′/~ is externally

controlled.

We imprint the phase pattern across the condensate using a digital micromirror de-

vice (DMD) with a 795 nm laser, see Fig. 4.4. To ensure a sinusoidal modulation, we

set a grating pattern on the DMD with twice of the desired period 2π~/q′ and only let

the ±1 orders from the diffraction pass in the Fourier plane. The diffracted beams in-

terfere on the atoms, giving a clean sinusoidally varying potential. The imprinting pulse

lasts for 20 to 40 µs, which is very short compared to the condensate and lattice time

scale.Right after the seeding pulse, the wavefunction of the condensates can be written as
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Figure 4.4: Phase imprinting using digital micromirror device A grating pattern is
programmed to the digital micromirror device. The diffracted beams from a 795 nm laser
are selectively blocked for creating clean sinusoidal lattices in the presence of aberrations.
The beam-selection mask is placed in a Fourier plane along the optical path of the DMD
projection which only allows the two desired diffraction orders to transmit. The presence
of aberrations only cause a phase shift between the two diffracted beams, which affects the
position of the resulting lattice but not its depth or spacing.
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ψ = ψ0e
iδφ sin(q′x/~), where ψ0 is a constant, q′ is the seeding momentum, δφ is the seeding

amplitude and normally δφ < 1. Thus we transfer a small fraction of the atomic popula-

tion to the ±q′ states. This is easy to see if we expand the wavefunction using the Bessel

functions, ψ = ψ0

[
J0(δφ)− J1(δφ)e−iq

′x/~ − J−1(δφ)eiq
′x/~ + ...

]
.

After seeding, the condensate quickly grows two side peaks at the seeding momentum ±q′

(Fig. 4.5a). To extract the growth rate, we monitor the population in the momentum states.

To obtain the atom population Nq′ in the momentum states±q′, we integrate the populations

in the momentum states within the intervals [q′ − δq, q′ + δq] and [−q′ − δq,−q′ + δq]. The

population grows exponentially in the beginning but reaches a maximum at a later time

when the population in the k = 0 state is depleted (Fig. 4.5b). We fit the fast growing

interval, where Nq′/N ≤ 0.3, right after the quench according to Eq. (4.20) and compare the

growth rate to the prediction (Fig. 4.5c). Our measured growth rates qualitatively agree with

the Bogoliubov result. We find quantitative agreement with our numerical simulation based

on the Gross-Piteavskii equation which incorporates the depletion of the condensate. In

particular, we confirm that only modes |q| ≤ 0.4 qL with kinetic energy εq < 0 exponentially

grow and the fastest growth appears at momentum q ≈ ±q∗. Here qL = π~/d is the lattice

momentum with d being the lattice period.

Remarkably, in the absence of seeding, the sample spontaneously grows momentum peaks

near ±q∗ with a growth rate very close to that seeded at a similar momentum (Fig. 4.5c and

the inset). For unseeded samples, many momentum modes can in principle be populated

by quantum or thermal fluctuations and then amplified by inflation. The dominance of the

modes near ±q∗ can be understood since they have the highest growth rate and become

dominant during inflation.

Following the inflation stage, the condensates display persistent coherent dynamics in

both time-of-flight and in situ measurements (Fig. 4.6). After the rapid growth of the popula-

tion at seeded momentum ±q′, the system generates higher order harmonics at ±2q′,±3q′...,

and the atomic populations are coherently transferred between these momentum states. The
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Figure 4.5: Growth of excitations during the inflation phase. We quench the seeded
condensates from shaking amplitude sc = 13.1 nm to s = 25 nm, where the new ground
states are at ±q∗ = ±0.24 qL. a, At t = 0, we quickly imprint a phase modulation in 20 µs
on the condensate with a seeding momentum q′ = 0.26 qL (left). Subsequent time of flight
measurements reveal two side peaks emerging at ±q′ (right). b, the fractional population
in both side peaks Nq′/N evolves for different seeding momentum: q′ = 0.19 (triangle), 0.30
(circle), 0.33 (square), 0.36 (inverted triangle) and 0.40 qL (diamond), from blue to red.
Solid lines are fits using Eq. (4.20) to extract the growth rate λq′ . c, The growth rates
for seeded (black) and unseeded experiments (orange star) are compared with Bogoliubov
theory (black line)and numerical simulation (red line). Inset compares the growth for seeded
experiment with q′ = 0.19 qL (blue) and the unseeded quench experiment (orange). The
error bars indicate 1σ standard error.

55



d

a

0
0.3
0.6

-0.3
-0.6

0 10 20 30 40
Time t (ms)

0
0.3
0.6

-0.3
-0.6

0.5 10
Density <nq>/ nc

M
om

en
tu

m
 q

 (q
 ) L

c

t = 0 ms

8

12

16

10 µm

-0.8

0

0.8

P
hase im

print (rad)

0

20

40

60

 D
ensity <n> (µm

-2)

0

-60

60

S
pin density jz  (µm

-2)

14

22

26

0 0.2 0.4-0.2-0.4-0.6

1
0

0.5

0.5

1

0

D
en

si
ty

 n
q 
/ n

m
ax

0.6

b

4

Time t (ms)

A
m

pl
itu

de
  (

µm
-2

)
P

ha
se

0

8

12

�

�/2
0

0 10 20 30 40

-t/τe

t = 0 ms

14 ms

2σ

2σ

 4σ’

Momentum q (q )
L

Figure 4.6: Coherent quantum critical dynamics. The condensates are seeded at mo-
mentum q′ = 0.13 qL and quenched from shaking amplitude sc = 13.1 nm to s = 25 nm. a,
Coherent oscillations in momentum space (top: experiment, bottom: numerical calculation).
The green solid lines indicate the position of ±q∗. b, Line cuts of the experimental data
at t = 0 and 14 ms (black dot). The solid red lines are from numerical calculations. The
experimental peaks in both cuts show similar root-mean-square radius of σ = 0.026 qL and
0.028 qL from Gaussian fits. The numerical calculation shows σ′ = 0.015 qL, determined by
the sample size. c, Oscillation of the density wave and the domain structure at t = 14 ms.
Both density waves and domains appear aligned with the seed pattern (green dashed line).
d, Amplitude (black square) and phase (green triangle) of the density wave are compared
with the numerical calculation (solid lines). A settling time τ = 20 ms is extracted from
the decay of the envelope function (blue dashed line). The error bars indicate 1σ standard
error.
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emergence of higher harmonics is due to nonlinear mixing of the matter waves and can be

well described based on our numerical model. An example at t = 14 ms shows multiple side

peaks that conform to the simulation. Intriguingly, the individual momentum peaks are as

narrow as the zero momentum peak of the original condensate; the widths are only limited

by the detection resolution.

A narrow momentum peak indicates long coherence length based on uncertainty principle.

Here we extract a lower bound of the coherence length based on uncertainty principle in

Fig. 4.6b. Given the mean square width of the atom population peaks in momentum space

σ, the coherence length of the system is then lφ ∝ h/σ. In our simulation (see Sec. 4.5), based

on fully coherent condensates with coherence length equals to the system diameter of 30 µm,

the mean square width σ′ is almost half of that in the corresponding experiments. This

indicates that the coherence length is lφ > 15 µm in the experiment, which is approximately

3 times larger than the domain size of 4 µm and is half of the system size, 30 µm in the

direction of shaking.

Together with the dynamics in momentum space, density waves in seeded samples also

display coherent oscillations in quench experiments (Fig. 4.6c). The density wave appears

aligned to the imprinted pattern, and its phase displays multiple alternations (Fig. 4.6d)

which are synchronized with oscillations of the population in momentum space. The contrast

of the density wave oscillates and slowly decays with a time constant of τ = 20 ms. Both the

alternation and the decay are in good agreement with our simulation. Finally, we find that

domains are fully formed as early as t = 14 ms, and remain constant afterward. Importantly,

the domain structure is deterministic in the seeded experiments, and the domain walls line

up with the density wave yielding a domain size half the period of the density wave.

The observed coherent dynamics can be understood based on a simple physical picture.

Phase imprinting across the condensate locally breaks the inversion symmetry by inserting

a current j = ~
mφ
′(x), where φ(x) is the phase of the condensate wavefunction. Within one

period of the imprinted phase pattern, the sign of the local momentum flips twice, resulting
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in two neighboring domains with opposite momenta. After the momentum kick, atoms in

neighboring domains can flow toward or away from each other determined by the group

velocity vg(x) = dεq/dq, leading to the observed density peaks and troughs. Since density

waves cost energy in a BEC with repulsive interactions, the atom flow reverses after half an

oscillation period, yielding the phase alternation of the density wave.

The decisive role of phase imprinting in the real and momentum space dynamics and do-

main structure indicates the importance of phase fluctuations in quantum critical dynamics.

Together with the emergence of density waves and atomic occupation in well-resolved mo-

mentum states, we present strong evidence supporting the coherent scenario of the quantum

phase transition in our system. Furthermore, the phase imprinting technique can find new

applications to engineering desired structure of domain walls, which will enable future study

on the dynamics and interactions of topological defects.

4.5 GPE simulation of inflation

The coherent dynamics can be well captured by Gross-Pitaevskii theory when we approxi-

mate quantum fluctuation using random noise. Here we perform a numerical simulation is

based on the Gross-Pitaevskii equation with an effective model in a one-dimensional lattice.

In this model, space is discretized into lattice sites and kinetic motion is replaced by hopping

between neighboring sites. We define ψj(t) the value of the condensate wavefunction of site

j at time t and the evolution is given by

iγ~
∂

∂t
ψj(t) = −

nT∑
n=1

tk[ψj−n(t) + ψj+n(t)] +

[
1

2
mω2(jd)2 + g|ψj(t)|2 − µ

]
ψj(t) (4.22)

.

Here tn is the tunneling energy between two lattice sites spatially separated by n sites, m

is the atomic mass of Cs, ω is the harmonic trapping frequency, g is the coupling constant,

µ is the chemical potential , d is the lattice period and nT is the truncation number that
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Figure 4.7: Simulation of inflaton growth rate. Here we show the measured growth
rate λq′ from seeded (black dot) as well as the unseeded quench experiment (orange star).
Black solid line is the prediction from Bogoliubov theory with effective chemical potential
µ = h×125 Hz. Lines in color from blue to red show the results from simulation with the seed
amplitude δφ: 0.1 (dot), 0.3 (dash-dot), 0.5 (dash) and 0.7 (red solid) . In the simulation,
the trapping frequency ω = 2π× 12 Hz, chemical potential µ = h×150 Hz, lattice depth is
8.9 ER and shaking amplitude s = 25 nm, which are based on the corresponding experiment.

shall be discussed later. γ is a parameter that controls the evolution in either imaginary

time (γ = i) or real time (γ = 1). Particularly in imaginary time, evolution of the equation

gives the ground state wavefunction of the system. In our simulation of inflation, we keep a

small imaginary part by setting γ = cosϕ + i sinϕ with ϕ = 0.015, which accounts for the

dissipation in our system.

Tunneling energy tn is determined from the Bloch band structure. In our experiment, all

the atoms dominantly occupy the ground band even with lattice shaking. The tunneling en-

ergy is then the inverse Fourier transform of the ground band dispersion tn =
∑
q e
−inq/~εq.

In a non-shaken lattice, the nearest-neighbor tunneling t1 is the only significant term and

sufficient to capture most of the physics. However, in a shaken lattice, where the ground

band dispersion is significantly modified, higher order tunneling become significant as well.

In our simulation, we found that nT = 3 is a good truncation number and tn with n > 3 are

negligible.

We perform the simulation for our seeded quench experiment as follows. We first evolve

equation in imaginary time to reach the ground state wavefunction in a non-shaken lattice.
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To implement the seed, we multiply this ground state wavefunction by a spatially-varying

phase factor eiδθ(j) with δθ(j) = δφ sin(q
′

~ jd) as the initial wavefunction for the next step,

where δφ is the seed amplitude and q′ is the seed momentum. To simulate the quench, we

now evolve the initial wavefunction with a new set of tunneling energies in a shaken lattice.

Later all the observables are extracted from the wavefunction in the same way as we did in

our data anlaysis.

Simulations with respect to different seed amplitudes explain the discrepancy between

experiment and Bogoliubov theory visible in Fig. 4.5c from the main text. Here we show the

inflaton growth rate λq′ from our simulation in Fig. 4.7. For comparison, we also include the

experimental data as well as the prediction from Bogoliubov theory. First, for small initial

population depletion from the q = 0 state where δφ ≤ 0.1, the results from simulation agree

well with that from Bogoliubov theory. However, further increase of δφ quickly drives the

system out of the perturbative regime. As a result, the growth rate λq′ decreases as the

seed amplitude δφ increases. The measured growth rates concur with the simulation with

seed amplitude δφ = 0.7, which is estimated to be 0.6(0.1) in experiments from the initial

population depletion of the q = 0 state.

4.6 Kibble-Zurek scaling of the coherent dynamics

These coherent inflationary dynamics happen when the system the system is driven across a

quantum phase transition. We know such dynamics should follow the Kibble-Zurek scaling

that we demonstrated in the previous section by studying the formation of spin domains.

We expect these density wave dynamics should scale in the same way as the domains and

be compatible with the universality hypothesis, according to which the collective dynamics

across a critical point are invariant in the space and time coordinates that scale with the

Kibble-Zurek power law.

This scaling can be clearly see from the normalized contrast Cn of the density wave when

the system is driven across the phase transition with constant speed by linearly ramping up
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Figure 4.8: Kibble-Zurek scaling of inflationary dynamics. a shows the normalized
contrast Cn as a function of shaking amplitude s−sc. For slower(faster) ramp, the dynamics
of the system unfreezes at smaller(larger) value of shaking amplitude. b shows the normalized
contrast Cn as a function of rescaled shaking amplitude according to Kibble-Zurek scaling.
Here the shaking amplitude of the ramps are rescaled to that of the slowest ramp with
ṡ = 0.9 nm/ms based on s− sc ∼ ṡ−0.5.

the shaking amplitude. Here we define the contrast C =
∫

∆n(x, y)dxdy, namely the total

power of the density modulation, where ∆n(x, y) = n(x, y) − n̄(x, y) is the column density

fluctuation around its mean n̄(x, y) that is averaged from shot to shot. This contrast is

then normalized to Cn = (C −Cmin)/(Cmax −Cmin), where Cmin (Cmax) is the minimum

(maximum) value of the contrast during a linear ramp.

Figure 4.8a shows the normalized contrast Cn as a function of shaking amplitude s− sc

for different linear ramps. According to the Kibble-Zurek mechanism, the system unfreezes

at time scale of tKZ ∼ ṡ−a with a = zν/(1+zν) = 0.5 in our system. If we now convert time

t to shaking amplitude by s−sc = ṡt, we should have that the unfreezing shaking amplitude

sKZ − sc ∼ ṡ1−a. Thus for slower(faster) ramp, the dynamics of the system unfreezes

at smaller(larger) value of shaking amplitude. Once we rescale the shaking amplitude for

different linear ramps to that of the ramp with ṡ = 0.9 nm/ms accordingly, the time evolution

of the normalized contrast perfect collapse into a same form, see Fig. 4.8b. This nice collapse

presents another test of the scaling law and the universal hypothesis.
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4.7 Density-density correlation

We notice that the inflation Hamiltonian present a pair-generatio process, where a pair of

inflaton with momentum ±q are generated simultaneously. This process resembles that from

two-mode squeezing in quantum optics [106]. Here we evaluate the density-density correla-

tions which we have not shown before. We will first theoretically calculate the correlation

function based on the inflaton Hamiltonian. We then shall show the density-density cor-

relations function from our 1D numerical simulation. At last, we extract the correlations

from our data in a unseeded quench experiment to show the experimental evidence of the

density-density correlation.

4.7.1 Theory based on two-mode squeezing

We start by considering the inflation Hamiltonian only for a single pair of momentum modes,

which is simply given by

H = ~λ(ι
†
qι
†
−q + ιqι−q). (4.23)

This Hamiltonian has the same form of a two-mode squeezing Hamiltonian similar to that

in the “Bose Fireworks”. The quantum state of the system generated from vacuum in the

interaction picture can then be written as following.

|ψ〉q,−q =
1

cosh γ

∞∑
n=0

(−i tanh γ)n|n, n〉, (4.24)

where γ = λt. We are interested in calculating the expectation value of various observables.

We can first do a simple check to make sure that this calculation is consistent with that

in Sec. 4.3. Here we want to see if we can obtain the same time evolution for atom number
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excitation in Eq. (4.20). Let’s first look at the inflaton number operator m±q = ι
†
±qι±q,

〈m±q〉 = 〈ι†±qι±q〉 =
1

cosh2 γ

∞∑
n=0

(tanh2 γ)nn (4.25)

= sinh2 γ ≡ 〈n〉, (4.26)

where we can think of a probability density distribution function of

P (n) ≡ 1

cosh2 γ

∞∑
n=0

(tanh2 γ)n (4.27)

with variable n and 〈n〉 the mean value of the variable n. This greatly simplifies the calcu-

lation in the following. The interference operators ι
†
±qι
†
∓q = (ι±qι∓q)† and

〈ι±qι∓q〉 =
−i tanh γ

cosh2 γ

inf∑
n=0

(tanh2 γ)n(n+ 1) (4.28)

= −i tanh γ〈n+ 1〉 (4.29)

which is imaginary. Based on the Bogoliubov transformation, the excited atomic population

is given by

〈n±q〉 = 〈a†±qa±q〉 = 〈(uι†±q − νι∓q)(uι±q − νι
†
∓q)〉

= u2〈ι†±qι±q〉+ ν2〈ι∓qι†∓q〉 − uν 〈ι
†
±qι
†
∓q + ι±qι∓q〉︸ ︷︷ ︸

=0

= (u2 + ν2)〈n〉+ ν2. (4.30)

Therefore the relation between atomic population and the inflaton population is given by

〈a†qaq + a
†
−qa−q + 1〉 = µ

~λ〈ι
†
qιq + ι

†
−qι−q + 1〉, which is the same results in Eq. (4.20).

