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ABSTRACT

In recent years there has been an explosion of interest in the field of quantum many-body

physics. Understanding the complex and often unintuitive behavior of systems containing

interacting quantum constituents is not only fascinating but also crucial for developing the

next generation of quantum technology, including better materials, sensors, and comput-

ers. Yet understanding such systems remains a challenge, particularly when considering the

dynamics which occur when they are excited far from equilibrium. Ultracold atomic gases

provide an ideal system with which to study dynamics by enabling clean, well-controlled

experiments at length- and time-scales which allow us to observe the dynamics directly.

This thesis describes experiments on the many-body dynamics of ultracold, bosonic ce-

sium atoms. Our apparatus epitomizes the versatility of ultracold atoms by providing ex-

tensive control over the quantum gas. In particular, we will discuss our use of a digital

micromirror device to project arbitrary, dynamic external potentials onto the gas; our de-

velopment of a powerful new scheme for optically controlling Feshbach resonances to enable

spatiotemporal control of the interactions between atoms; and our use of near-resonant shak-

ing lattices to modify the kinetic energy of atoms.

Taking advantage of this flexible apparatus, we have been able to test a longstanding

conjecture based on the Kibble-Zurek mechanism, which says that the dynamics of a system

crossing a quantum phase transition should obey a universal scaling symmetry of space and

time. After accounting for this scaling symmetry, critical dynamics would be essentially in-

dependent of the rate at which a system crossed a phase transition. We tested the universal

scaling of critical dynamics by using near-resonant shaking to drive Bose-Einstein conden-

sates across an effectively ferromagnetic quantum phase transition. After crossing the phase

transition, condensates divide themselves spatially into domains with finite quasimomentum.

We measured the growth of these domains over time and the correlation functions describing

their spatial distribution by directly reconstructing the quasimomentum distribution. We
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observed the expected scaling laws across more than an order of magnitude in the crossing

rate, aside from which the observed critical dynamics were indeed independent of the crossing

rate. These experiments provide strong support for the universal scaling symmetry of space

and time and the extension of the Kibble-Zurek mechanism to quantum phase transitions.

We also present the first observation of Bose Fireworks: the sudden emission of many

bright, narrow jets of atoms from condensates with oscillating interaction strength. Even

though the underlying inelastic s-wave collisions induced by oscillating interactions are

isotropic, the collective nature of collisions in the condensate causes the outgoing bosonic

atoms to bunch into narrow jets in the horizontal plane. This bunching results from runaway

stimulated collisions, which we find can only occur above a threshold oscillation amplitude.

The observed atom number in the jets suggests that they are seeded by quantum fluctuations.

Moreover, in azimuthal correlation functions we observe forward correlations consistent with

theory, which saturate the limit from the uncertainty principle. We also observe partial cor-

relation between counterpropagating jets. Bose Fireworks provide a well-controlled platform

for understanding the diverse class of systems in which a coherent source rapidly emits pairs

of counterpropagating bosons.
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CHAPTER 1

INTRODUCTION

1.1 Quantum many-body dynamics with ultracold atoms

There is a lot going on near absolute zero. For much of history, scientists would have

expected absolute zero to be where fluctuation stopped and any matter became frozen.

Yet modern physics labs find that, instead of stopping, ultra-cold systems simply enter the

realm of quantum mechanics. A striking example of this is the Bose-Einstein condensation of

ultracold atoms [9, 49, 122]. Bose-Einstein condensates (BECs) are formed by using lasers to

cool atoms to the lowest temperatures of any objects in the known universe. In fact, NASA

will soon launch BECs into space and likely push those record low temperatures even farther

down1. BECs manifest the quantum mechanical wave behavior of matter in spectacular

ways, forming interference patterns and diffracting off of gratings like light or water waves.

All the while BECs act as superfluids, flowing around obstacles without friction. Yet they

contain a macroscopic number of atoms and have a size comparable to the thickness of

human hair. With all of these features it is no wonder that, in the past 22 years since the

first BECs were formed, they have captured the imaginations of physicists, and an enormous

and active field of research has formed around them.