We are interested in the relation between the density-density correlations in atom basis

and inflaton basis. The density-density correlation between atoms in ±q states is given by
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〈nqn−q〉 = 〈a†qaqa†−qa−q〉, where

a
†
qaqa

†
−qa−q = (u2ι

†
qιq + ν2ι−qι

†
−q)(u

2ι
†
−qι−q + ν2ιqι

†
q)︸ ︷︷ ︸

F1

+ u2ν2(ι
†
qι
†
−q + ιqι−q)2︸ ︷︷ ︸
F2

− uν[(ι
†
qι
†
−q + ιqι−q)(u2ι

†
−qι−q + ν2ιqι

†
q) + (u2ι

†
qιq + ν2ι−qι

†
−q)(ι

†
qι
†
−q + ιqι−q)]︸ ︷︷ ︸

F3

.

Here we have used the inverse transformation ι±q = ua±q + νa
†
∓q. We have divided this

quantity into three parts F1, F2 and F3 and we shall deal with each of them separately in

the following. Regarding the first term F1, we have

〈F1〉 = 〈(u2ι
†
qιq + ν2ι−qι

†
−q)(u

2ι
†
−qι−q + ν2ιqι

†
q)〉

= u4〈n2〉+ ν4〈(1 + n)2〉+ 2u2ν2〈n(n+ 1)〉

= 〈(u2n+ ν2(n+ 1))2〉

≈ (u2 + ν2)2〈n2〉|n�1. (4.31)

Regarding the second term F2, we have

〈F2〉 = 〈u2ν2(ι
†
qι
†
−q + ιqι−q)2〉

= 2uν2(〈(n+ 1)2〉+ 〈n2〉 − 2 tanh2 γ〈(n+ 1)(n+ 2)〉)

≈ 0|n�1&γ�1. (4.32)
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Last for the third term F3, we have

〈F3〉 = uν〈(ι†qι†−q + ιqι−q)(u2ι
†
−qι−q + ν2ιqι

†
q) + (u2ι

†
qιq + ν2ι−qι

†
−q)(ι

†
qι
†
−q + ιqι−q)〉

= uν〈(ι†qι†−q + ιqι−q)(u2ι
†
−qι−q + ν2ιqι

†
q) + (u2ιqι

†
q + ν2ι

†
−qι−q)(ι

†
qι
†
−q + ιqι−q)〉

− uν(u2 − ν2) 〈ι†qι†−q + ιqι−q〉︸ ︷︷ ︸
=0

.

We can again divide this term into several parts as follows,

A = 〈ι†qι†−qι
†
−qι−q〉 = 〈ι†−qι−qιqι−q〉

†

B = 〈ιqι−qι†−qι−q〉 = 〈ι†−qι−qι
†
qι
†
−q〉
†

C = 〈ι†qι†−qιqι
†
q〉 = 〈ιqι†qιqι−q〉†

D = 〈ιqι−qιqι†q〉 = 〈ιqι†qι†qι†−q〉
†.

It’s easy to test that A, B, C and D are pure imaginary, for example

〈ι†qι†−qι
†
−qι−q〉 =

i tanh γ

cosh2 γ

inf∑
n=0

(tanh2 γ)nn(n+ 1)

= i tanh γ〈n(n+ 1)〉.

As a result, we can easily find that

〈F3〉 = uν[u2(A+B) + ν2(C +D) + u2(A+B)∗ + ν2(C +D)∗]

= 0 (4.33)

. Finally we can see that under the approximation that n � 1 and γ � 1, combining the

results from Eq. (4.31,4.32, 4.33) we shall have the overall density-density correlation
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〈nqn−q〉 = 〈a†qaqa†−qa−q〉 ≈ (u2 + ν2)2〈n2〉

= (u2 + ν2)2〈mqm−q〉, (4.34)

and the correlation between density fluctuations

〈δnqδn−q〉 = 〈a†qaqa†−qa−q〉 − 〈a
†
qaq〉〈a†−qa−q〉 ≈ (u2 + ν2)2[〈ι†qιqι†−qι−q〉 − 〈ι

†
qιq〉〈ι†−qι−q〉]

− 2ν2(u2 + ν2)〈n〉 − ν4

≈ (u2 + ν2)2[〈mqm−q〉 − 〈mq〉〈m−q〉]

(4.35)

Following the same spirit, we can also obtain the density-density correlations 〈ñqñq〉 =

〈a†qaqa†qaq〉 at limit 〈m〉 � 1. Here we obtain

〈nqnq〉 = 〈a†qaqa†qaq〉 ≈ (u2 + ν2)2〈n2〉 (4.36)

= (u2 + ν2)2〈mqm−q〉

, and

〈δñqδñq〉 = 〈a†qaqa†qaq〉 − 〈a†qaq〉〈a†qaq〉 ≈ (u2 + ν2)2[〈ι†qιqι†−qι−q〉 − 〈ι
†
qιq〉〈ι†−qι−q〉]

− 2ν2(u2 + ν2)〈n〉 − ν4

≈ (u2 + ν2)2[〈mqm−q〉 − 〈mq〉〈m−q〉] (4.37)

.

This result indicates a simple relation between the atom density-density correlations

and inflaton density-density correlation. More interestingly, it shows that the detectable

〈nqnq〉 = 〈nqn−q〉 ∝ 〈mqm−q〉 and 〈δnqδnq〉 = 〈δnqδn−q〉 ∝ 〈δmqδm−q〉, meaning the cor-
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Figure 4.9: Time evolution of atomic population in 1D GPE simulation. Here the
shaking amplitude is suddenly turn on from s = 0 nm to s = 25 nm at time t = 0. The
minima of the single particle dispersion locate at ±q∗ = ±0.24qL.

relation from pair-production should reflected in all the four quadrants in q−q′ plane during

the inflation stage when the inflation Hamiltonian still holds. When the condensate become

largely depleted, the story should be different.

4.7.2 Numerical simulation on quench experiment

Based on our previous 1D numerical simulation in Sec. 4.5, we can first see if we get such

correlation between ±q during the inflation stage. Here we use parameters to numerically

calculate the evolution after a sudden quench of shaking amplitude from s = 0 nm to

s = 25 nm at t = 0 ms. According to Floquet theory, the minima of the dispersion appear at

±q∗ = ±0.24qL at s = 25 nm. Figure 4.9 shows the time evolution of the density distribution

〈nq〉 in momentum space, where atomic population evolves into the new lower energy states.

We can further evaluate the density-density correlation between different momentum

modes 〈nqnq′〉, shown in Fig. 4.10. At early time, the center spot at (q, q′) = (0, 0) is simply

from the condensate itself while the horizontal and vertical lines are from the random seed

as well as the condensate. As atoms evolve to new energy minima, strong correlations start
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Figure 4.10: Density-density correlation of atomic population in 1D GPE simu-
lation. The density-density correlation between different momentum modes 〈nqnq′〉 shows
qualitative agreement with the theory, where the correlation in the diagonal and off-diagonal
direction are approximately the same.
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Figure 4.11: Correlation of atomic density fluctuation in 1D GPE simulation.
The correlation between density fluctuations of different momentum modes 〈δñqδñq′〉 shows
clearer indication of pair production in the off-diagonal direction.

to appear along the diagonal and off-diagonal directions. This comes from the simultaneous

generation of the inflaton pairs. At the same time, the center spots decays due to depletion

of the condensate.

A more interesting quantity to look at is the correlation between density fluctuations,

〈δñqδñq′〉, shown in Fig. 4.11. The clear positive correlations rising along the off-diagonal

direction clearly indicate simultaneous generation of inflaton pairs while depleting the con-

densate. This depletion shows up as negative correlations along horizontal and vertical

directions. The positive correlation along the off-diagonal direction later decays during the
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Figure 4.12: Time evolution of atomic population in unseeded quench experiment.
Here the shaking amplitude is suddenly turn on from s = 0 nm to s = 25 nm at time t = 0.
The minima of the single particle dispersion locate at ±q = ±0.24qL. The momentum

relaxation and become negative eventually indicating hopping from ±q∗ to ∓q∗ (which is

not clearly shown here but it will become obvious at a later time).

4.7.3 Correlation in unseeded quench experiment

Beside the simulation, We have also performed experiments where no seed is applied. The

final shaking amplitude is set to s = 25 nm. Figure 4.12 shows the density distribution

〈ñq〉 in momentum space from a focused time-of-flight measurement. Here t = 0 ms is

the time when we quench on shaking. The experiments show very similar results as that

in the numerical simulation except that the momentum modes seems to be much broader.

The broadening comes from two effects: the resolution in momentum space after focused

time-of-flight and the fluctuation of the trapping potential.

The fluctuation of the trapping potential can be seen from the fact that the excitation

spectrum drifts up and down after focused time flight (see Fig. 4.13). This fluctuation

likely comes from the instability of the harmonic trap or drifting fringes from interference

between stray light. The amount of shift is on the order of 0.05qL, 15% of q∗, which is
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Figure 4.13: Fluctuation and optimization in atomic population in unseeded
quench experiment. Left: the fluctuation of atomic distribution in momentum space
from shot to shot. Right: the aligned atomic distribution in momentum space based on the
location of the center peak from BEC.
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Figure 4.14: Density-density correlation of atomic population from unseeded
quench experiment.

very significant. Therefore these fluctuations can totally smear out any correlation between

density fluctuations. To overcome this issue, we tried to align the density distribution in

momentum space from different iterations of experiment based on the center peak at q = 0.

Unfortunately, this technique does not work for the relaxation stage at later time when the

condensate would be completely depleted.

After the center alignment, we then calculate the density-density correlation as we did

earlier in the numerical simulation. Figure 4.14 shows the density-density correlation between

different momentum modes, 〈ñqñq′〉, where alignment largely improved the signal.

We then proceed to look at the correlations between density fluctuations between different
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Figure 4.15: Correlation of atomic density fluctuation from unseeded quench ex-
periment.

momentum modes, 〈δñqδñq′〉, see Fig. 4.15. This time similar correlations shows up in our

experiment as well. We can now see the clear positive correlation rising along the off-diagonal

direction, which indicate simultaneous generation of inflaton pairs. We can even see that

this positive correlation along the off-diagonal direction later decays when condensate is

significantly depleted at later time.
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CHAPTER 5

HIGH-HARMONIC GENERATION OF MATTER-WAVE JETS

High harmonic generation is an elegant phenomenon in nonlinear optics in which photon

populations are transferred to specific excited modes; it enables modern applications such

as X-ray sources [19], attosecond spectroscopy [51, 31] and frequency combs [61, 42]. The

generation of high harmonics relies on strong coherent driving the nonlinearity of the coupling

between photons and particles [15].

In atom optics, the matter-wave analog of optics, naturally inherits nonlinearity stems

from atomic interactions [90, 26]. The matter-wave versions of lasers [76, 1, 14, 48], super-

radiance [59, 78, 94], four-wave mixing [30, 102], Faraday instability [98, 34] and spin-

squeezing [43, 88], have made manifest the quantum coherence of matter waves. In par-

ticular, a sufficiently strong photon-atom scattering can generate high harmonics of matter

waves in superradiant BECs [59, 94]. Moreover, related experiments on splitting and in-

terfering a condensate [5, 49] have demonstrated and characterized high-order correlations

[44, 27, 96], akin to homodyne detection with lasers. Beyond analogies to quantum optics,

the manipulation of coherent matter waves can also offer a unique platform to simulate

large-scale [57, 99, 36] and high-energy physics [7].

We demonstrate high harmonic generation of matter waves by strongly modulating the

interactions between atoms in a Bose condensate. We have seen that matter waves emerging

from the driven condensates form jet-like emission (Bose fireworks) due to inelastic collisions

between atoms [25, 108]. Above a threshold in the driving amplitude, a quantized spectrum

of the matter-wave manifests due to bosonic stimulation, whose temporal evolution suggests

a hierarchy of the atomic emission process. By applying a pattern recognition algorithm

[40, 80] (see Sec. 5.4), we identify intriguing second- and higher-order correlations of emitted

atoms that are not obvious from individual experiments.
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Figure 5.1: The first and high harmonic generation of matter-wave jets in driven
condensates. a and b show the dispersion relation between energy E and momentum
~k = ~

(
kx, ky

)
in the dressed-state picture. c shows the average in situ image of emitted

atoms at a small modulation amplitude aac = 25 a0. The emission pattern displays a single
ring (highlighted by the black dashed circle) indicating the generation of matter-wave jets
with momentum kf . d shows two more rings (orange and green circles) in the average image
at a larger modulation amplitude aac = 45 a0. Atoms in these three rings have quantized
kinetic energy of ~ω/2, ~ω, and 2~ω respectively. The in situ images are taken at 21 ms
after the beginning of the modulation.
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5.1 Experimental setup

The experiment starts with Bose-Einstein condensates of 6× 104 cesium atoms loaded into

a uniform disk-shaped trap with a radius of 7 µm, a barrier height of h×300 Hz in the

horizontal direction and harmonic trapping frequency of 220 Hz in the vertical direction

[25], where h = 2π~ is the Planck constant. The interaction between atoms, characterized

by the s-wave scattering length a, can be tuned near a Feshbach resonance by varying the

magnetic field [20].

After the preparation, we oscillate the scattering length as a(t) = adc + aac sin(ωt) for a

short period of time τ= 5 ms with a small DC value adc = 3 a0 and a tunable amplitude

aac at frequency ω = 2π × 2 kHz. Here a0 is the Bohr radius. We then perform either

in situ imaging or time-of-flight measurement on the sample. At a modulation amplitude

aac = 25 a0 we see the emission of matter-wave jets with each atom emitted at kinetic energy

of ~ω/2, as evidenced by the velocity with which they leave the sample [25].The angles of the

emitted jets vary randomly from shot to shot, resulting in a single isotropic ring of atoms

after averaging images over many trials (Fig. 5.1c). At a larger amplitude aac = 45 a0

multiple rings form, labeled as ring 1, ring 2 and ring 4 (Fig. 5.1d). Atoms in each ring

have quantized kinetic energy of Ej = j~ω/2 = j~2k2
f/2m with j = 1, 2, and 4, where

kf =
√
mω/~ is the characteristic wave number of the jets and m is the atomic mass.

5.2 Five wave-mixing

To describe atoms with oscillating scattering length, we derive the Hamiltonian of the system.

We start with the general form of the Hamiltonian

H =

∫
d3rΨ†(r, t)

p2

2m
Ψ(r, t) +

g(t)

2

∫
d3rΨ†(r, t)Ψ†(r, t)Ψ(r, t)Ψ(r, t) +

1

µ0

∫
d3r|B(r, t)|2

(5.1)

76



√2 √3
0.5 1

20

2
0

1.5

40

60

Momentum k/kf

A
to

m
 d

en
si

ty
 (1

0 
 )3

0

2

4

6

8

A
to

m
 n

um
be

r (
10

  )3

0 2 641 3 5
Modulation time τ (ms)

0.1

1

4 8 16
 N  (10  )3

1

10

×1/2

ba

Figure 5.2: The atomic population growth in multiple rings. a A snapshot of the
population distribution in momentum space measured by the focused-TOF imaging τ = 6 ms
after the modulation starts. The cyan curve is a fit to the experimental data for k/kf > 0.85
using a combination of 4 Gaussians. The vertical dashed lines indicate centers of the Gaus-
sians, fixed at k/kf = 1 (black),

√
2 (orange),

√
3 (gray), and 2 (green), respectively. b

Extracted atom number in each ring as a function of modulation time τ . The atom number
in ring 1 (black) is scaled by a factor of 1/2. Populations in ring 2 (orange), 3 (gray), and
4 (green) start growing after ring 1 is significantly populated. Inset: atom number in ring
2, 3 and 4 as a function of atom number in ring 1 on a log-log scale. The solid lines are
the power-law fits to the data with the exponent fixed to 2. The error bars represent one
standard error.
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, where g(t) = 4π~2a(t)/m is the interaction constant, scattering length a(t) = adc +

aac sin(ωt) is from magnetic field modulation B(r, t) = Bac sin(ωt) with Bac the modulation

amplitude, and µ0 is the vacuum permeability. By applying the Fourier transformation

Ψ(r, t) =
1√
V

∑
k

eikrak (5.2)

, where V is the volume of the condensate, we obtain the Hamiltonian in momentum space

H =
∑
k

εka
†
kak +

g(t)

2V

∑
k1,k2,∆k

a
†
k1+∆ka

†
k2−∆kak1

ak2
+

1

µ0

∫
d3r|B(r, t)|2 (5.3)

.

When modulating the scattering length using magnetic field within a linear region near a

Feshbach resonance, the change of scattering length is proportional to the change of magnetic

field δa = ηδB with η a constant. As we introduce the quantization of the magnetic field,

B = i

√
~ωµ0

2V
(b− b†) (5.4)

with b (b†) the creation (annihilation) operator for a RF photon, the Hamiltonian can be

rewritten as

H =
∑
k

εka
†
kak + ~ωb†b+

∑
k1,k2,∆k

(
Aa
†
k1+∆ka

†
k2−∆kak1ak2b+ h.c.

)
, (5.5)

with coupling constant A defined by

A = i
π~2η

mV

√
2~ωµ0

V
. (5.6)

Notice that we neglect the momentum carried by the RF photon, which is eleven orders of

magnitude smaller than ~kf in our experiments. The resonant terms that satisfy energy
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conservation,

εk1+∆k + εk2−∆k = εk1 + εk2 ± ~ω, (5.7)

describe the dominant collision processes.

The Hamiltonian describes a five-wave mixing process where, by absorbing or emitting

one photon, an atom pair increases or decreases its total kinetic energy by an energy quantum

~ω.This five-wave mixing process distinguishes our system from that in twin beam generation

experiments [17, 60, 97]. In these twin beam generation experiments, atoms are first pumped

to an excited state. The excited atoms then scatter and decay into pairs of emitted atoms.

Since the pumping is a single atom process and is not phase correlated with the emission of

atom pairs, the systems are better described by the four-wave mixing. In contrast, the phase

of the driving field is directly imprinted to the phases of the scattering atoms in our system

and therefore it is better described by the five-wave mixing process although the momentum

transfer by the photon is negligible.

Based merely on the conservation of energy and momentum, the five-wave mixing can

produce atoms in a continuous spectrum of energy states. However, given bosonic stimula-

tion, we expect a quantized energy spectrum of the emitted atoms. Here starting with the

condensate, the collisions first excite atoms to ring 1. As the population in ring 1 builds

up, atoms can be further promoted to higher momentum modes through the matter-wave

mixing of the condensate and the atoms in ring 1. Because of bosonic stimulation, such

process is dominated by scattering involving three macroscopically occupied modes and the

fourth unoccupied mode with higher energy. Therefore a hierarchy of stimulated collisions

is expected. From energy conservation Eq. (5.7), atoms in the fourth mode acquire discrete

energies Ej = j~ω/2 with j = 2, 3, 4, ..., analogous to the photon spectra from high harmonic

generation.
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5.3 Hierarchy of stimulated collisions

We further inspect the evolution of atomic population in each ring using time-of-flight imag-

ing [36]. Figure 5.2a shows an example of the momentum distribution after modulating the

scattering length for τ = 5 ms. Beside the distinct peaks at |k| = kf ,
√

2kf and 2kf , which

are apparent from in situ images (Fig. 5.1), we also detect a much weaker peak at |k| =
√

3kf (ring 3). We fit the density distribution using a combination of four Gaussians with

fixed central positions and widths. These central positions and widths are extracted from the

data after a long-time strong modulation, where different rings are maximally populated by

stimulated emission in order to achieve the best accuracy. During this process, the centers

and widths of the four Gaussians are fitting parameters as well.

Populations in all four rings initially show a fast exponential growth and then gradually

saturate afterward (Fig. 5.2b). The population growth of rings 2, 3 and 4 are delayed with

respect to that of ring 1. Furthermore, we observe that the populations in higher-order rings

are proportional to the square of the population in ring 1, Nj ∝ N2
1 with j = 2, 3 and 4

(Fig. 5.2b inset). Because the population grows exponentially, this relation is equivalent

to Ṅj ∝ N2
1 , which suggests that the production of atoms in the these rings involves two

modes in ring 1. This observation is in agreement with a perturbative model in Sec. 5.5. We

thus consider these processes as secondary collisions, which occur after ring 1 is populated

by primary collisions. To gather more information about these secondary collisions, we look

into the detailed structure of the emission pattern using a pattern recognition algorithm.

5.4 Pattern recognition

Beyond the population growth, emissions from secondary collisions display a wealth of in-

triguing angular structures (Fig. 5.3a) that are not obvious from the average image. To

investigate these structures, we employ a pattern-recognition algorithm based on unsuper-

vised machine learning, which does not require labeled training data. This ensures no human
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Figure 5.3: Pattern recognition and microscopic interpretation. a Examples from a
dataset of 209 raw images (top). The bottom row shows the corresponding rotated images
that maximize the angular variance of the mean image. b The average of all 209 images
after individual rotations, showing the resulting pattern Φ. Besides the bright center spot
corresponding to the remnant condensate, ten more distinct spots emerge in an angular-
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bias to the final recognized common pattern. To identify the key features from the images,

the algorithm minimizes a loss function that favors the common pattern by adjusting the

orientation of each individual image.

5.4.1 Pattern recognition algorithm

To explain the implementation, we can consider each image a combination of several common

patterns that are randomly rotated and contribute to the image with different weights. This

randomness results isotropic rings in the average image. To make the pattern stand out,

we align the strongest component while the rest average to a smooth background. This

alignment can be achieved by maximizing the angular variance of the average image after

rotation. Thus we can define the loss function as the negative of the angular variance.

We can simplify the calculation of the angular variance by incorporating the rotation

symmetry of our system. Since the emitted atoms that contain essential information of the

pattern form quantized rings, each image Ii can be faithfully represented by the angular

density of rings {n(i)
1 (θ), n

(i)
2 (θ), n

(i)
4 (θ)}. Here the angular density of each ring is given by

the integral over the radial direction n
(i)
j (θ) =

∫ Rj+σ
Rj−σ n

(i)(r, θ)dr, with Rj the center of

the ring and σ the 1/e width of the ring, which is 7 µm in this experiment. Note that we

exclude ring 3 due to its low signal level. We then apply a rotation to each individual image

with an angle θi, thus the angular density becomes {n(i)
1 (θ + θi), n

(i)
2 (θ + θi), n

(i)
4 (θ + θi)}.

The random rotation angle θ1 for the first image is fixed during the following optimization

process, which breaks the rotational symmetry and orient the recognized pattern. According

to our definition, the loss function L({θi}) is given by

L({θi}) =

{1,2,4}∑
j

Lj({θi}), (5.8)
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, where

Lj({θi}) = − 1

2π

∫
dθ

 1

M

M∑
i=1

n
(i)
j (θ + θi)− n̄j

2

(5.9)

with

n̄j =
1

M

M∑
i=1

1

2π

∫
dθn

(i)
j (θ + θi) (5.10)

and M = 209 is the number of images in our dataset. It is easy to see that n̄j is a constant

independent of {θi}. We use a derivative-free search algorithm to find local minima of the

loss function L({θi}). All the local minima yield similar and robust emission patterns shown

in Fig. 5.3c.

5.4.2 Results

This robust and intriguing pattern Φ in the jet emission contains multiple distinct spots

at non-zero momenta on top of angularly uniform rings 1, 2 and 4(Fig. 5.3b). These spots

arise from a characteristic arrangement of jets which repeatedly appears across many images.

Since the condensate has rotational symmetry, instances of this arrangement are randomly

oriented in each trial, but the strongest instance in each image is identified and aligned by

our algorithm. To better characterize these features, we extract the mean angular density

n̄j(α) for each ring with α the relative angle to the brightest spot in ring 1 (Fig. 5.3c). In this

way, we convert the pattern into a series of angular density plots with a flat background and

clear peaks representing the spots. This flat background arises from averaging the weaker

jets, whose orientations are uncorrelated with the pattern Φ. Since we observe no discernible

features from ring 3, in the following we focus on those from rings 1, 2, and 4.

Beside the results shown in Fig. 5.3, we also find similar but different patterns when

defining the loss function only based on single ring j. The pattern obtained based on ring

1 is very similar to that shown in Fig. 5.3C (Fig.5.4a). These patterns obtained based on

ring 2 or ring 4 show much brighter spots in the associated rings. These pattern contain

83



0

40

60

80

100

20

0 36027018090
0

40

60

80

100

20

0

40

60

80

100

20

Angle α (º) 

M
ea

n 
an

gu
la

r d
en

si
ty

 n
j (α

)
M

ea
n 

an
gu

la
r d

en
si

ty
 n

j (α
)

M
ea

n 
an

gu
la

r d
en

si
ty

 n
j (α

)

a

b

c

α

α

α

Ring 1

24

20µm

Mean density  n                  (µm  )-2
0 4 8 122 6 10

Figure 5.4: Pattern recognition based on individual rings. Left column: the pattern
that show up in average image after application of pattern recognition algoritm respectively
to ring 1 a, ring 2 b and ring 4 c. Right column: the corresponding avearge angular density
regarding to each ring in the pattern image, where angle α is defined relative to the brightest
spot in ring 1, ring 2 and ring 4 respectively.

84



information about density-density correlations, which are addressed in detail in Sec. 5.6.

In particular, the angular density n̄2 in Fig.5.4b (n̄4 in Fig.5.4c) is analogous to the auto-

correlations g
(2)
22 (g

(2)
44 ). Additionally, the angular densities n̄1 and n̄4 (n̄1 and n̄2) reflect the

cross-correlations g
(2)
12 and g

(2)
24 (g

(2)
14 and g

(2)
24 ).

Excluding the uniform background, we find that the concurrence of multiple spots in the

pattern Φ points to particular scattering processes populating the corresponding momentum

modes. As the first example, two strong peaks in ring 1 (α = 0◦ and 180◦) come from primary

collisions of two condensate atoms, which absorb one energy quantum and are scattered into

opposite directions with momentum ±~kf , shown in Fig. 5.3d.

Following the primary collisions, which are equally likely to emit back-to-back pairs of

jets in any direction, strongly stimulated secondary collisions occur that preferentially emit

jets in particular directions relative to the primary jets. Although there are many secondary

collision processes that satisfy energy and momentum conservation, a small number of them

involving three macroscopically occupied modes dominates over others. This is a result

of Bosonic stimulation, which enhances the rate of scattering processes involving highly

occupied modes. The appearance of discrete secondary jets is analogous to optical parametric

amplification in a non-linear medium.

These dominant secondary collisions induce eight additional peaks in total among the

three rings in the pattern. The four peaks in ring 2 (at α = 45◦, 135◦, 225◦ and 315◦) and

two peaks in ring 1 (at α = 90◦ and 270◦) arise from the collisions between an atom from

ring 1 and another atom from the condensate. One example of such collisions is illustrated

in Fig. 5.3e, where a pair of atoms populate two specific modes at α = 45◦ in ring 2 and

at α = 270◦ in ring 1 by absorbing one photon. This collision process is highly stimulated

because it involves three atoms from modes which are already macroscopically occupied;

one atom comes from the condensate and two atoms come from jets produced in primary

collisions. Another highly stimulated secondary collision process, shown in Fig. 5.3f, can

explain the origin of the two peaks in ring 4. Here two co-propagating atoms from ring
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1 collide; one atom is promoted to ring 4 and the other returns to the condensate. For a

detailed comparison of these processes to other possible secondary collisions (see Sec. 5.5).

5.5 Perturbation theory

In this section, we develop a perturbation treatment on the exponential growth of the atomic

population into the stimulated momentum modes from Eq. (5.5). Here we transfer the

operators for atoms and photons into a rotating frame with ak → ake
iεkt/~ and b → beiωt,

and ignore the fast varying terms, the Hamiltonian becomes

Hint =
∑

k1,k2,∆k

(Aa
†
k1+∆ka

†
k2−∆kak1

ak2
be−iδt + h.c.), (5.11)

with δ = (εk1+∆k + εk2+∆k − εk1
− εk2

− ~ω)/~. When δ = 0, the corresponding term in

the Hamiltonian is on resonance satisfying energy conservation.

For simplicity, we treat the operators b and b† for RF photons as C-numbers and assume

the condensate is far from depletion (Bogoliubov approximation). By only considering the

resonant interaction terms, we simplify the Hamiltonian to

Hint = ~ν
∑

k1,k2,∆k

(a
†
k1+∆ka

†
k2−∆kak1

ak2
+ h.c.), (5.12)

with ν = 2π~aac
mV . We inspect the equation of motion for ak1+∆k,

iȧk1+∆k = ν
∑

k2,∆k

a
†
k2−∆kak1

ak2
, (5.13)

where all the energy-and-momentum conserved collisions contribute to the the population

growth of mode k1 + ∆k. However, these collisions do not contribute equally. Collision

processes are more dominant when they involve more macroscopically occupied modes. Here

we study the terms that describe dominant collision processes corresponding to our identified
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Figure 5.5: Dominant momentum modes after primary and secondary collisions.
Here momentum modes ka, kb, kc, and kd in ring 1 are from the primary collisions. Modes
kα, kβ , kγ and kε in ring 2, and modes kI and kII in ring 4 are from secondary collisions

pattern Φ (Fig. 5.5).

First of all, we consider the primary collisions, the two modes ka and kc are simulta-

neously occupied due to stimulated inelastic scattering. The primary interaction terms in

Hamiltonian is given by

HP = ~νa†aa
†
ca0a0 + h.c.. (5.14)

As a result, the corresponding equations of motion are

iȧka = νa
†
kc
ak0

ak0
, (5.15)

iȧkc = νa
†
ka
ak0

ak0
. (5.16)

We solve these equations analytically and obtain

aa(t) = aa(0) cosh(γτ)− ia†c(0) sinh(γτ), (5.17)

a
†
c(τ) = a

†
c(0) cosh(γτ) + iaa(0) sinh(γτ). (5.18)
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where we have applied the Bogoliubov approximation a0 ≈ a
†
0 ≈
√
N0 and define γ = νN0

with N0 the total number of atoms in the condensate. Thus the population in ring 1 grows

as

〈a†a(τ)aa(τ)〉 = 〈a†c(τ)ac(τ)〉 = sinh2(γτ), (5.19)

assuming that the initial population is zero. Similar solutions also apply to modes kb and

kd although they are not correlated to modes ka and kc.

We then proceed to the secondary collisions which involves atoms generated from primary

collisions. For ring 2, the dominant interaction terms in the Hamiltonian involving all the

eight modes in ring 1 and 2 (Fig. 5.5) are given by

HS1 = ~ν(a
†
αa
†
daaa0 + a

†
εa
†
baaa0 + a

†
βa
†
aaba0 + a

†
αa
†
caaa0

+a
†
γa
†
baca0 + a

†
βa
†
daca0 + a

†
εa
†
cada0 + a

†
γa
†
aada0 + h.c.). (5.20)

For convenience, we first check the equation of motion for aα, which gives

iȧα = ν(a
†
daa
√
N0 + a

†
cab
√
N0) (5.21)

under Bogoliubov approximation. Assuming that aa, ab, ac and ad are unaffected by the

secondary collisions, we insert Eq. 5.17 and 5.18 into 5.21, and get the perturbative solution

for population in ring 2,

〈a†α(τ)aα(τ)〉 = 〈a†β(τ)aβ(τ)〉 = 〈a†γ(τ)aγ(τ)〉 = 〈a†ε(τ)aε(τ)〉 =
1

2N0
sinh4(γτ). (5.22)

For the generation of population in ring 4, the relevant interaction terms in the Hamil-

tonian are given by

HS2 = ~ν(a
†
Ia
†
0aaaa + a

†
IIa
†
0acac + h.c.). (5.23)

Following the same procedure, we get the equation of motion for aI ,
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iȧI = νa
†
0a

2
a = ν

√
N0a

2
a. (5.24)

Based on the same approach, we obtain

〈a†IaI〉 = 〈a†IIaII〉 =
1

8N0
[sinh(2γτ)− 2γτ ]2. (5.25)

It is easy to find N2 ∝ N2
1 from Eqs. (5.19) and (5.22), where N1 is the total population

in ring 1 coming from modes like ka, kb, kc and kd, and N2 is the total population in ring

2 resulting from modes like kα, kβ , kγ and kε. When the driving time τ is long compared

to 1/γ, we can see that

lim
τ→∞

〈a†α(τ)aα(τ)〉 = lim
τ→∞

〈a†I(τ)aI(τ)〉 =
1

32N0
e4γτ . (5.26)

This indicates N4 ≈ N2 ∝ N2
1 which is consistent with our experimental observations shown

in Fig. 2B, where N4 is the total population in ring 4 coming from modes like kI and kII .

There are also weaker secondary collisions beside the dominant processes described above.

One example is the generation of ring 3 where two atoms from ring 1 in the same angular

mode collide. The collision process scatter one atom to ring 3 with momentum ~
√

3kf and

another back to ring 1 at angles of 30◦ and -60◦ relative to the initial momentum mode

respectively. Due to limited signal level in the population of ring 3, we do not perform

quantitative study in this work. Finally, as modes involved in secondary collisions become

macroscopically occupied, we anticipate occurrence of tertiary collisions which shall enable

generation of even higher harmonics.
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Figure 5.6: Second-order correlations of emitted matter-wave jets. The second-order

correlation functions g
(2)
ij (φ) within and between rings with i(j) =1, 2 or 4.

5.6 Density-density correlation

In our experiment, we measure the density distribution in the momentum space and calculate

mth-order density correlation between m different momentum modes defined as

g
(m)
j1,j2,...,jm

(φ12, ..., φ1m) =
〈nj1(θ)

∏m
k=2 njk(θ + φ1k)〉

〈nj1(θ)〉
∏m
k=2〈njk(θ + φ1k)〉

, (5.27)

where jk = 1, 2 or 4 is the ring number for the k-th mode and φ1k is the relative angle

between 1st mode and k-th mode. Here the 〈.〉 represents angular averaging over θ, followed

by ensemble averaging over images. When g(m) > 1, the m modes {njk(θ + φ1k)} are

correlated.

This density-density correlation can also serve as a further support to the dominant

microscopic collision processes implied by the pattern Φ. First we calculate the second-order
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Figure 5.7: Third- and eighth-order correlations of emitted matter-wave jets. a

shows the third-order correlations g
(3)
124(φ12, φ14) and the connected part g̃

(3)
124(φ12, φ14). Here

φ12 (φ14 ) are the relative angles between atoms in ring 1 and 2 (4), shown in the left

figure. The extended weak correlations across the peaks in g̃
(3)
124(φ12, φ14) indicate a relation

between small angular deviations δφ12 = 2δφ14 (see white-dashed line as an example). b

shows the eighth-order connected correlation function g̃(8)(φ1, ..., φ7). We choose a primary
jet direction in ring 1 as the reference and show the connected correlation as a function of
seven angles relative to the locations of seven bright spots in pattern Φ: one in ring 1 (at
180◦, black), four in ring 2 (at 45◦, 135◦, 225◦ and 315◦, orange), and two in ring 4 (at 0◦

and 180◦, green). The correlation is shown on seven vertical planes. Within each plane, only

one of the seven angles is varied. The connected g̃(8) reaches 12 and decays rapidly to zero
as the angles increase, suggesting a peak in the 7-dimensional space. Here solid lines are
spline fits to guide the eye.
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correlation function g
(2)
ij (φ) between momentum modes in ring i and ring j, namely,

g
(2)
ij (φ) =

〈ni(θ)[nj(θ + φ)− δijδ(φ)]〉
〈ni(θ)〉〈nj(θ + φ)〉

, (5.28)

where ni(θ) is the angular density in ring i at angle θ, δij is the Kronecker delta, and δ(φ)

is the Dirac delta function. The angle brackets correspond to angular averaging over θ,

followed by ensemble averaging over raw images.

All of the second-order correlations involving momenta on the dominant rings display

multiple peaks (Fig. 5.6). The results are in full consistency with the spots in the pattern Φ

and the collisional processes that we identify. In particular, we can associate all the peaks

in g
(2)
22 and g

(2)
12 with the process shown in Fig. 5.3e, where jets in ring 2 are created at ±45◦

relative to the primary jets. The peaks in g
(2)
44 and g

(2)
14 are associated with the process in

Fig. 5.3f, where jets are created along the direction of the primary jets.

We also find four peaks in the cross-correlation between rings 2 and 4. To the best of our

knowledge, these correlations cannot come directly from a single secondary collision process.

Instead, they could result from the concurrence of two secondary collision processes. Such

correlation develops since both processes involve the same macroscopically-occupied modes

in ring 1 and the condensate.