Exotic and sometimes unintuitive features of quantum mechanics frequently manifest

in the study of ultracold atoms. Even when the atoms reach ultracold temperatures and

technical noise is carefully controlled, one sees dynamics driven by the ever-present quantum

fluctuations. In our experiments, the wave-particle duality is made obvious when the same

object exhibits the wave phenomena of interference and diffraction while also undergoing

phase transitions due to strong two-particle interactions or having pairs of atoms form into

molecules near Feshbach resonances. Key features, such as the increasing momentum spread

1. https://coldatomlab.jpl.nasa.gov/
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when a condensate shrinks, result from the fundamental limit at which parameters of a system

can be simultaneously characterized, set by the Heisenberg uncertainty principle. Under the

right conditions, the atoms can even develop a high degree of quantum entanglement, in

which the state of one atom is fundamentally dependent on those of the other atoms.

Developing a fundamental understanding of the many-body behavior which emerges in

the presence of these exotic quantum features is an important and challenging goal for modern

physicists. In particular situations, such as weakly interacting systems near equilibrium, the

many-body problem becomes tractable and one can develop a relatively simple description

of the system. Yet it has long been understood that quantum many-body problems are

fundamentally difficult to solve. In general, specifying and time-evolving the state of a

quantum many-body system requires exponentially greater resources than doing the same

for the corresponding classical system [63]. This difficulty often manifests in two situations.

The first is strongly correlated equilibrium phases such as superconductors, Mott insulators,

or fractional quantum hall systems. The second situation, which is the focus of this thesis,

arises when a quantum many-body system is brought far away from equilibrium.

Historically, a great deal of attention has been paid to systems at or near equilibrium.

Such systems are generally understood by the powerful apparatus of statistical mechanics.

To oversimplify things a bit, the power of statistical mechanics lies in the variety of systems

which it links and makes amenable to the same basic analysis. Indeed, statistical mechanics

has been extremely successful in predicting the emergent behavior of complex, interacting

many-body systems, as long as they are near equilibrium.

However, a variety of factors often prevent systems from reaching thermal equilibrium.

For example, the presence of a strong driving field or a large influx of energy or particles

will often keep a system away from equilibrium. Yet other systems may be brought out

of equilibrium by a sudden quench of their parameters, or by bringing them across phase

transitions. Even fundamental structural properties, such as strong disorder or topological
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defects, may prevent normal equilibration.

As a result, much of the universe around us is far from equilibrium. Indeed, starting at

the largest scales, the complex distributions of matter and energy at the scale of star systems,

galaxies, and clusters throughout the universe are certainly not in equilibrium. The influx of

solar energy holds the Earth itself away from equilibrium, resulting in the complex patterns

of weather and even in life itself. For practical purposes, a variety of important materials

are either formed by rapid quenches, such as strong alloys and plastics, or stuck in far-from-

equilibrium states, such as glasses, powders or foams [86]. At yet smaller scales, quantum

computing or simulation devices must be isolated and their interactions carefully controlled

in order to maintain their delicate quantum information. Of course, these are just a small

set of intriguing examples which hardly do justice to the multitude of fascinating far-from-

equilibrium systems around us.

No general paradigm exists for understanding the behavior of far-from-equilibrium sys-

tems. At least from our current perspective, these systems appear to exhibit a fantastic

variety of behaviors, which are not obviously connected. While their richness makes these

systems appealing, it poses a clear challenge to scientists: can we find universal principles

and classifications which link these seemingly disparate systems together? Just as the tools

of statistical mechanics provide a generic approach to understanding equilibrium systems,

we wish to develop general principles describing far-from-equilibrium systems. To that end,

it is invaluable to have clean and controllable platforms for performing experiments on far-

from-equilibrium dynamics. Such platforms enable us to develop the paradigmatic examples

from which we can infer (and later test) more general principles.