We further investigate such indirect correlation by calculating the high-order correlation

function. Simple density-density high-order correlation, however, may not offer more in-

formation about how different modes are correlated with each other than the lower-order

correlations. For example, let’s see the third-order correlation function g
(3)
124(φ12, φ14). As-

suming that n2(θ + φ12) and n4(θ + φ14) are correlated but neither of them is correlated to

n1(θ), we have

〈n1(θ)n2(θ + φ12)n4(θ + φ14)〉 = 〈n1(θ)〉〈n2(θ + φ12)n4(θ + φ14)〉. (5.29)
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Consequently, the third-order correlation reduces to the second-order correlation,

g
(3)
124(φ12, φ14) =

〈n1(θ)〉〈n2(θ + φ12)n4(θ + φ14)〉
〈n1(θ)〉〈n2(θ + φ12)〉〈n4(θ + φ14)〉

=
〈n2(θ + φ12)n4(θ + φ14)〉
〈n2(θ + φ12)〉〈n4(θ + φ14)〉

= g
(2)
24 (φ12 − φ14). (5.30)

In order to obtain how genuinely m modes are correlated to each other, we extract the

connected correlation function g̃(m) by subtracting the contributions from all the lower-order

correlations [96],

g̃(m) = g(m) − g(m)
dis , (5.31)

where g
(m)
dis is the disconnected contains redundant information from all lower-order correla-

tions. According to (24, 38), gmdis is given by

g
(m)
dis =

1∏
k=1〈njk(θ + φ1k)〉

∑
Λ

(NΛ − 1)!(−1)NΛ−1
∏
B∈Λ

〈
∏
k∈B

njk(θ + φ1k)〉

 . (5.32)

Here the sum
∑

Λ runs over all possible partitions Λ of {1, 2, . . . ,m} with the number of

blocks B larger than 1, the first product in the square brackets runs over all blocks of the

partition and the second product runs over all elements k in the block; NΛ is the number of

blocks in the partition. We have absorbed nj1(θ) into the product with φ11 = 0.

As a result, we can obtain the connected third-order correlation function. The distinct

peaks in the connected third-order correlation reveals genuine bunching of the population

fluctuations at specific angles in all three rings. In addition, we observe extended weak

correlations along lines across the peaks, which relate the angular deviations δφ12 ≈ 2δφ14

(see Fig.5.7a). We attribute such weak correlations to a Raman-like collision process that

couples these three momentum modes by absorbing two energy quanta from the modulation

field (see Sec. 5.7).
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Beyond third-order correlations, high harmonic generation can induce even higher order

correlations. An example shown in Fig. 5.7b is the connected eighth-order correlation.

Plotted in the seven-dimensional space spanned by the angular deviations, a prominent

peak appears when the angles match the bright spots in our pattern Φ.

Our experiment shows that bosonic stimulation in a driven system can connect different

momentum modes in a strongly correlated manner. While other ways exist to generate high

harmonics of matter waves, such as atom-photon superradiance [59, 94] or strong Bragg scat-

tering [12], our system is unique in the formation of symmetry-breaking correlations between

harmonics by stimulated scattering of matterwaves. This observation suggests a novel way

to prepare highly correlated systems for applications in quantum simulation and quantum

information. In addition, the implementation of the pattern recognition can inspire further

applications of machine learning to understand complex dynamics of quantum systems.

5.7 Effective three-body collision revealed by correlation

function

In this section, we inspect the connected third-order correlation function g̃
(3)
124 in detail and

find weak correlations along lines across the peaks in Fig. 5.7a. We found that these lines are

mainly due to effective three-body collisions where the atoms interact with the modulation

field twice through an intermediate state, similar to the Raman transitions in quantum

optics. To see this, we derive the effective Hamiltonian that describes this process.

We follow the derivation from the Hamiltonian with five-wave mixing and start with

Hint(t) = ~ν
∑

(a
†
k1+∆ka

†
k2−∆kak1

ak2
e−iδt + h.c.). (5.33)

When δ 6= 0, the corresponding term in the Hamiltonian is off resonant and such direct

collision is not allowed. However, two such off-resonant terms can potentially cancel the

detuning together to yield a resonant coupling in a time averaged Hamiltonian.
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To perform this time averaging, we first look at the time evolution operator U(t) that

satisfies

i~
∂U(t)

∂t
= H(t)U(t). (5.34)

When H(t) is changing rapidly in time, we can average the overall evolution operator and get

rid of the rapid oscillating terms to gain physics at slow time scale under adiabatic elimina-

tion. Thus we define a time average function F (t) with peaks at t = 0 and
∫
dtF (t) = 1 that

spans over a short period of time. The detail form of F (t) is not important. Therefore the av-

erage evolution operator U(t) is U(t) =
∫
dt′F (t− t′)U(t′) ( Schrieffer-Wolff transformation)

and the equation of motion becomes

i~
∂

∂t
U(t) = H(t)U(t). (5.35)

Effectively, we expect the equation of motion to be i~ ∂∂tU(t) = Heff (t)U(t). As a result, the

general form of the effective Hamiltonian after time averaging is

Heff (t) = H(t)U(t)
[
U(t)

]−1
. (5.36)

By expanding this effective Hamiltonian only to the first order, we have the result of

Heff (t) = H(t) +
1

2

(
[H(t), U1(t)]−

[
H(t), U1(t)

])
, (5.37)

with U1(t) = 1
i~
∫ t

0 dt
′H(t′).

As an particular example shown in Fig. 5.8, we are interested in the line across the peak

at (φ14, φ12) = (0◦, 135◦). Here the angle deviations from the peak position are defined as

δφ14 and δφ12 respectively. The line gives δφ12 ≈ 2δφ14 that is universally true close to

every peak. The two responsible secondary collisions are shown in Fig.5.8b. When both of

the collisions are on single-photon resonance, they can happen simutaneously and directly
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Figure 5.8: Thin correlation lines in third-order correlations g̃
(3)
124. a shows thin lines

across the peaks in the connected third-order correlation g̃
(3)
124 from our measurement. One

example is illustrated with white dashed line across the peak position (φ14, φ12) = (0◦, 135◦).
The angle deviations are defined as δφ14 and δφ12, respectively. b illustrates an exemplary
two-step collision process that generates a pair of atoms in ring 2 and 4 from two atoms
in ring 2 in single-photon resonant way. Here |k⊥| = |k‖| = |k′‖| = kf , |kd| =

√
2kf and

|kh| = 2kf . Each step conserves energy and momentum. c presents the Raman process
responsible for the thin line, where each step is slightly off resonant but the whole process
conserves energy. Here each step still satisfies momentum conservation and δφ11 is the angle
deviation of k⊥ from its resonant orientation. d shows the phase-matching condition for the
effective three-body collision.
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contribute to the peak. When individual collision is off-resonant, they have to happen in a

sequential manner to form resonant Raman coupling shown in Fig.5.8c.

Following the primary collisions, the Hamiltonian involving these momentum modes is

written as

Hint = ~ν(e−iδta†kd
a
†
k′‖
ak⊥a0 + eiδta

†
kh
a
†
0ak‖ak′‖

+ h.c). (5.38)

Plugging this in to Eq. 5.37, we get the effective Hamiltonian,

Heff = −~ν
2

δ
(a
†
kh
a
†
kd
a
†
0a0ak⊥ak‖ + h.c). (5.39)

which shows an effective three-body interaction. To explain in detail in Fig.5.8d, we can

assume small perturbations so that |k⊥| = (1−ε)kf with angle deviation of δφ11, kd deviate

from its original angle by δφ12 with the length of the vector unperturbed, and kh deviate from

its original angle by δφ14. For simplicity, we also assume that the intermediate |k′‖| = kf ,

therefore k′‖ deviates from the horizontal direction by 2δφ14 and |kh| = 2 cos(δφ14)kf as a

result of momentum conservation in the second step. Due to total energy conservation for

the two-step process, the detuning for the first step δf =
~2k2

f
2m [1 − (1 − ε)2] should cancel

the detuning for the second step δs = −
2~2k2

f
m [1− cos2(δφ14)]. Thus we have

cos(2δφ14) =
1

2
[1 + (1− ε)2]. (5.40)

Further considering the momentum conservation in the first step, we obtain two equations

from horizontal and vertical component respectively,

−(1− ε) sin(δφ11) =
√

2 cos(135◦ + δφ12) + cos(2δφ14) (5.41)

(1− ε) cos(δφ11) =
√

2 sin(135◦ + δφ12) + sin(2δφ14). (5.42)
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Figure 5.9: Secondary collision process promoting atoms to ring 2. a and b show
two equally stimulated processes that promote atoms to ring 2 while merely change atomic
distribution in ring 1 when combined.

Based on Eqs. (5.40), (5.41) and (5.42), we have

δφ12 = 2δφ14 + arcsin[
2− cos(2δφ14)√

2
]− 45◦. (5.43)

For small angle deviations δφ12 ≈ 2δφ14 agrees with the line in the third-order correlation

function in Fig. 5.7a.

5.8 Further discussion

According to our theory, the dominant stimulated process for generating such weak peaks

is illustrated in Fig. 5.8e, with the stimulation rate ∝
√
N0N1. We emphasize this process

in Fig. 5.9a. Here one forward-going atom in ring 1 collides with one condensate atom,

and such a collision promotes one atom 45 degree off axis to ring 2 and puts another atoms

back to ring 1 at -90 degree. Following a direct intuition based on only this process, since

we populate 4 modes in ring 2 while simultaneously populating only 2 mode in ring 1, one

would expect the peak at 90 and -90 degrees in ring 1 to be twice as high as that in ring 2.

However, there is another equally stimulated process that depopulates the mode at 90

and -90 degrees in ring 1 simultaneously, which is shown in Fig. 5.9. Here the collision takes

an atom going along -90 degrees in ring 1 and a condensate atoms and promotes one of them
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to ring 2 at 225 degree while putting the other back to ring 1 at 0 degree. This process is

equally strongly stimulated with stimulation rate ∝
√
N0N1 and consumes the atoms at -90

degree in ring 1. Therefore, on average the population in the momentum modes at -90 and

0 degrees should not be changed in the end. Based on this reasoning, one would not expect

to see any peak at all. We still see a very weak peak in the pattern at 90 degrees because

our algorithm aligns the four most largely populated modes in ring 2. These most largely

populated modes have to require more population at 90 and -90 degrees than the average in

ring 1 in order to most strongly stimulate the corresponding scattering processes.
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CHAPTER 6

DENSITY WAVES AND JET EMISSION ASYMMETRY IN

BOSE FIREWORKS
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Figure 6.1: The real space density distribution n(r) as a comparison between ex-
perimental data and simulations. In both, the modulation frequency ω/2π is 2 kHz, the
DC and AC interaction energies respectively are U0n0 ≈ h×40 Hz, and U1n0 ≈ h×480 Hz,
where h is Planck’s constant (see the main text for detailed definitions). As a function of
modulation time t, the system exhibits three phases: density waves in a confined condensate
(blue box), near-field emission (orange box) and far-field emission (red box).

In the present chapter we study the full dynamics throughout the emission of matter-wave

jets starting from its initial generation within the condensates in both from experiment and

theory. In experiment, we implement a low frequency driving such that features of density

wave at the length scale λ ∼ 1/kf become visible given the imaging resolution. In theory use

the time-dependent Gross-Pitaevskii (GP) equation to study the evolution of the modulated

BEC and the emission of jets. We shall show that the simulations agree well the “Bose

fireworks” dynamics seen in experiments. In combination with a new set of experiments, we
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identify a previously unobserved early stage of the time evolution. Particularly, immediately

after the onset of modulation, we observe that density waves emerge and grow rapidly within

the condensate. The density waves display a high degree of disorder, reflecting quantum

fluctuations which we model with a very small random noise term.

This feature of density modulation connects Bose fireworks to the general category of

parametric resonances [71, 67, 18], where the density waves set up an effective, self consis-

tently produced “grating” which, through feed-back effects, resonantly amplifies their pattern

[59]. This process proceeds until pairs of jets (having wavenumber determined by [25, 37]

the modulation frequency ω.)are ejected in opposite directions.

In addition to the new observation of density modulation prior to jet emission, we further

address the pair-wise correlations. Within these pair-wise correlations, there remains a

quantitative asymmetry that has attracted attentions in condensed matter [108] and high-

energy physics [7]. We shall see that it can be explained by jet interference in near or far

field in the following sections.

In all, we shall focus on two important results: first, we show that the density wave pattern

underlies the jet-emission process, and second, we provide a quantitative understanding of

the puzzling asymmetry in the emission pattern. Figure 6.1 summarizes the full evolution

of the system and shows good agreement between our simulations and experiment. Three

distinct regimes of the Bose fireworks can be identified: the early density wave (DW) regime,

the initial emergence of jets (called the “near-field emission”) and the well established jet

emission regime (called the “far-field emission”). In the near field stage the excited modes

begin to leave the condensate while still substantially overlapping with each other. After a

sufficiently long time, the matter-wave jets become well separated in the far field and the

observed density profiles primarily reflect the populations in momentum-space.
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6.1 Observation of density wave at early stage

We begin with the investigation of the early-stage density waves. Figure 6.6 presents

the experimental observation of the emergence of density waves along with the numeri-

cal simulation. The experiments begin with a Bose condensate of 4 × 104 cesium atoms

prepared in a uniform disk-shaped trap with a radius of 13µm (see Ch. 5 for experi-

mental details). The trap has a potential barrier of height h × 200 Hz in the horizon-

tal direction (h is the Planck constant) and is harmonic vertically with a frequency of

220 Hz. By modulating the magnetic field near a Feshbach resonance, we make the scat-

tering length oscillate as a(t) = adc + aac sin(ωt) with a small offset adc = 4a0 and large

amplitude aac = 40a0 at frequency ω/2π = 620 Hz that gives a detectable length scale of

λ = 2π/kf = 2π/
√
mω/~ ≈ 2.2 µm within our imaging resolution.

After modulating the interaction for time t, we perform in situ imaging and observe

density waves forming within the condensate prior to jet emission. Figure 6.2 and 6.3 shows

snapshots of the condensate density distribution n(r). This density wave quickly emerges

and oscillates with time as the modulation of interaction turned on at t = 0 ms. To

see this dynamics more clearly, we perform the Fourier transform of the condensate density

ñ(k) = (2π)−1
∫
dre−ik·rn(r), shown in Fig. 6.4 and Fig. 6.5. To be more quantitative, we

extract the density wave amplitude Akf = n−1
0

∫
|k|=kf dk |ñ(k)| from the Fourier transform

ñ(k), see Fig. 6.6b. Here kf =
√
mω/~ is the wavenumber of the density wave determined

by the parametric resonance condition; n0 is the average density of the static condensate

prior to interaction oscillations; m is the boson mass; and ~ is the reduced Planck constant.

Interestingly, this density wave amplitude exhibits fast oscillation under a slowly growing

envelope.

We note that this density wave pattern is reminiscent of Faraday waves in classical fluids

[77, 110] and related to that predicted for driven atomic gases [98, 62, 84, 8] as well as observed

in a one-dimensional condensate [34]. In contrast to classical Faraday waves our system does

not spontaneously exhibit three-fold or higher symmetries since it is well captured by the
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Figure 6.2: Emergence of density wave (DW) at early-stage with |k| = kf -Part I.
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Figure 6.3: Emergence of density wave at early-stage with |k| = kf -Part II.
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Figure 6.4: Fourier spectrum of the density modulation-Part I. The Fourier spectrum
of the density wave is extracted directly from the Fig. 6.2 with fast Fourier transform.
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Figure 6.5: Fourier spectrum of the density modulation-Part II. The Fourier spec-
trum of the density wave is extracted directly from the Fig. 6.3 with fast Fourier transform.
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Figure 6.6: Experiment and simulation comparison for early-stage density waves
(DW) with |k| = kf . a The real-space DW oscillations inside the condensate. Theory
(top) and experiment (bottom) show good qualitative agreement. The experiment exhibits
additional static, long-wavelength density modulations due to trap imperfections. The ex-
perimental details are provided in the main text. b The amplitude of the density waves in
the primary mode comparing simulations (red solid line) and experiments (blue dots with
error bars). In addition to fast oscillations, both results show consistent observation of an
exponential growth of the envelope until the matter-wave jets are emitted from the conden-
sate.
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GP equation (see Sec. 6.2). These symmetries are expected to arise from nonlinear kinetic

terms in the hydrodynamic equations of motion [77, 110], which are not present in the GP

equation.

6.2 Time-dependent Gross-Pitaevskii (GP) simulation

Our theoretical approach is based on a dynamical GP equation:

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + V (r) + U0|ψ|2 − µ

]
ψ

+ U1 sin(ωt)|ψ|2ψ,
(6.1)

where ψ is the wavefunction, µ = U0n0 is the chemical potential of the static condensate,

V (r) is the external trap potential, and r = (x, y) is a two-dimensional (2D) spatial coordi-

nate (with origin at the trap center). In addition, U0 = 4π~2adc/m and U1 = 4π~2aac/m

are the DC and AC interaction strengths, respectively. At short times, the condensate is

weakly excited and the wavefunction can be linearized [98, 62]

ψ = ψ0 [1 + ν(r, t)] , (6.2)

where ψ0 =
√
n0 exp [iU1n0 cos(ωt)/~ω] is the wavefunction of a uniform BEC, and U0 has

been absorbed through the parametrization in Eq. (6.1). Since the characteristic DW length

scales are much smaller than the trap size, we ignore trap effects in our analytical approach.

In the plane wave basis we write ν(r, t) = [ξ(t) + iζ(t)] cos(k · r +ϕ) with both ξ(t) and ζ(t)

real and ϕ a random phase. Since |ν| � 1, ξ satisfies the Mathieu equation for parametric

resonances:

∂2ξ

∂t2
+ Ω2 [1 + α sin(ωt)] ξ = 0, (6.3)

and ζ satisfies the same equation with an extra term −αω cos(ωt)∂ζ∂t on the left hand side.

Here we keep only leading terms in α; Ω2 = ~2k4/4m2 +U0n0k
2/m, and α = U1n0k

2/mΩ2.
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The solution of Eq. (6.3) is ξ(t) ≈ A+ cos(ωt/2+ϑ+) exp(λ+t)+A− sin(ωt/2+ϑ−) exp(λ−t).

Here A± are numerical coefficients, and the exponents are

λ± = ±
√
α2Ω2

16
−
(

Ω− ω

2

)2
. (6.4)

The solution exhibits both subharmonic oscillations with half the driving frequency ω and

an exponential envelope growth (via λ+). For U0 ≈ 0 as in experiments, the resonance with

maximal λ+ occurs at k = kf . At this point, ϑ± ≈ 0, and ζ(t) ≈ −A+ sin(ωt/2) exp(λ+t) +

A− cos(ωt/2) exp(λ−t).

The interference between the uniform background and the excitations then gives the

density n(r) = n0|1 + ν(r, t)|2 ≈ n0 [1 + 2ξ(t) cos(k · r + ϕ)], leading to the density waves of

exponentially growing envelope that we report here. To provide the full dynamical evolution

and to include trap effects, we next appeal to the more complete numerical simulations of

the GP equation.

Our simulations are 2D and incorporate a ring trap with inner and outer radii Rin and

Rout, respectively. We choose V (r) = V0 for Rin < r < Rout and zero elsewhere. V0 is

taken to be compatible with experiment, Rin is taken to be the condensate radius, and, as

in experiment [25], Rout ≈ 1.5Rin. We use a CUDA-based GP equation solver [93, 2], imple-

mented on graphic processing units, based on a split-step algorithm. At t > 0 we introduce a

periodic oscillation of the two-body interaction term. Given the same experimental parame-

ters, the corresponding results from GP simulation agree very well with emergence of density

wave in our experiment shown in Fig. 6.7. This great agreement proves that our method

can faithfully captures the dynamics of the driven condensates. With more comprehensive

information about the dynamics from the simulation, we can gain further intuitive physical

understandings.

It should be noted that the exponents in Eq. (6.4) coincide with those derived in Ch. 5

for the matter-wave jets. This suggests that the two forms of excitations are manifestations

109



Á
S(

k f
,

) (
10

  )3

a

b

N
(Á)/N0

0

0.2

0.3

0.1

0

5

10

15

kf
2¼

ħkf

ħkf
Early time Long time-of-flight

0 ¼/2 ¼ 3¼/2 2¼

Figure 6.7: Connection between density waves before jet emission and the subse-
quent matter-wave jet pattern. a shows the azimuthal density structure factor S(kf )
from a single iteration of the GP simulations at resonant wavenumber kf at t = 10 (blue),
13 (purple), 15 (red) ms prior to jet emission. At each time we observe the same shape with
growing amplitude, consistent with the expected amplification process of density waves. The
dashed black curve is the real-space azimuthal population distribution of jets N(φ) at t = 45
ms. The scaling factor N0 is the total number of atoms in the system. The alignment of
all maxima and minima between S(kf , φ) and N(φ) shows the equivalence between density
waves and jets. b schematically shows that the early-time density waves with wavenumber
kf leads to the emission of counter-propagating jets with the same wavenumber kf at long
time.
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of the same physics. This can be seen from Fig. 6.7 which contains results from our full

GP simulations. Figure 6.7 provides strong simulation evidence that the density waves are

necessary precursors to the jets and that they establish the template for the subsequent

jet emission pattern. In particular, we find that the structure factor with fixed extrema

(established by the DW pattern at the onset of shaking) is precisely equivalent to the real-

space emitted jet population N(φ) observed after a long propagation time.

The structure factor is defined by S(kf , φ) = N−1
0

∫
kdk|ñ(k)|2, where the magnitude and

phase of the wavevector are |k| = k ≈ kf and φ = arctan(kx/ky). Note from Fig. 6.7a that

the structure factor contains random peaks and valleys as determined by the initial random

seed which emulates the fluctuations of real experiments. These patterns are established at

the onset of shaking, and the only change with increasing time is an exponential growth of

the peak amplitudes.

The dashed black line plotted in Fig. 6.7a is the real-space azimuthal distribution for

the jet population N(φ) =
∫
r=(~t/m)k rdr n(r), at long times. Importantly, the angular

distribution shows the equivalence between S(kf , φ) and N(φ). This underlies our claim

that density waves and jets are deterministically correlated. These results are summarized

in Fig. 6.7b. This presents a schematic plot linking the momentum space spectrum of the

DW and the population of jets with the same wavevector ±k after long time of flight.

6.3 Asymmetry of jet emission

Having established the equivalence between the far-field jets and the initial density waves, one

might naturally expect that the same azimuthal distribution would appear in the near-field

regime, when jets are first emitted from the condensate. However, the numerical simulations

show that this is not the case. Fig. 6.8 presents the density distribution in real and momen-

tum space in a and b, respectively. The left column corresponds to early times where the jets

are just emerging while the right column is for long times. In momentum space a primary

ring (and weak secondary rings) are visible and one sees very little time dependence; this is
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Figure 6.8: Density distributions at early and late times. a Real-space distribution
n(r) (denoted by n). The TOF distribution changes substantially with growing time and
approximately reproduces the k-space results at large t. b Momentum-space distribution
n(k) (denoted by nk). A primary ring (along with weak secondary rings representing higher
harmonics) shows little variation with time. The left column shows the early-time behav-
ior (t = 25 ms) when jets have just emerged. The right column indicates the late-time
distribution (t = 100 ms) when jets are far away from the trap.
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in contrast to the real-space plots. Nevertheless at longer times it seems that the real-space

time of flight (TOF) appears to reproduce the k-space distribution of particles.

To gain further insight, in Fig. 6.9 we plot the momentum- (left column) and real-space

(right column) azimuthal number distributions. These correspond, respectively to Nkf (φ)

and N(φ), where Nkf (φ) =
∫
k′=k kdk n(k′) and k = kf (cosφ, sinφ). Plotted as solid lines

in each row are distributions for the same 4 indicated times. The dashed lines correspond

to the same plot with each angle shifted by π. This corresponds to the shifted distribution

N ′kf (φ) = Nkf (φ+ π) and N ′(φ) = N(φ+ π), respectively.

In the momentum-space plot of Fig. 6.9 one can see an essentially exact coincidence of

the solid and dashed curves showing the full symmetry between excitations with opposite

momentum. This occurs for all times and is a manifestation of momentum conservation

throughout. This behavior should be contrasted with plots of the real-space distribution

in Fig. 6.9 where one can see quite generally, that the peaks of N(φ) and in the shifted

distribution N ′(φ) = N(φ+ π) are misaligned. Importantly, only at the latest times (in the

far field) is there a complete overlap of the curves which translates into a (0, π) symmetry

for the correlation function g(2)(φ). As a result, a clear modification of the distribution

shape with varying time is seen and is accompanied by an “inversion symmetry breaking”

(in the near field), see in Fig. 6.10 a and Fig. 6.10 b. This is associated with the previous

observation in Ch. 5 of an asymmetric two-particle correlation function g(2)(φ) of the jet

emission pattern, i.e., g(2)(π) 6= g(2)(0).

To quantify this inversion asymmetry, we introduce a parameter

ηr =

〈
[N(θ)−N(θ + π)]2

〉
2 〈N(θ)〉2

= g(2)(0)− g(2)(π) (6.5)

for real space and its analogue, ηk in momentum space, where 〈. . .〉 corresponds to av-

eraging over angles θ and ensembles. Here the two-particle correlation function g(2) in
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Figure 6.9: Momentum- and real-space π-shifted plots. Each panel shows the real-
space azimuthal number distribution N(φ) (solid line) superposed with its π-shifted curve
(dashed line) N ′(φ) = N(φ + π). Different colors correspond to different times: t = 25 ms
(blue), t = 30 ms (yellow), t = 35 ms (purple), and t = 45 ms (red). Peaks of N(φ) and
N ′(φ) are misaligned at small t and well aligned at large t.
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Figure 6.10: Time evolution and correlations of the emitted jets. a shows the
calculated jet emission pattern evolving from the near- to far-field regimes. The calculation
is based on identical initial noise seeding. b shows the real space azimuthal population of
the four images in a, identified by the same color. Note that the t = 45 ms far-field curve
is equivalent to that shown dashed in Fig. 6.7a. Here unlike in Fig. 6.7, the peaks and
valleys are slightly displaced with time. Panel c probes the emission asymmetry in real
space ηr = g(2)(π) − g(2)(0) (brown circles) and the momentum-space analogue ηk (green
squares). The main figure shows that the (0, π) asymmetry is always absent in momentum
space (ηk is strictly zero within numerical precision) so that momentum is conserved. In real
space, using Panel (b) we find that this (0, π) asymmetry decreases with increasing time.

The inset indicates the correlation function g(2)(φ) at the same 4 times as in a, along with
an early time momentum correlation function at t = 20 ms (black curve). Again, inversion
0-π symmetry is broken at short times, but recovers after long time-of-flight, and is fully
preserved in momentum space. The solid line (brown) in c is an analytical fit to ηr.
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real/momentum space as

g(2)(φ) =
〈n(θ)n(θ + φ)〉
〈n(θ)〉 2

, (6.6)

where n(θ) is the particle population at azimuthal angle θ. In real space, this corresponds

to density n(r) at the position r = r(cos θ, sin θ). We can also define the momentum-space

analogue of g(2)(φ), where n(θ) refers to n(k) at k = kf (cos θ, sin θ). Here r = vf t and vf =

~kf/m is the jet velocity. n(r) = |ψ(r)|2, n(k) = |ψ(k)|2, and ψ(k) = (2π)−1
∫
dre−ik·rψ(r)

is the Fourier transform of the wave function ψ(r). 〈. . .〉 refers to an average over different

angles θ and ensembles.

Figure 6.10 c plots the asymmetry functions, ηr,k, in real- and momentum-space, to-

gether with the corresponding correlation function g(2)(φ) shown in the inset. The spatial

asymmetry ηr decreases from a finite value to zero when going from the near to far field.

This indicates that the inversion symmetry is recovered at large times. The momentum-

space asymmetry ηk, interestingly, remains zero independent of time, showing clearly that

momentum conservation is obeyed at all times.

We attribute this asymmetry to the fact that, in the near field, excitations of different

wavevectors substantially overlap with each other. The resulting pattern is derived from in-

terference between these overlapping modes, which have uncorrelated random phases. Thus,

when measuring the population at angles θ and θ + π, the symmetry between the relevant

counter-propagating pair ±k (tan θ = ky/kx) is masked by interference from other uncorre-

lated modes. By contrast, in the far field, different modes are well separated so that each jet

now represents a single mode. Here momentum conservation is more apparent and inversion

symmetry in real space is recovered.

We further develop a simple analytic model based on this intuitive physical picture. This

model builds on our understanding that the phase remains correlated only within the same

excitation mode. We shall demonstrate this later in Ch. 6.4.

As shown in Fig. 6.11, in both the near-field and far-field situations, the only perfectly

correlated pair of modes is the counter-propagating one going through the center of the
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Figure 6.11: Schematic of near- and far-field TOF. In both near and far fields, the
only correlated modes are the counter-propagating pair. In the far field where the distance
between jets and trap center (called r) is much bigger than trap size R, fewer modes appear
to overlap as seen from the measurement point.

condensate (marked as thick black lines with arrow heads). As a result, the wave function

at r and −r can be approximated as

ψ(r) =
√
n1e

iϕ1 +
m∑
j=2

√
nje

iϕj

ψ(−r) =
√
n1e
−iϕ1 +

m∑
j=2

√
n′je
−iϕ′j ,

(6.7)

where n1 is the occupation of the perfectly correlated modes while nj and n′j are the occu-

pations of modes propagating in different directions. Note ϕi and ϕ′j are uncorrelated.

We now want to count the number of overlapping modes M at the measurement point r =

vf t forming the jet. Entering into the count is ∆φ/δθ = arctan(R/r)/δθ = arctan(R/vf t)/δθ

with δθ ∼ 1/kfR representing the angular half width of the jets. This provides a reasonable

estimate of M in the near field. However, this is inadequate in the far field because it

approaches zero, rather than the expected 1. Thus a more appropriate, phenomenological

estimate would be to add the near- and far-field estimates in quadrature

M =

√
1 +

(
∆φ

δθ

)2

. (6.8)
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Using Eq.(6.7), the correlation function can then be written as

g(2)(0) =
〈ψ∗(r)ψ(r)ψ∗(r)ψ(r)〉
〈ψ∗(r)ψ(r)〉 〈ψ∗(r)ψ(r)〉

g(2)(π) =
〈ψ∗(r)ψ(r)ψ∗(−r)ψ(−r)〉
〈ψ∗(r)ψ(r)〉 〈ψ∗(−r)ψ(−r)〉

.

(6.9)

And we have

〈ψ∗(r)ψ(r)〉 = 〈ψ∗(−r)ψ(−r)〉 (6.10)

=
m∑
j=1

〈
nj
〉

+

〈∑
i6=j

√
ninj cos(ϕi − ϕj)

〉
(6.11)

=M 〈n〉 , (6.12)

where 〈n〉 is the average density associated with a jet. The same-site correlation function is

〈ψ∗(r)ψ(r)ψ∗(r)ψ(r)〉

=
∑
i,j

〈
ninj

〉
+ 2

∑
i 6=j

〈
ninj cos2(ϕi − ϕj)

〉
=M

〈
n2
〉

+ 2M(M − 1) 〈n〉2

=2M2 〈n〉2 ,

where
〈
n2
〉

= 2 〈n〉2 for the parametrically driven jet emission [25], see Ch. 5.

We compare this with the correlation between forward and backward modes which is

118



given by

〈ψ∗(r)ψ(r)ψ∗(−r)ψ(−r)〉 =
〈
n2

1

〉
+

M∑
i,j=2

〈
nin
′
j

〉

+
M∑
j=2

〈
n1nj

〉
+

M∑
j=2

〈
n1n
′
j

〉
=
〈
n2
〉

+ (M − 1)2 〈n〉2 + 2(M − 1) 〈n〉2

= (M2 + 1) 〈n〉2 .

We can then write for the real-space correlation functions

g(2)(0) = 2

g(2)(π) = 1 +
1

M2
= 1 +

1

1 + arctan(R/vt)2/δθ2
.

(6.13)

In very near field, M � 1, g2(π) ≈ 1, indicating a nearly full suppression of the π peak

or equivalently very strong asymmetry. In the far-field limit (m ∼ 1) we have g(2)(π) =

g(2)(0) ≈ 2, so that perfect symmetry is restored.

As a result we can derive the asymmetry between peaks at φ = 0 and φ = π in real space,

which is given by

ηr =

〈
[N(θ)−N(θ + π)]2

〉
2 〈N(θ)〉2

=

〈
[n(θ)− n(θ + π)]2

〉
2 〈n(θ)〉2

= g(2)(0)− g(2)(π)

= 1− 1

1 + arctan(R/vt)2/δθ2
.

(6.14)

For momentum space, we similarly define the analogous function ηk using the same expres-

sion as for ηr but with the real-space population N(θ) replaced by the momentum-space

occupation Nkf (θ). A fit of the asymmetry function ηr by Eq. (6.14) is given by the solid
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Figure 6.12: Experimental probes of the (0, π) asymmetry: measured correlations
of emitted jets for different condensate sizes. Examples of jet emission of radii R =12.4
µm and 5.9 µm are shown in a and b respectively. c Correlation functions g(2)(φ) for
traps of radii R =5.9 µm (black), 7.6 µm (purple), 9.3 µm (yellow), and 12.4 µm (blue);
these are measured at roughly similar distances from the condensates r=52.3 µm (black),
55.4 µm (purple), 52.0 µm (yellow), and 61.7 µm (blue), respectively. The mode number
M ≈ 1.23kfR

2/r in the relevant parameter range is 4.3 (black), 6.5 (purple), 10.5 (yellow),
and 15.7 (blue). Note that the symmetry gradually recovers as M decreases. d Asymmetry
function η(t′) from both simulations and experiments. In addition to results present in
Fig. 6.10, the scaled experimental data for the real-space asymmetry function ηr(t

′) are
shown, as denoted by square symbols with error bars (brown). To compare with previous
results of the condensate of radius 6.5µm, the conversion is done where the effective time t′

is obtained by equating arctan(R0/vf t
′)R0 = arctan(R/r)R, where R0 is the reference trap

radius 6.5µm. Note that the experimental data are reasonably consistent with simulations
and the analytical fit.

120



line (brown) in Fig. 6.10c, where the agreement is quite satisfactory.

From Eq. (6.8), one can also see that varying the trap size for a similar observation point

is equivalent to changing the point from the near- to far-field regimes. In this regard, we

present further experimental data for different condensate radii. In Fig. 6.12a, a symmetry

of the two-particle correlation function at φ = 0 and π, similar to the one in Fig. 6.12c, is

recovered, where the mode number m is decreased mainly via decreasing the trap size. To be

more quantitative, we plot the real-space asymmetry function ηr(t
′) from the experimental

data in Fig. 6.12b. For the sake of comparison, all data are scaled to a condensate of size

6.5µm, as simulated in Fig. 6.10. The effective observation time t′ for such a condensate is

obtained by equating the mode number M in the real experiments and that for the reference

trap at t′. From Eq. 6.8, one can see that this leads to arctan(R0/vf t
′)R0 = arctan(R/r)R,

where R0 is 6.5µm, R is the real condensate size, r = vf t is the actual imaging distance

from the trap with t being the real measurement time. The scaled experimental ηr(t
′) is

reasonably consistent with simulations and the analytical fit, which corroborates our theory.