Ultracold atoms provide an ideal platform for studying quantum many-body physics far

from equilibrium. First of all, the laser cooling and evaporation techniques required to

remove entropy and access the quantum realm are extremely effective and well established

[111]. Second, atoms are extremely well understood at the level of individual properties and
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few-body collisions [36, 71]. This knowledge often enables us to derive simple models which

describe the many-body system dynamics and are microscopically justified [122, 24]. Third,

since the atoms are held in magnetic or laser traps under extremely high vacuum, they are

naturally very well isolated from their room-temperature environment. Not only does this

protect the delicate quantum state of the system, but it affords us the opportunity to bring

the system out of equilibrium in a controlled way. Fourth, the interesting features of these

quantum gases are large, typically at least hundreds of nanometers, and most dynamics

are slow, occurring at least on microsecond timescales. The length scale makes it possible

to measure density distributions or correlation functions with simple optical probes. The

timescale is amenable to the capture of movies which directly reveal interesting far-from-

equilibrium dynamical processes. The slow dynamics also makes cold atoms convenient

for Floquet engineering, in which one can generate effective Hamiltonians with desirable

properties by periodically driving the system on timescales much faster than the typical

dynamics.

On top of all of these desirable features, we have a spectacular array of capabilities for

controlling the many-body Hamiltonian. We generally think of this Hamiltonian,

H = HK +HP +HI, (1.1)

as the sum of three parts: the term HK for the kinetic energy, the term HP for the potential

of individual atoms, and the term HI describing interactions between atoms. In the ultracold

atom community there are well-established techniques for controlling each of these terms.

The kinetic term can be dramatically modified by the presence of an optical lattice. The

lattice replaces the free-space kinetic energy of p2/2m per atom with the band structure

familiar from condensed matter systems. With optical lattices, formed from the interference

between laser beams, one can choose the geometry and depth of the lattice to create the

desired band structure. The potential energy term can be controlled using the geometry
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and strength of dipole and magnetic traps. It is possible to achieve both homogeneous

and harmonic trapping, with aspect ratios from fully symmetric spherical traps to flattened

“pancakes” or even the highly elongated “cigar”. In the extreme of these aspect ratios, one

can achieve effectively two-dimensional or one-dimensional samples, in which the spacing of

energy levels in the other dimensions is much greater than any energy scale of the atoms,

preventing dynamics along that direction. Finally, we can control the interaction strength

for pairs of atoms by using Feshbach resonances [36]. Adjusting the magnetic field near

a Feshbach resonance can make the interaction strength between atoms strongly repulsive,

strongly attractive, or even nonexistent. The interaction energy can also be enhanced by

the high local density at the minima of an optical lattice. Together, all of these capabilities

position ultracold atoms as an ideal platform for studying quantum many-body dynamics

far from equilibrium.

1.2 Developments in this thesis

This thesis describes experimental studies of far-from-equilibrium quantum many-body dy-

namics using ultracold cesium atoms. We primarily explore two important situations: the

Kibble-Zurek mechanism for a quantum phase transition and Bose Fireworks in a system

which collectively emits identical boson pairs. We also discuss a variety of technological

developments which expand the cold-atom toolbox. In particular, we have developed a new

scheme for optical control of Feshbach resonances in order to spatiotemporally modulate the

interaction strength between atoms. We have also implemented a digital micromirror device

to generate arbitrary, dynamic potential energy surfaces.

The Kibble-Zurek mechanism (KZM) is uniquely fascinating for suggesting a universal

approach to the critical dynamics across a continuous, symmetry-breaking phase transition

[91, 168]. The KZM compares the time remaining for a system to cross equilibrium to the

relaxation time at the corresponding distance from the critical point. When the relaxation
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time becomes longer than the time remaining, the system becomes effectively frozen, and

its correlation length stops growing. It is well established that both the relaxation time and

the correlation length of the equilibrium system should take a universal form, with a simple

power-law scaling in terms of the distance from the critical point. After the system crosses

the phase transition, the density of topological defects is directly related to the maximum

length of correlations established in the system. By this simple argument one can derive

scaling exponents for the spatial and temporal structures characterizing the dynamics from

the well established, universal scaling laws for the equilibrium state of the system.