6.4 Phase coherence of jet emission

We finally look at Fig. 6.13 which addresses the phase coherence of the different modes. This

serves to motivate the analytical model in Eq. 6.7. Plotted in this figure is the phase of the

full GP wavefunction in the far-field configuration, as a function of position. This is overlaid

with a momentum distribution plot (yellow line) which indicates the real space configuration

of the jets in the far field. “Phase slips” are evident with varying azimuthal position. Dashed

lines have been inserted to mark these phase discontinuities; one can see that the phase slips

occur somewhere in the empty space between the jets (which each represent a single mode

in the far field). Importantly there is phase coherence within a jet while different modes

have uncorrelated phases. All of this is consistent with the analytical model discussed above

and serves as a validation. In addition, we shall further see in Ch. 7 that the phase between

forward and backward jets are correlated.
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Figure 6.13: Intra-jet phase coherence in far field. Comparison of GP wave-function
phase and momentum distribution of jets as a function of the azimuthal angle φ for the
relevant radial range where the jets are located. Dashed lines have been inserted to mark
phase discontinuities. The yellow curve is the momentum distribution which represents the
far field spatial configuration of the jets. Within each jet there is phase coherence. However,
coherence typically ends at the boundary between different jets (modes) where a “phase slip”
can be seen. It should be noted that the applicability of the “edge finding” algorithm used
here leads to occasional errors when the phase slips are found to be particularly small.
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CHAPTER 7

QUANTUM SIMULATION OF UNRUH RADIATION

In this chapter, we investigate comprehensively into the mode population distribution the

stimulated emission of jets in strongly driven condensates. We find that the mode population

exhibits a thermal-like distribution in Sec. 7.1. This thermal-like distribution is generated

from a two-mode squeezing process (see Sec. 7.2), which further connects to the famous Un-

ruh radiation [103] in a constant accelerating frame. Although the population distribution is

thermal-like, the matter-wave jets from pair-generation are still coherent, which is examined

in two experiments in Sec. 7.4. By applying two pulses of driving with different frequencies

in sequence, we are able to show the phase coherence between jets generated in pairs. Mean-

while, by inverting the driving phase, we are able to reverse the process and demote atoms

back to the condensates. At last, we propose a general type of quantum simulation frame

transformation with non-equilibrium quantum gases.

7.1 Observation of thermal-like atomic number distribution

Previously, we have shown the Bose fireworks due to stimulated emission of matterwave in

strongly driven condensates. The emission manifests as a number of jets flying out of the

condensate after modulating the interaction for short amount of time. We have studied

variously interesting properties of the emitted jets, including their kinetic energy, angular

width, and density-density correlations. Besides, we also notice that atomic population along

different angular directions are not homogeneous, see Fig. 7.1 as an example. Along some of

the angular directions we see more atoms in the jets as opposed to the others. In a statistic

view, we see that the probability P (n) of finding n particles in a slice is exponential-like at

large n limit, which resemble that from a thermal radiation where the probability P (n) βe−βn

with β = Ek/kBT , where T is defined as an effective temperature and Ekf = ~ω/2 is the

kinetic energy of each atom. We shall that this exponential-like distribution is another
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Figure 7.1: Atomic population distribution. a shows three rings (illustrated by the
white, orange and green circles) in a single shot image at a larger modulation amplitude
aac = 45 a0 and modulation frequency of ω = 2π×2 kHz, which is under the same condition
as that of Fig. 5.1d. We divide the image into 2◦ slices and count the atom number for
each slice within separate rings. b shows the probability density of finding N atoms within
a 2◦ slice in ring 1, 2 and 4 (black, red and green square). The corresponding solid lines
are exponential fits at large atom number limit. The blue square shows the background
fluctuations from imaging without atoms and the blue solid line is a Gaussian fit.

manifestation of quantum nature of the jet emission.

For simplicity, we perform our experiment with conditions that suppress generation of

high-order harmonics and only focuses on the population distribution from primary collisions.

Following a similar procedure to that which is described in chapter 5, this experiment starts

with a Bose-Einstein condensate of 6×104 atoms confined in a disk-shaped trap with a radius

of 13 µm. By modulating the magnetic field at frequency ω = 2π×2.1 kHz near a Feshbach

resonance [20, 82], we oscillate the scattering length with an amplitude of aac = 50a0 around

a small offset adc = 3a0. A few millisecond after the modulation, a single ring of jets of

atoms with momentum kf =
√
mω/~ flies out of the condensates. Such emission forms a

fluctuating bosonic field and is a result of bosonic stimulation.

Experimentally we slice our emission patterns into 180 slices and count the atom number
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in each slice. Based on the histogram of atom counting from the measurements, we build the

probability distribution function P (n). Based on this particular distribution, we can achieve

a separate calibration of the mode width of the jets beside that from the density-density

correlation function. We further calculate 〈n〉 =
∫
nP (n)dn and ∆n2 = 〈n2〉−〈n〉2−∆n2

noise.

Here ∆n2
noise is the variance contributed from the detection noise which is statistically

independent from the signal from atom counting, as shown in Fig. 7.1b. We find a linear

dependence between the mean square of atom number and the variance from the experiment

as (see Fig. 7.2)

〈n〉2 = ξ∆n2. (7.1)

Here ξ = ∆θS/∆θJ = 1.49(7) is determined from the fitting, characterizing the mode width

∆θJ with each slice’s width ∆θS = 2◦. Therefore, ∆θJ equals to 1.33◦. We also calculate

∆θJ from another independent way. Using the formula ∆θJ = 1.62/(Rkf ) in Ref. [25] which

comes from the half width at half maximum of the peak at φ = 0 in the g(2) function, we

obtain a consistent result of ∆θJ = 1.3◦. It worth mentioning a special case that when we

choose the slice to be the width of a jet with ξ = 2 we have 〈nM 〉2 = ξ∆n2
M , given by the

correlation function.

We notice that a angular slice could include several different modes. Based on this

probability distribution that is built up from angular slices, we want to test and verify that

the emitted atom number in each mode follows a thermal distribution. We derive a more

general formula for the probability distribution p(n, ξ) in a slice with any width ∆θS = ξ∆θJ .

Because the mean population per mode 〈nM 〉 is always larger than 1 in our measurements, we

treat the distribution p(n, ξ) as a continuous function where the summation
∑∞
n=0 p(n, ξ) = 1

is replaced by an integral
∫∞

0 dnp(n, ξ) = 1.

We shall start by listing a few properties of the function p(n, ξ). First, p(n, ξ) must equal

to 0 when n is a negative number. Second, if the angular slice only contains one momentum

mode (i.e. ξ = 1), p(n, 1) should be a thermal distribution, where p(n, 1) equals βe−βn with

β = Ekf /kBT . Third, p(n, ξ) has to satisfy the addition rule that combining two slices of ξ1
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Figure 7.2: Determination of the mode width and the fitting of the measured
probability distribution P(n). a shows the linear dependence of mean square 〈n〉2 and
variance ∆n2 of atom number distribution in the slice with an angular width ∆θS = 2◦,
from which we have subtracted the contribution from the detection noise. b shows the
background atom number distribution G(n, 1.5) (black line), ideal emitted atom number
distribution p(n, 1.5) (blue line) and the convolution between both of them P (n, 1.5) (red
line) which fits the measured probability distribution P (n) (red circles) at the modulation
time τ = 4.8 ms.

and ξ2 will create a new slice of ξ1 + ξ2. We can write the third requirement more explicitly

as a mathematical equation

p(n, ξ1 + ξ2) =

∫ ∞
−∞

p(n′, ξ1)p(n− n′, ξ2)dn′. (7.2)

From all the above conditions, we solve the probability distribution p(n, ξ) analytically as

p(n, ξ) =


βξnξ−1e−βn/Γ(ξ) n ≥ 0

0 n < 0,

(7.3)

where Γ(ξ) is the gamma function.

In addition to the signals from the atoms, the detection noise contributes to the measured

probability distribution of the atom number. Experimentally we characterize this noise

distribution G(n, ξ) by inspecting the images without any radiations. Once we get G(n, ξ),
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Figure 7.3: Thermal-like behavior of the matter-wave emission. a shows the measured
probability distribution P (n) within a 2◦ slice of the emission pattern after modulation time
τ = 0, 3.36, 4.8 and 6.24 ms (black, green, red and blue circles). The solid lines are fits
based on a thermal model. The inset shows the data in the log scale. b shows the effective
temperature T (red circles). The red solid line is a linear fit. All error bars correspond to
one standard deviation of the mean values.

we convolve it with p(n, ξ) to get a full distribution function

P (n, ξ) =

∫ ∞
−∞

dn′p(n′, ξ)G(n− n′, ξ). (7.4)

Then we use this function to fit our data extracting out the effective temperature T under

the condition of ξ = 1.49 (see Fig. 7.2b).

We later study this thermal-like distribution after different amount of time after mod-

ulation, see Fig. 7.2a. At very early time, few atoms are excited into jets, the distribution

is simply dominated by imaging noise. As the modulation time further increases, the dis-

tribution extends much more to the right while the average excited atom number increase

exponentially as a function of modulation time. By fitting the experimental data with the

convoluted distribution function, Eq. (7.4), we can extract the effective temperature. The

effective temperature is plotted together with the mean atomic population within a single

jets n̄, see Fig. 7.2b. It very interesting to notice that the effective temperature linearly

depends on the mean atomic population, which can be seen from the calculation based on
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two-mode squeezing in Sec. 7.2.

7.2 Effective temperature and entropy

We start with Hamiltonian in a rotating-wave frame and under Bogoliubov approximations,

see Eq. (5.12),

H = i~ν
∑
|k|=kf

(a
†
ka
†
−k − aka−k), (7.5)

where ν = π~N0aac/mV and kf =
√
mω/~. This Hamiltonian is essentially a combination

of a series of two-mode squeezing terms [106] in the view of quantum optics.

Previously, we looked at the time evolution of the creation and annihilation operators;

we shall now try to obtain the evolution of the wavefunction instead. Since the two counter-

propagating modes with momentum k and −k are generated simultaneously, we have to

consider both of them. By grouping k and −k modes together, we decompose the Hamil-

tonian into H =
∑
hk, where hk = i~ν(a

†
ka
†
−k − aka−k). We thus only need to consider

the evolution of the wavefunction under each hk. To simplify the notation without loss of

the generality, we use h to replace hk. Therefore, the evolution of the wave function can be

written as [106]

|ψ(τ)〉 = e−ihτ/~|0〉 =
1

cosh(ντ)

∞∑
n=0

tanhn(ντ)|n, n〉. (7.6)

Based on this wavefunction, we are able to get the density matrix for the system ρk,−k =

|ψ(τ)〉I〈ψ(τ)|I . Therefore the density matrix of one single mode such as k is determined by

tracing out the other mode −k, i.e.

ρ̂k(τ) = Tr−k|ψ(τ)〉I〈ψ(τ)|I =
∞∑
n=0

pn|n〉k〈n|k (7.7)

where pn = tanh2n(gτ)/ cosh2(gτ).
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7.2.1 Effective temperature

By comparing with a thermal distribution of an ideal Bose gas

p̃(T ) = e
− n~ω

2kBT (1− e−
~ω

2kBT ), (7.8)

we can build a direct mapping between the effective temperature with the time τ or the

mean population n̄ as

T =
Ekf

2kB ln coth(ντ)
(7.9)

=
Ekf

kB ln(1 + 1/n̄)
−−−→
n̄�1

Ekf
kB

n̄. (7.10)

where the mean population

n̄ =
∞∑
n=0

npn =
1

e
Ekf /kBT − 1

(7.11)

follows the Bose-Einstein statistics. The linear dependence of the effective temperature on

mean atom number agrees very well with our experimental observation in Fig. 7.3.

7.2.2 Entropy

We first evaluate the entropy per momentum mode based on our experiment data. In

experiment, we build probability distribution based on angular slices. We define the entropy

in one slice with the width of ξ∆θJ as S(ξ). First we use the probability distribution p(n, ξ)

from Eq. (7.1) to evaluate S(ξ), which gives

S(ξ)/kB = −
∫ ∞
−∞

dnp(n, ξ) ln p(n, ξ) = − ln β + ξ + ln Γ(ξ)− (ξ − 1)Γ′(ξ)/Γ(ξ). (7.12)
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Figure 7.4: Effective temperature and entropy. Here we show the effective temperature
T (red circles) and entropy per mode S (blue circles) versus the mean population per mode.
The derived acceleration A is shown on the top. The red solid line is a fit of T = κA/c. The
blue solid line is the prediction that includes the detection noise while the purple line is the
prediction excluding the noise. The inset shows the evolution of T and S. The dashed lines
are guides to the eye.

Thus the entropy for single mode is S(1) = S(ξ)−S0(ξ), where S0 only depends on the size

of angular slice, S0(ξ) = kB
[
ξ − 1 + ln Γ(ξ)− (ξ − 1)Γ′(ξ)/Γ(ξ)

]
. During data analysis, we

have chosen ξ ≈ 1.5 and S0(ξ = 1.5) = 0.37kB; as a result, the corresponding entropy is

given by experimental distribution P (n),

S(1.5) = −kB

∑
n

P (n) lnP (n). (7.13)

Thus the entropy for a single mode S(1) can obtained by subtracting the S0,

S(1) = S(1.5)− S0(1.5) = −kB

∑
n

P (n) lnP (n)− S0(1.5). (7.14)

For short modulation time τ < 3 ms, the measured entropy is dominated by the detection

noise Sb = 3.8 kB. For long modulation duration τ , the measured S faithfully reflects the

entropy of the matter-wave radiation, see Fig. 7.4.

130



Based on two-mode squeezing, the von Neumann entropy of the thermal distribution is

S =− kBTr (ρ̂k ln ρ̂k)

=kB[ln(n̄+ 1) + n̄ ln(1 + 1/n̄)], (7.15)

which is the solid purple line (theory without detection noise) plotted in Fig. 7.4. The

deviation of the data from our theory is due to the detection noise. We calibrate the detection

noise per mode G(n, 1) accordingly, as shown in Fig. 7.1, and then derive the theoretical

distribution by convolving G(n, 1) with p(n, 1) as

P̃ (n, 1) =

∫ ∞
−∞

dn′p(n′, 1)G(n− n′, 1). (7.16)

Thus theoretically the observed entropy is given by

S = −kB

∫
dnP̃ (n, 1) ln P̃ (n, 1), (7.17)

which matches our experimental data very well (see the blue solid line in Fig. 7.4).

7.2.3 Connection to thermal dynamics of ideal gas

We start by looking at the mean atom number as a function of temperature T is n̄ =

1/(e
Ekf /kBT − 1). We insert it into Eq. (7.15) and get the relation between entropy S and

effective temperature T , which is given by

S = −kB

[
ln

(
e
Ekf /kBT − 1

)
−

Ekf /kBT

(1− e−Ekf /kBT )

]
. (7.18)
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When n̄ � 1, the entropy is approximated as S = kB ln(en̄), where e = 2.718 . . .. Using

Eq. (7.10), we obtain the entropy S dependence on T in the large n̄ limit as

S = kB ln

(
ekBT

Ekf

)
, (7.19)

in which S increases logarithmically with T . We shall see this dependence is identical to

that of a grand cononical ensemble of idea gas.

Consider a system of free atoms in contact with a reservoir at temperature T and chemical

potential µ, each atom can only occupy the momentum state with energy Ekf = ~ω/2. The

probability distribution for the system to contain N particles is,

p(N) = e
−βN(Ekf−µ)

/Z(T, µ) (7.20)

where β = 1/kBT and the normalization factor is the grand partition function,

Z(T, µ) =
∞∑
N=0

e
−βN(Ekf−µ)

=
1

1− e−β(Ekf−µ)
. (7.21)

Based on the probability distribution, we can evaluate the mean particle number in the

system, which is

〈N〉 =
∞∑
N=0

Ne
−βN(Ekf−µ)

/Z(T, µ)

=
∂

∂(βµ)
lnZ(T, µ)

=
1

e
β(Ekf−µ) − 1

. (7.22)

When chemical potential µ = 0, (7.22) gives us exactly the same form of relation between
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temperature and mean particle number as that in (7.10), where

T =
Ekf

kB ln(1 + 1
〈N〉)

. (7.23)

Beside that the effective temperature of the jet emission has similar form as that of idea

gas, we further that entropy behaves similarly. Starting with he grand potential given by

the partition function,

G(T, µ) = −kBT lnZ(T, µ) = kBT ln(1− e−β(Ekf−µ)
), (7.24)

and

dG(T, µ) = d(E(S,N)− TS − µN) = −SdT −Ndµ. (7.25)

We can derive the entropy which can be simply given by

S = − ∂G

∂T

∣∣∣∣
µ

= −kB ln(e
β(Ekf−µ) − 1) +

kBβ(Ekf − µ)

1− e−β(Ekf−µ)
. (7.26)

Again in the case of µ = 0, we obtain exactly the same form for entropy as the entanglement

entropy per jet as in (7.18),

S/kB = − ln(e
Ekf /kBT − 1) +

Ekf /kBT

1− e−Ekf /kBT
. (7.27)

Particularly when kBT/Ekf � 1,

S/kB = ln

(
ekBT

Ekf

)
(7.28)

Thus the thermodynamical behaviors of the emitted matter-wave jets coincides with that of

the idea gas of free atoms with chemical potential µ = 0 while occupying single energy state
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a

b

Figure 7.5: Illustration of quantum simulation of Unruh radiation. a, To an acceler-
ating observer, a vacuum state in the inertial frame appears identical to a thermal state. b,
We simulate the Unruh effect by a pair-creation process in a driven condensate, whose evolu-
tion is equivalent to a coordinate transformation to an accelerating frame. The matter-wave
field shares the same characteristics as the Unruh radiation: it is locally indistinguishable
from a Boltzmann distribution, but is long-range coherent and temporally reversible.

Ekf at temperature T .

7.3 Connection to Unruh radiation

Among quantum physics in curved spacetime, Unruh radiation is one of the most studied

and intriguing phenomena [103], see Fig. 7.5. Unruh predicts that vacuum state of a quan-

tum field in the Minkowski space can appear as a thermal state in an accelerating frame.

The thermal field is characterized by the Unruh temperaature TU, which depends on the

acceleration A as

TU =
~A

2πckB
. (7.29)
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where c is the speed of light. Because of the equivalence of inertial and gravitational ac-

celeration, this surprising phenomenon shares the same root as the Hawking radiation [50]

near the black hole horizon. Experimentally, it is, however, extremely challenging to observe

Unruh effect; an enormous acceleration of A = 2.5 × 1014 m/s2 is required to create the

Unruh radiation of TU = 1 µK.

A quantum state can be boosted into accelerating frame thought the Rindler transfor-

mation RA [105, 101],

 b̂Rk
b̂
†L
k

 =

cosh(rk) sinh(rk)

sinh(rk) cosh(rk)


ĉk
d̂kk

 , (7.30)

where b̂Rk and b̂Lk are the annihilation operators of ”Rindler modes” with energy Ek in

the accelerating frame, L and R correspond to two Rindler wedges propagating along two

different directions, (ĉk, d̂k) are the annihilation operators of Unruh modes whose vacuum

is the Minkovski vacuum in the inertial frame. The parameter rk satisfies the equation of

tanh rk = e−πEkc/A.