We explore this space-time scaling symmetry of the critical dynamics using the effectively

ferromagnetic quantum phase transition for bosons in a shaken optical lattice. This phase

transition is enormously advantageous for studying the KZM. Because of the convenient dy-

namical timescales, we can directly watch the critical dynamics rather than merely testing

the structure of topological defects after dynamics have ceased. Moreover, it is straightfor-

ward to adjust the rate at which we cross the transition over orders of magnitude, since

the lattice shaking amplitude is directly controlled electronically. Finally, we are able to

carefully characterize the dynamics by reconstructing the domain structure of the gas and

even directly identifying individual topological defects.

This system enables us to experimentally test the applicability of the Kibble-Zurek mech-

anism to a much broader set of systems than has been previously explored. In particular, we

present one of the first comprehensive tests of the Kibble-Zurek scaling in a quantum phase

transition, a scenario which had not previously been explored experimentally (see also [11]).

We also provide new insights into the breakdown (or lack thereof) of the Kibble-Zurek scaling

in certain inhomogeneous systems. Furthermore, we demonstrate that the expected scaling

can still hold when the phase transition occurs in a Floquet engineered system with periodic

driving, in spite of the many ways in which Floquet systems challenge the typical predictions

of statistical mechanics [58]; for example, the long-time equilibrium state of most interacting
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Floquet systems is expected to be equivalent to an infinite temperature state [99, 47].

Our second major study began with the discovery of “Bose fireworks,” in which a BEC

with an oscillating scattering length suddenly emits many bright, narrow jets of atoms. The

oscillating scattering length enables inelastic, s-wave collisions in which pairs of atoms absorb

one quantum of energy from the oscillating field and are ejected in opposite directions. Even

though the underlying inelastic collisions are isotropic, the collective nature of collisions in the

condensate causes the outgoing bosonic atoms to bunch into narrow jets in the horizontal

plane. Moreover, by tuning the emission rate we have observed the threshold rate above

which Bose stimulation leads to runaway emission and the appearance of jets. We also see

that each jet is correlated (though not perfectly) with a counter-propagating partner. We

explain the typical width of the jets with a careful theoretical calculation, which indicates

that the jet width saturates the limit set by the Heisenberg uncertainty principle due to the

finite size of the BEC.

The behavior of Bose fireworks is closely related to the dynamics of a large class of

systems in which a cooperative source emits excited pairs of identical bosons. The nature

of such systems can vary widely: for example, it may be a laser in a nonlinear medium, a

decaying molecular BEC, or two colliding BECs. In many respects, because of their common

features these systems and many others are expected to exhibit similar dynamics. The major

advantage of studying Bose fireworks is the wide tunability of nearly every parameter relevant

to the emission process. We can control the size and shape of the BEC, the rate of emission,

and the energy of each emitted particle. Moreover, we can turn the emission process on and

off at will to carefully probe the state of the system at every stage of the dynamical process.

On top of all of these features, the technical noise is sufficiently small that the emission is

only seeded by quantum fluctuation. Thus, Bose fireworks are well positioned for future

studies which dive deeper into its many interesting features and develop a comprehensive

picture of dynamics in this large class of closely related systems.
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We have also made a variety of technological advancements to expand the toolbox of ultra-

cold atoms. Most notably, we have developed and demonstrated a new scheme for fine spatial

and temporal control of the interaction strength using optical control of Feshbach resonances

(OFR). Unlike previous demonstrations of OFR [60, 144, 160, 59, 17, 158, 23, 159, 66], we

achieve lifetimes of hundreds of milliseconds for a reasonable change in the scattering length

in a degenerate quantum gas, which is long compared to the typical dynamical timescales.