Meanwhile, when we look at the time evolution of the bosonic creation and annihilation

operators in our system, which is given by

 ak(τ)

a
†
−k(τ)

 =

cosh(ντ) sinh(ντ)

sinh(ντ) cosh(ντ)


 ak(0)

a
†
−k(0)

 . (7.31)

By comparing Eq. (7.31) with Eq. (7.30), we find the mathematical form of the frame

transformation and the time evolution are very similar to each other. We thus can draw

an equivalence by treating the operators at time τ as the Rindler operators in a non-inertial

frame, namely b̂Rk → ak(τ), b̂Lk → a−k(τ),ĉk → ak(0), and d̂k → a−k(0), which leads to
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tanh(ντ) = rω/2. Thus, we obtain the corresponding acceleration A,

A =
πωc

2 ln coth(gτ)
. (7.32)

. Thus, we can use the time evolution of a two-mode squeezing Hamiltonian to achieve a

quantum simulation of Unruh radiation that is expected to be observed in a non-inertial

frame with large constant acceleration.

This simulated acceleration also linearly depend on the mean population in a single mode.

The mean population per mode increases as n̄ = 〈a†k(τ)ak(τ)〉 = sinh2(gτ). A thus can be

rewritten using n̄ as

A =
2πcEkf

~ ln(1 + 1/n̄)
−−−→
n̄�1

2πcEkf
~

n̄, (7.33)

where Ekf = ~ω/2 is the kinetic energy of each atom.

Intrigued by this simple connection,we can further propose a new type of quantum sim-

ulation to investigate quantum physics in an non-inertial frame, which, according to the

equivalence principle, is equivalent systems in a curved space-time. We can simulate the

transformation R̂ from an inertial to a non-inertial frame by a controlled time evolution of

the system with a prescribed Hamiltonian Ĥ. For a given quantum state Ψ0, this method is

equivalent to evolve the system according to

Û(τ)Ψ0 = R̂Ψ0, (7.34)

where Û(τ) = exp(−iHτ/~) is the evolution operator in quantum mechanics, and the time

τ serves as a parameter to match the desired frame transformation R̂.

7.4 Coherence in jet emission

While local measurements in our system seem to reveal a thermal distribution, however,

unlike incoherent black-body radiation, Unruh radiation should exhibit both spatial and
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Figure 7.6: Double-pulse sequence for jet interference. a illustrates the application of
two pulses of scattering length modulation with frequencies ω1/2π = 3 and ω2/2π = 5.63 kHz,
and modulation amplitudes aac = 56 and 72a0. The relative phase of the pulses is δ. b.
The matter-wave jet created by the latter pulse propagates at a greater speed v2 > v1 and
interferes with atoms from the first pulse when they overlap. Here the matter-wave speeds
are vi =

√
~ωi/m for the i−th pulse. The interference is characterized by the wavenumber

difference ∆k = k2 − k1, and the phase φ.

temporal coherence, reflecting its quantum origin. In the following we investigate the coher-

ence properties of the matter-wave radiation.

7.4.1 Spatial phase coherence from interference experiment

We first show the spatial coherence of the matter-wave field by probing the phase correlation

between jets. For this, we perform a matter-wave interference experiment by applying two

independent pulses of modulation on the scattering length. The first pulse has a lower fre-

quency of ω1 = 2π×3 kHz compared to the second one of ω2 = 2π×5.63 kHz (see Fig. 7.6a).

The amplitudes for the two pulses of modulation are a
(1)
ac = 56a0 and a

(2)
ac = 72a0. The two

frequencies are incommensurate to avoid influence from high-harmonic generations [37]. The

pulses are arranged such that the atoms created by the second pulse leave the condensate

later, but with a greater velocity than the atoms from the first pulse. When the two emitted

waves overlap, they interfere and produce fringes (see Fig. 7.6b for illustration). We can
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directly image such interference fringes in real space atomic density with in situ imaging

and the examples of experimental data are show in Fig. 7.7.

We extract the phases of the interference fringes along different angular direction based

on its Fourier transformation, see Fig. 7.8. The phase of the fringes φ is given by the

relative phase of the interfering matterwaves, and is random among different the emission

angles θ. However, it is very interesting to see that the phase of the fringes along counter-

propagating directions are correlated. In Fig. 7.8c, we present the occurrence distribution

of the fringe phases in opposite directions, namely, φθ and φθ+π. The two phases correlate

as φθ + φθ+π = φs (see Fig. 7.8d) with φs = 0.79(3) depending on the phase of the pulses

and dynamical phase during propagation in our experiment.

To be more quantitative, we evaluate the phase correlation function g±(ϕ) for all angular

span ϕ [70], defined as (see Fig. 7.8e)

g±(ϕ) = |〈eiφθ±iφθ+ϕ〉|. (7.35)

Here the angle brackets correspond to angular averaging over θ and ensemble averaging.

The peak of g+ at ϕ = π confirms that fringe phases are only anti-correlated in the opposite

directions. The lone peak of g− at ϕ = 0 shows the phase coherence within a single jet. Since

jets with different energy are generated independently, the correlations of the fringes indicate

the phase correlations of counter-propagating jets with the same momentum. Such phase

correlation results from the coherent generation of atom pairs which are phase locked to the

modulation; the correlation is also expected for the Unruh radiation [105], and resembles the

phase coherence in the parametric down-conversion process in quantum optics [55].

Theoretically, we can calculate the phase correlations between interference fringes, which

directly relate to that between emitted jets. We consider two sets of independent jets which

are generated by two pulses of scattering length modulation with certain phase. In the

interaction picture, the wave function can be written as |ψ〉I = |ψ(1)〉I ⊗ |ψ(2)〉I . Each

138



20 µm

0

25

50 D
ensity (µm

-2) 

Figure 7.7: Gallery of jet interference. Here we show several example images of the
interference between jets generated by the two pulses of scattering length modulation with
frequencies ω1/2π = 3 and ω2/2π = 5.63 kHz, and modulation amplitudes aac = 56 and
72a0.
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Figure 7.8: Phase correlation of matter-wave radiation. a shows an example interfer-
ence pattern of the two radiation fields. The phase of the interference fringes φθ is recorded
as a function of the emission angle θ. b shows the radial cut of the interference pattern, from
which we determine the phase of the fringes based on Fourier transformation (See Methods).
Dotted lines show guides to the eye. c and d show the concurrence of the extracted phases in
the opposite directions, φθ and φθ+π for all emission angle θ from a collection of 200 images.
A strong correlation of the two phases is described by φθ+φθ+π = φs, where φs = 0.79(3) is
obtained from fitting the data; φθ−φθ+π appears to be random. e shows phase correlations
g+ (blue) and g− (red) between fringes separated by an angular distance ϕ. Dots represent
experimental data while dashed curves are guides to the eye.
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|ψ(j)〉I follows

|ψ(j)〉I =
1

cosh(γj)

∞∑
n=0

[
e
i(φMj−π/2)

tanh(γj)
]n
|n, n〉kj ,−kj (7.36)

under the Hamiltonian

H
(i)
I = νje

iφMj a
†
kj
a
†
−kj + νje

−iφMj akja−kj (7.37)

where φMj
is given by the phase of external driving field, γj = νjτj and τi is the modulation

duration of the pulse.

To take the dynamical phase into account, we convert the wave function back to Schrödinger’s

picture, and the wave function is written as

|ψ〉S = |ψ(1)〉S ⊗ |ψ(2)〉S , (7.38)

where |ψ(j)〉S is given by

|ψ(j)〉S = e−iH
(j)
0 t/~|ψ(j)〉I

=
1

cosh(γj)

∞∑
n=0

[
e
i(φMj−ωjt−π/2)

tanh(γj)
]n
|n, n〉kj ,−kj . (7.39)

Here H
(i)
0 = ~ωi(a

†
kj
akj + a

†
−kja−kj )/2 is energy term which was previously eliminated in

the interaction picture.

The interference operators between the two sets of jets are Îf = ak1
a
†
k2

and Îb =

a−k1
a
†
−k2

which correspond to the forward and backward directions. We introduce four

more interference operators as Îj+ = akja−kj and Îj− = akja
†
−kj with j = 1 or 2. The
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mean value for the interference operator Îi± is evaluated as

〈Îj+〉 = 〈ψ(j)|S
(
akja−kj

)
|ψ(j)〉S

=
√
〈nj〉(〈nj〉+ 1)e

i(φMj−ωjt−π/2)
(7.40)

〈Îj−〉 = 〈ψ(j)|S
(
akja

†
−kj

)
|ψ(j)〉S

= 0, (7.41)

where 〈nj〉 is the mean atom number in each set of jets.

Phase correlation between interference fringes can be directly decomposed into the inter-

ference operators in each set of jets. The phase correlation g+(θ = π) is proportional to the

correlation between Îf and Îb , together with Eq. (7.40) we get

〈ei(φθ+φθ+π)〉 ∝ 〈Îf Îb〉 = 〈ψ(1)|S ⊗ 〈ψ(2)|S
(
ak1

a
†
k2
a−k1

a
†
−k2

)
|ψ(1)〉S ⊗ |ψ(2)〉S

= 〈ψ(1)|S
(
ak1

a−k1

)
|ψ(1)〉S〈ψ|

(2)
S

(
a
†
k2
a
†
−k2

)
|ψ〉(2)

S

= 〈Î1+〉〈Î
†
2+〉

=
√
〈n1〉(〈n1〉+ 1)

√
〈n2〉(〈n2〉+ 1)e

i
[
(φM1

−φM2
)−(ω1−ω2)t

]
(7.42)

Therefore, the sum of the phases of the forward and backward interference fringes only

depends on the phase of the driving and the dynamical phase. Thus we have the phase

constant φs = φθ + φθ+π = (φM1
− φM2

)− (ω1 − ω2)t and g+(π) = 1.

Meanwhile, phase correlation g−(θ = π) is proportional to the mean value of Îf Î
†
b ,

together with Eq. (7.41) we have

〈eiφθ−φθ+π〉 ∝ 〈Îf Î
†
b 〉 = 〈ψ(1)|S ⊗ 〈ψ(2)|S

(
ak1

a
†
k2
a
†
−k1

a−k2

)
|ψ(1)〉S ⊗ |ψ(2)〉S

= 〈ψ(1)|S
(
ak1

a
†
−k1

)
|ψ(1)〉S〈ψ(2)|S

(
a
†
k2
a−k2

)
|ψ(2)〉S

= 〈Î1−〉〈Î
†
2−〉

= 0 (7.43)
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therefore we have g (π) = 0, indicating that phases in each pair of jets are totally random

although their sum is fixed. The results from Eqs. (7.42, 7.43) are consistent with our

measurement shown in Fig. 3g.

We also derive a more general analytic formula for g+(θ) and g−(θ) between two arbi-

trary angular directions in addition to that between the counter-propagating directions in

Eqs. (7.42, 7.43) as follows,

g+(θ) =

∣∣∣∣∣∣
〈ak1

a
†
k2
ak′1

a
†
k′2
〉

〈a†k1
ak1
〉
〈
a
†
k2
ak2

〉
∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈ak1

ak′1
〉〈a†k2

a
†
k′2
〉

〈a†k1
ak1
〉
〈
a
†
k2
ak2

〉
∣∣∣∣∣∣ , (7.44)

g−(θ) =

∣∣∣∣∣∣
〈ak1

a
†
k2
a
†
k′1
ak′2
〉

〈a†k1
ak1
〉
〈
a
†
k2
ak2

〉
∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈ak1

a
†
k′1
〉〈a†k2

ak′2
〉

〈a†k1
ak1
〉
〈
a
†
k2
ak2

〉
∣∣∣∣∣∣ . (7.45)

Here the symbol k1 and k2 indicate two jets of different kinetic energy but propagating along

the same direction, while k′1 and k′2 represent another pair of such co-propagating jets along

a direction with a relative angle of θ to that of k1 and k2. Following the same spirit as that

in Ref. [25] and by taking the finite size of the condensate into consideration, we obtain

〈
akjak′j

〉
= e

i(φMj−ωjt−π/2) ρ̃(kj + k′j)

2π
cosh(γj) sinh(γj), (7.46)〈

a
†
kj
ak′j

〉
=

ρ̃(kj − k′j)

2π
sinh2(γj), (7.47)

where ρ̃(k) is defined as the Fourier transformation of a uniform disk-shape density ρ(r),

ρ(r) =
1

2π

∫
d2keik·rρ̃(k). (7.48)

And ρ(r) is the density distribution function of the condensate as

ρ(r) =


1 |r| ≤ R

0 |r| > R

(7.49)

143



with R is the radius. Therefore, the analytic formulas for g±(θ) when γj � 1 and |ki|R� 1

are

g+(θ) =

∣∣∣∣4ρ̃(k1 + k′1)ρ̃∗(k2 + k′2)

R̃4

∣∣∣∣
=

∣∣∣∣4J1(|k1|R(θ − π))J1(|k2|R(θ − π))

|k1||k2|R2(θ − π)2

∣∣∣∣ , (7.50)

and

g−(θ) =

∣∣∣∣4ρ̃(k1 − k′1)ρ̃∗(k2 − k′2)

R̃4

∣∣∣∣
=

∣∣∣∣4J1(|k1|Rθ)J1(|k2|Rθ)
|k1||k2|R2θ2

∣∣∣∣ , (7.51)

where J1(x) is the first order Bessel function of the first kind.

It worth mentioning in more detail that to experimentally extract the interference fringe

phase φθ at a particular emission direction θ, we average over an angular span from θ− 0.12

to θ+ 0.12 to obtain the radial density distribution ρ(r, θ) in order to achieve the best signal

to noise ratio (see Fig. 7.8b). We then perform Fourier transformation on the radial density

to get the complex density amplitude of the interference fringes in momentum space ρ(k, θ).

The phase φθ at kf is then evaluated from this complex amplitude. Although our jet width

is small, that is 2◦ for ω/2π = 3 kHz and 1.5◦ for ω/2π = 5.63 kHz, this average results in

a significantly broadened phase correlation shown in Fig. 7.8e. To experimentally extract

the phase constant φs, we fit the histogram of φθ + φθ+π to get the peak position. We also

calculate the expected phase shift based on our experimental sequence with a time of 18.5 ms

from the start of the modulation to the start of imaging. The first sinusoidal modulation

pulse lasts for 6 periods while the second lasts for 17 periods. Meanwhile we take into account

the time delay of the modulation pulse of 0.041 ms due to system response. Therefore the

phase constant estimated from our experimental sequence is 0.9(2) where the uncertainty

arises from the duration of our 20 µs imaging pulse.
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7.4.2 Temporal coherence from inversion of time-evolution

Next we show the temporal coherence of the matter-waves radiation by reversing the time

evolution. Similar experiments to reverse parametric amplification are realized based on

photonic and atomic fields with two well-defined outgoing modes and low atom numbers

[112, 74, 73], whereas the condensate in our system simultaneously couples to about 300

momentum modes, and involves about 105 atoms.

We perform the experiment as follows: after modulating the scattering length, we jump

the phase of the modulation by α (see Fig 7.9a). Here a single frequency modulation of

ω/2π = 2.1 kHz with amplitude aac = 50a0 is applied. We monitor the evolution of the

radiation patterns, from which we determine the total emitted atom number N (Fig. 7.9b).

Without phase jump, the atoms excited into jets increase exponentially as a function of

modulation time. As soon as we change the driving phase, a clear suppression of atom

number is shown for large phase jump. Figure 7.9c shows a comparison between two cases

with phase shift α = 0 and α = π with example average images of the emission pattern.

To be more quantitative, we evaluate the suppression ratio η(α) = Nα(τc)/N0(τc) at time

τc = 5.76 ms when the maximal reversal occurs (see Fig. 7.9b). In particular when α equals

to π, the total excited atom number N reduces by as much as 51(3)% of that without the

phase jump (α = 0). At α = π, a reversal of 26(3)% (or 2,200 atoms) of the matter-wave

excitations back to the original condensate is observed.

We further evaluate the entropy S and effective temperature T from the distribution of

emitted atom number, which remains thermal before and after the phase jump, see Fig. 7.10.

Here we compare them for the two cases with phase jump α = 0 and π. In the case of

α = 0, S and T continuously increase while in the latter case, both of them decrease first

but eventually increase again. The reversal of these quantities suggests that the radiation

originates from a unitary evolution. The limited amount of reversal we can achieve is due to

off-resonant coupling to the finite momentum modes close to |~k| = kf , which can be seen

from our numerical calculation based GP equation in Sec. 7.5.
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Figure 7.9: Time reversal of the matter-wave radiation field. a shows that the
scattering length is modulated at frequency ω/2π = 2.1 kHz with amplitude aac = 50 a0 for
4.75 ms before a phase jump α is introduced to the modulation. b shows the total emitted
atom number N versus total modulation time τ . The blue, purple and red data correspond
to the phase jumps of α = 0, 2π/3 and π, respectively. The dashed lines are guides to the
eye. The inset shows the suppression ratio η versus α evaluated at τ = τc. A sinusoidal fit
gives the maximum reversal at α = 0.98(3)π , where η reaches 51(3)%. c shows the average
of 15 images of the matter-wave radiation at different times with phase jump α = 0 or π.
Here the condensates are confined in a disk-shaped trap with radius 13 µm. All error bars
correspond to one standard deviation of the mean value.
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Figure 7.10: Effective temperature and entropy of the matter-wave radiation field.
Here we shows the entropy S and temperature T without (α = 0, blue circles) and with the
phase jump (α = π, red circles). The lines here are guides to the eye. The inset compares
the population distributions P (n) at τc with α = 0 (blue) and π (red). The arrows in panel
indicate the corresponding time when the average images of matter-wave emission are shown
in Fig. 7.9c.
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Figure 7.11: Numerical simulation on reversal of matter-wave radiation. a shows
the time evolution of the total emitted atom number N for different phase jump α = 0
(blue), 0.44π (purple), 0.89π (red), and 1.33π (orange). Here the phase jump happens at
τ = 4.76 ms while optimal suppression is achieved at τc = 5.62 ms. b shows the emitted
atom number at different momentum modes Nk(α) as a function of phase jump α at τc. c
compares the overall suppression ratio η from simulation (blue curve), suppression ratio for
a particular momentum mode kf (black curve), and experiment (dots).

7.5 Numerical simulation of time reversal experiment

In this section, we use numerical simulation based a dynamical Gross-Pitaevskii equation to

investigate the partial reversal of radiating matter-wave fields. We find that this imperfect

reversal results mostly from the off-resonant coupling to finite momentum modes close to

|k| = kf .