Moreover, by using a laser at a tune-out wavelength we eliminate the parasitic dipole forces

which typically accompany the local change in scattering length and would often swamp

out the interesting effects of spatially modulated interactions. We have used OFR to study

the response of the system to a rapidly oscillating effective magnetic field, as well as the

local collapse dynamics of a condensate with repulsive interactions at its edge and attractive

interactions at its center.

Almost every experiment we perform now takes advantage of our ability to create ar-

bitrary, dynamic potentials with a blue-detuned laser modulated by a digital micromirror

device. This fantastic device consists of an array of mirrors, each a few microns across, which

can be independently turned on or off thousands of times per second. We image the intensity

pattern reflected from the on-state mirrors onto the atoms using our high-resolution objec-

tive, thus creating a finely-structured repulsive potential landscape which we can control at

will. We will particularly focus on our applications of this technology to performing bragg

spectroscopy to measure the roton-maxon dispersion relation in the shaken lattice, as well

as to dynamically forming homogeneous BECs with arbitrary shapes in two dimensions.

Finally, our studies of bosons in shaken lattices required a careful theoretical treatment

as well as a clean, well controlled experimental setup. We first explain the nature of the

effectively ferromagnetic quantum phase transition, explored originally in Ref. [119, 75].

We continue by providing new insights into the influence of micromotion on interactions.

We further demonstrate a different kind of phase transition which occurs when the shaking

8



frequency is slightly red-detuned from the ground to first excited band gap. Throughout, we

describe a number of key technical improvements for obtaining the best performance of the

shaken lattice setup.

This thesis is organized as follows: First, in Ch. 2 we describe the essential features of the

apparatus with which we perform experiments on ultracold cesium atoms. Our primary focus

is on new developments or improvements made for this thesis. Next, in Ch. 3 we provide

a theoretical overview of bosons in shaken optical lattices using Floquet theory. The three

subsequent chapters present the core results of this thesis on quantum many-body dynamics

far from equilibrium: In Ch. 4 we present our study of the space-time scaling symmetry

of critical dynamics, closely associated with the Kibble-Zurek mechanism, using the phase

transition in the shaken optical lattice. Then, in Ch. 5 we present the first observation of Bose

Fireworks, the collective emission of matter wave jets from BECs with oscillating interaction

strength. Next, in Ch. 6 we explain our new approach to optically controlling Feshbach

resonances while maintaining a long-lived quantum gas and without parasitic dipole forces.

This thesis concludes in Ch. 7 with a discussion of many interesting future directions for

each of our projects, including a variety of preliminary results.
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CHAPTER 2

VERSATILE ULTRACOLD CESIUM APPARATUS

Our apparatus for performing experiments with ultracold cesium atoms is extremely versatile.

We can create gases in one, two, or three dimensions. We have a high resolution objective lens

for detecting fine structure in absorption images and also for projecting arbitrary, dynamic

potentials created using a digital micromirror device. We can engineer exotic band structures

by forming and shaking optical lattices. We can even create complex spatiotemporal patterns

of the interaction strength between atoms, using a combination of magnetic and optical

control of Feshbach resonances. While some features of the ultracold cesium apparatus on

which these experiments are performed have been discussed in great detail in previous theses

from the lab [81, 162, 75], the purpose of this chapter is to explain the key features required

for understanding the experiments in this thesis and to describe the exciting new features

and technical improvements made for this thesis work.

In Sec. 2.1 we will review the features of the apparatus which are most important for un-

derstanding the experiments discussed in later chapters. The three subsequent sections focus

on extensions of pre-existing features of the experiment, specifically the saturated absorption

imaging in Sec. 2.2, the use of magnetic Feshbach resonances to induce oscillating interac-

tion strength in Sec. 2.3, and the use of phase-modulated RF to drive the acousto-optic

modulators which shake the lattice in Sec. 2.4. In Sec. 2.5 we discuss our implementation

of a digital micromirror device in order to project arbitrary potentials for the atoms. This

versatile technology serves a valuable role in many of our experiments, particularly for per-

forming Bragg spectroscopy and creating homogeneous gases of arbitrary shapes and sizes.