Here we start with the same Gross-Pitaevskii equation, see Eq. (6.1),

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + V (r) + Udc|ψ|2 − µ

]
ψ

+ Uacf(t)|ψ|2ψ,
(7.52)

where ψ is the wavefunction and µ = 2π~ × 19 Hz is the static chemical potential of

the condensate, V (r) is the disk-shaped trapping potential as a function of radius r with

V (r) = 2π~× 300 Hz for 13.6 µm≥ r ≥ 13 µm and V (r) = 0 for the rest, Udc = 4π~2adc/m
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and Uac = 4π~2aac/m are the DC and AC interaction strengths with adc = 3a0 and

aac = 50a0. In addition, we have f(t) = sin(ωt) when t ≤ 4.76 ms and f(t) = sin(ωt + α)

for t > 4.76 ms. These parameters are chosen according to our experimental conditions.

The results from simulation using a CUDA-based solver [23] shows great agreement with

the experiment. First of all, the total emitted atom number is suppressed after the phase

jump α close to π (see Fig.7.11a). The suppression sensitively depends on the phase of the

second pulse α. Similarly to the analysis of our experimental data, we then look at the

suppression ratio as a function of phase α at τc = 5.62 ms when the optimal suppression

appears (see Fig.7.11c). The suppression ratio varies as a function of α in the same way as

in our experiment and the best suppression can be achieved is η = 0.57 comparable to the

experimental result.

The reason for this partial suppression is the off-resonant coupling to finite momentum

modes close to |k| = kf . We examine more carefully the emitted atoms in different mo-

mentum modes (see Fig. 7.11b), not all atoms are excited with a particular well-defined

momentum. Instead, atoms spread across a range of momentum modes due to uncertainty

principle since the atoms are confined within a finite radius of 13 µm. These momentum

modes are then off-resonantly coupled to the external modulation without perfect phase

matching. Therefore population in these off-resonantly excited modes are maximally re-

versed at different phase jumps. For one particular momentum mode, the population can be

reduced by as much as 70%, while the overall population is only suppressed to about 50%,

consistent with our measurement.

Beside this off-resonant coupling, we anticipate the reversal can be limited by other effects

such as the fast counter-rotating terms and the motion of the emitted atoms as well. The

counter-rotating terms lead to quick population oscillations seen in Fig. 7.11a; they also

accumulate phase and eventually limit the reversal. Furthermore, when atoms move out of

the condensate, they can not be transferred back to the condensate anymore. These effects

are included in the simulation but their contributions to the limited reversal are hard to
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separate in our numerical model.

7.6 Conclusion

In conclusion, we have investigated more deeply into the properties of the emitted jets and

showed that the mode population exhibits a thermal-like distribution. This thermal-like dis-

tribution is generated from a two-mode squeezing process connecting to the famous Unruh

radiation in a constant accelerating frame. Thus we consider this experiment as a demonstra-

tion of a new type of quantum simulation to investigate quantum phenomena in a non-inertial

frame. Albeit thermal from local measurements [63], such matter-wave radiation possesses

long-range spatial and temporal coherence, which distinguish it from classical thermal radi-

ation. Quantum simulation of frame transformation can pave an alternate way to study the

intriguing topics at the interface of quantum and relativistic physics [41, 95, 54, 11, 99, 89, 35]

such as the quantization of field in a curved spacetime.
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CHAPTER 8

OUTLOOK TO FUTURE RESEARCH

Beside the results presented in the previous chapters, we have come across various interesting

observations that have not been studied in comparable depth. This chapter is dedicated to

these interesting results that we have explored in both experiment and numerical simulations

that have not yet been well studied. I hope this serve as a lead to future investigation of the

interesting noneqiulibrium physics in driven condensates.

8.1 Lattice shaking

8.1.1 Domain structure engineering

Periodic shaking of an optical lattice is a very effective way of Floquet engineering the

single particle dispersion. We have demonstrated the quantum simulation of a paramagnetic

to ferromagnetic phase transition by dramatically modify the ground band structure with

strong driving. We also learned that quantum noise plays a important role in the formation

of domains during the coherent inflation process in chapter 4. We hence tried to use phase

imprinting to seed fluctuations at particular length scale to measure the inflation rate of a

particular inflaton mode.

We realized that this phase imprinting can be implemented a engineering technique to

form specific domain structures in a deterministic manner. Here we perform a seeded quench

experiment similar to that in section 4.4. The condensates are quenched from shaking

amplitude sc = 13.1 nm to s = 25 nm. Right before the quench of the shaking amplitude,

we perform a fast phase imprinting by quickly pulsing the DMD laser with a typical duration

of 20 µs. We can perform such phase imprinting with different seeding momentum, see

Fig. 4.4. After the quench of shaking amplitude, we reconstruct the spin density image after

the domain fully forms. Figure 8.1 shows two examples of the engineered domain structure

with seeded momentum q′ = 0.084 qL (a) and 0.13 qL (b). The resulting domain size is
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Figure 8.1: Density wave and domain structure with phase imprinting. The con-
densates are quenched from shaking amplitude sc = 13.1 nm to s = 25 nm after phase
imprinting with the seeding momentum q′ = 0.084 qL (a) and 0.13 qL (b). The phase pattern
is illustrated in the top row. The middle row shows the density wave at time t = 12 ms (a)
and 8 ms (b). The bottom row shows the corresponding domain structure at time t = 16 ms
(a) and 14 ms (b), which remains stationary.
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simply given by the seeded momentum d = 2π~/q′ since the imprinted phase is a sinusoidal

in real space, δφ sin(q′x/~).

This bring opportunities to further study the dynamics of domain walls. Normally,

system forms intricate structures of domains when driven across the phase transition non-

adiabatically. These domains are far from thermal equilibrium but topologically stable for

long time compared to the critical/inflation dynamics. Due to the varying intricacy from

shot to shot, it hard to learn about how these domains approach further equilibrium after

they form. In many systems the domains tend to gradually grow over time and this process is

called coarsening [16, 107]. The theory of universality expects that the coarsening process to

satisfy the dynamic scaling hypothesis. According to this hypothesis, the domain structures

at later times should look identical to those at early times except for an increase in the

domain size. With the capability of staring from a deterministic regular domain structure, it

is possible to study such coarsening process. We can initialize the system in the ferromagnetic

phase with the finest phase imprinting to have smallest possible domains, thus the domains

dynamics will not be affected by the edges before the size becomes comparable to the size

of the gas. It is also interesting to test how long it takes to scramble the initial distribution

during the coarsening process starting from different domain configurations.

8.1.2 Interesting dynamics from double quench dynamics

In another interesting experiment further investigating the coherent dynamics, we suddenly

quench off the lattice shaking after the system evolved sometime in the ferromagnetic phase.

In a regular seeded experiment, we observe the damped oscillation of the density wave as

we keep shaking. We next suddenly turn off the lattice shaking at various times when the

amplitude of the density reaches a minimum (see Fig. 8.2). We observe a large revival of

the density wave oscillation after the lattice shaking being turned off. This later density

wave oscillation reflects the amount of energy being deposited to the condensate because of

shaking and serve a probe to the energy transfer between the lattice and atoms. Another
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Figure 8.2: Density wave oscillation in double quench seeded experiment The con-
densates are seeded at momentum q′ = 0.13 qL and quenched from shaking amplitude
sc = 13.1 nm to s = 25 nm. Amplitude (top panel) and phase (bottom panel) of the
density wave are compared between cases when shaking amplitude is quenched back to zero
at t = 14 (blue), 22 (red), and 32 ms (green). The data without the second quench is shown
in black. The error bars indicate 1σ standard error.

interesting aspect is that the revived the density waves after quench-off signals the positions

of the domain walls.

We also perform a similar quench-off experiment in the unseeded ramp experiment (see

Fig. 8.3). Here we linearly ramp the shaking amplitude with a ramp rate ṡ = 0.64 nm/ms

across the critical point at t = 0. After passing the critical point, the lattice shaking is

suddenly turned off at t = 38.6 ms. As the system transitions to the ferromagnetic phase,

we observe the initial formation of the density wave facilitating the formation of domains at

the later time. This density wave quickly relaxes as domain forms. After the lattice shaking

is quenched off, we observe a huge revival signal of the density wave whose peaks and troughs

mark the position of the domain walls. This signal can serve as a probe of domain walls in

studying coarsening dynamics without domain reconstruction imaging.
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Figure 8.3: Density wave oscillation in double quench unseeded experiment. Here
we linearly ramp up the shaking amplitude s with a ramp rate ṡ = 0.64 nm/ms across the
critical point sc = 13.1 nm at time t = 0. The shaking amplitude is suddenly turned to
zero at t = 38.6 ms. a, Examples of density density waves emerged during inflation and
after quench off the lattice shaking. b, The density structure factor Sq normalized to its
maximum value after the quench back. Peaks appear at ±qd = ±0.14 qL. c, The density
variance δn2 from integrating the structure factor Sq and again normalized to its maximum
value after quenching off the lattice shaking. The error bars indicate 1σ standard error.
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Figure 8.4: Time evolution of dark soliton-like excitation in BEC. Here we use a
ring trap with a radius of R = 10 µm from DMD and the DC scattering length is kept at
adc = 5a0. a and b show the time evolution of the condensates after phase imprinting pulse
with a duration of 0.8 ms with a vertical and horizontal semidisk DMD pattern (the black
region indicate the mirrors that are turned on).

8.2 Oscillating interaction

8.2.1 Jet emission with excited condensates

We are always fascinated by the quantum origin of the jets in our Bose firework. These

jets are amplified quantum fluctuations using the oscillating interaction as an example of

parametric amplification. Toward the application of our Bose fireworks, one naturally would

come up with the interesting idea of amplifying other weak excitation in condensates which

are normally hard to detect. Such idea of comprehensive tomography of the momentum

space spectrum using parametric amplification would require modulation of interaction at

various frequencies in order to amplify population in different momentum mode. On the

other hand, since the jets drain particles from a ground state (BEC or vacuum in the regular

Bose fireworks case), we think if the emission pattern from a single frequency modulation
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would carry enough information of the particular ground state. Here we first tried to look

at the matter-wave emission when the condensates host a dark soliton-like excitation.

We introduce such excitation by phase imprinting using DMD. Here we want to achieve

a large phase shift up to π far beyond the perturbation regime in the inflation case. There

are several difficulties in terms of such phase imprinting. First of all, since we use the DMD

to project horizontal box potential at the same time, we can only use pattern switching to

flash on and off the phase imprinting pattern. Because the fastest switching rate for the

DMD (DLP300) is only 4 kHz, the shortest pulse time is limited to 0.2 ms. Since the coating

of the DMD window is not designed for the 788 nm laser that we are use for projection, we

can only deliver ∼ 10% of laser power to the atoms and thus the amount of phase shift will

be limited. In addition, the projection resolution will also limit the phase imprinting. In

the ideal case, the imprinted phase should go from zero to finite value φ as a step function

in space but finite resolution will smooth this step function causing intermediate phase shift

across the transition region. Despite the difficulties we managed to try this experiment using

the existing DMD setup.

We first just look at the evolution of the condensates after a phase imprinting DMD

pulse, see Fig. 8.4. Here we start with condensates (∼35,000 atoms) trapped in a ring trap

with a radius of R = 10 µm from DMD and the DC scattering length is set to adc = 5a0.

In this experiment, we quickly flash on either the horizontal or vertical semi-disk potential

for Tpulse = 0.8 ms. We later take in situ images at time t after the start of the pulse. The

density evolution from in situ imaging suggests a dark soliton-like excitation is created by

the phase imprinting pulse and the region within which the density was maximally depleted

stays at the same position as a function of time. A 1D GPE simulation shows that this

kind of phase imprint will also create some phonon excitations and their reflection from the

trap wall is probably responsible for later time evolution where the density profile becomes

donut-like.

Right after the phase imprinting pulse, we start to modulate the interaction as a(t) =
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Tpulse = 0.2 ms Tpulse = 0.4 ms Tpulse = 0.6 ms

Tpulse = 0.8 ms Tpulse =1.0 ms Tpulse = 1.2 ms Tpulse = 1.4 ms

√Density variance    σ

No pulse

Figure 8.5: Density variance from jet emission with vertical phase imprinting. Here
we apply a vertically oriented semi-disk potential using DMD for various pulse duration of
Tpulse. As pulse duration gets longer, the emission in the vertical direction become more
suppressed. For even longer pulse duration, there are extra atoms being excited out the
condensate beside emitted jets.
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adc + aac sin(2πft) with frequency f = 3.5 kHz with the DC scattering length adc = 5a0

and the AC scattering length aac = 62.5a0. In order to see the effect of the semi-disk

potential pulse on the jet emission more clearly, we show the square root of density variance

σ =
√
〈n2〉 − 〈n〉2 instead of the mean density 〈n〉. This observable is particularly good

for seeing small shot-to-shot varying signals on top of a large static background. Since the

density of the condensates we use here is low giving weaker jets compared to that in the

previous chapters, the static imaging background is more problematic. By looking at the

variance of density, we will eliminate the static background while the signal from random

jet emission pattern are preserved. Here we only look into the case for the vertical semi-disk

potential by pulsing it on for a different amount of time Tpulse, see Fig.8.5. In the case

without the pulse, jets emit in all directions symmetrically. As we increase the pulse time,

the effect becomes visible, where the jet emission along the horizontal direction (along which,

we have a phase jump in the middle at x = 0) is suppressed. In principle, this effect should

reach a maximum when we have π phase jump and then diminishes when the jet emission

become symmetric again (2π phase jump). However, it induces some other effects and the

jets become messy because the pulse time is too long and comparable to other time scales

in the condensates.

We later test the suppression effect for different orientations of the semi-disk potential.

Previously we already showed the effect from a vertically orientated semi-disk in Fig.8.5, this

time we rotate it 90 degrees so it becomes horizontally oriented. Applying this pulse will

now suppress the emission in the vertical direction and indeed observed in the experiment

shown, see Fig.8.6. On might argue that this effect can just come from the fact that the

dark soliton divides the gas into two semi-disks, which changes the geometry, and jets now

only like to emit in the direction where they can find the longest path across the condensates

instead of destructive interference. One way to argue against this statement is to see how

well a semi-disk trap can suppress the jet emission along its short axis as compared to that

in the phase imprinting case. An example of this test with atoms in a horizontally oriented
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Figure 8.6: Jet emission suppression along different directions. Here we compare the
emission pattern after phase imprinting with a vertical and horizontal semi-disk potential
with pulse duration of Tpulse = 0.8 ms. For vertical (horizontal) semi-disk potential, the
jet emission is suppressed along the vertical (horizontal) direction. And this suppressed
jet emission pattern is different from that of jets emitted from condensates initially in a
semi-disk trap.
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Figure 8.7: Excitation in remnant BEC. The remnant atoms in the BEC are captured
in the high-intensity imaging after modulation for time t. After the jets are emitted, the
remnant atoms form a nice looking donut. Although emission pattern of jets is random from
shot to shot, the structure of the remnant BEC does not vary much. Here the modulation
has a frequency of f = 3.5 kHz and an amplitude of aac = 52a0. The BEC has 30,000 atoms
and a radius of R = 13.7µm.

semi-disk trap is shown in Fig.8.6. We see the semi-disk does not suppress the jet emission as

much as the phase imprinting does, which is a clear indication that destructive interference

plays a critical role in jet suppression.

Although these experimental results are still preliminary, it is showing very different

behavior compared to the regular emission of matter-wave jets. We can clearly see that

the information of the initial condensates is imprinted to the jet structure. Thus a careful

backtracking analysis on the emission structure from an arbitrary initial state might help to

understand its properties.
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8.2.2 Excitation in remnant BEC

So far in this thesis, we study the jet emission in Ch. 7 and Ch. 5, and density waves that

predate the emission in Ch. 6. What is left within the condensates after the fireworks?

This is also a very interesting question. Previously in Ch. 7 and Ch. 5, we use low-intensity

imaging to boost our signal-to-noise ratio for detecting low-density atomic jets. As a result,

the high-density center part of the BEC turns out to be highly saturated in the absorption

image and does not faithfully show the structure of the remnant atoms.

In this experiment, we focus on the BEC after the emission of the jets with high-intensity

imaging (see Fig. 8.7). In this case, the jets become faint background but the structure of

the remnant BEC become clear. Here the modulation has a frequency of f = 3.5 kHz and an

amplitude of aac = 52a0. The BEC has 30,000 atoms and a radius of R = 13.7µm. Although

the emission pattern of jets is completely random from shot to shot, the structure of the

remnant BEC does not vary very much. After averaging for 15 images at each time t, the

density wave at the early time is smeared out (t < 6 ms); the emitted jets are averaged to a

weak background (t > 8 ms and t < 16 ms ); the remnant BEC shows the same donut-shaped

structure from shot to shot (t > 12 ms). Numerical simulations also show similar behavior

and the ”donut” even oscillates at much longer time scale than the jet emission. This

observation indicates that such remnant excitation is relatively low-energy and potentially

relates to the interesting collective excitation in the hydrodynamic limit [52, 100].
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[67] M. Krämer, C. Tozzo, and F. Dalfovo. Parametric excitation of a bose-einstein con-

densate in a one-dimensional optical lattice. Phys. Rev. A, 71:061602, 2005.

[68] Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo, and Gabriele

Ferrari. Spontaneous creation of kibble–zurek solitons in a bose–einstein condensate.

Nature Physics, 9:656, 2013.

[69] L. D. Landau and E. M. Lafshitz. Statistical Physics, Part 2. Oxford, 3 edition, 2008.

[70] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J. Schmiedmayer. Local emergence

of thermal correlations in an isolated quantum many-body system. Nature Physics,

9:640, 2013.

[71] S. Lellouch, M. Bukov, E. Demler, and N. Goldman. Parametric instability rates in

periodically driven band systems. Phys. Rev. X, 7:021015, 2017.

[72] Pengxiong Li, Lei Feng, and Yanhong Xiao. Resolving multiple peaks using a sub-

transit-linewidth cross-correlation resonance. Phys. Rev. A, 89:043835, 2014.

171



[73] D Linnemann, J Schulz, W Muessel, P Kunkel, M Prüfer, A Frölian, H Strobel, and
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