Many other technical improvements are best explained in the context of particular science

goals, and we defer those discussions to Secs. 4.3 and 5.3. Finally, the development and

demonstration of a new technique for optically controlling Feshbach resonances is discuss in

Ch. 6.
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Figure 2.1: A schematic overview of the apparatus. A) A top-down view emphasizing the
arrangement of the dipole trap (DT) beams, the corresponding retro-reflection mirrors for
forming horizontal lattices, and the horizontal imaging path. B) An isometric view focusing
on the arrangement of dipole trapping beams near the atoms. Note that the two beams
which form the vertical lattice are separated by 16◦. These figures are a modified version of
those which originally appeared in Ref. [162].

2.1 General Setup

Almost all of our experiments begin with a standard procedure for laser cooling and evap-

orating a gas of 133Cs atoms to generate a Bose-Einstein condensate of 30, 000 ∼ 100, 000

atoms in an elliptical trap [81, 162, 75]. For approximately two seconds we load atoms into

a Magneto-Optical trap (MOT), followed by relatively brief periods of compressed MOT,

molasses, and degenerate Raman Sideband Cooling (dRSC). Unlike in the original experi-

ment setup [81, 162], the tight lattice in which we perform dRSC is now formed by a laser

near-detuned to the D1 transition of Cs. This adjustment was made so that these lattice

beams could remain on during imaging (as the beam incident on the vertical camera can

be spectrally filtered). However, we have not yet implemented an imaging scheme which in-
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volves the presence of the dRSC lattice. After dRSC we employ a roughly six second period

of forced evaporation [82], by the end of which the atoms are Bose condensed. Depending

on the needs of particular experiments, the evaporation period can be made faster by one or

two seconds at the expense of the atom number in the condensate. For example, in general

fewer atoms are necessary for experiments in lower dimensions.

There are three primary dipole traps formed from 1064 nm lasers in our experiment, see

Fig. 2.1A. The so-called z-axis dipole trap (ZDT) or “light sheet” is a beam with an elliptical

intensity profile which provides the primary vertical confinement during the initial loading

and evaporation stages of the experiment. Due to its high intensity, ZDT also provides the

primary horizontal trapping perpendicular to its propagation direction, causing the density

profile of the BEC to be highly elliptical. At 45◦ on either side of the ZDT beam are

the x-axis dipole trap (XDT) and y-axis dipole trap (YDT). These play an important role

in capturing atoms for evaporation during the early stages of the experiment and provide

(primarily) horizontal trapping to the BEC.

After passing through the main chamber, the XDT and YDT beams can be retro-reflected

to form optical lattices. The intensity of each retro-reflected beam is controlled by a pair

of acousto-optic modulators, see Fig. 2.1A. When the AOMs are off (that is, the radio-

frequency (RF) wave which drives an AOM is not present), there is no retroreflection, but

by turning on the AOMs we can turn on the YDT- or XDT-retro beams, which interfere

with the main dipole traps to form optical lattices. In this way we can form one-dimensional

(1D) or two-dimensional (2D) horizontal optical lattices of spacing d = 532 nm whose depth

we control by modulating the driving power of the AOMs. See Sec. 2.4 for a discussion of

using the RF phase to shift the lattice position. Note that we typically report the depth of

the lattice in terms of the recoil energy ER =
~2k2L
2m = h × 1.325 kHz, where kL ≡ 2π/λ is

the wavenumber of the laser with wavelength λ = 2d = 1064 nm, m = 133 amu is the mass

of a cesium atom and h is Planck’s constant.
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When we are interested in studying three-dimensional (3D) gases and the elliptical density

profile is not an issue, the XDT, YDT, and ZDT beams provide adequate trapping for the

BEC; for example, see the experiments described in Ch. 4. These three beams typically

form a trap with frequencies (ωx′ , ωy′ , ωz) = 2π × (12, 30, 70) Hz, where the axis x′ is the

propagation axis of ZDT and y′ is the perpendicular axis in the horizontal plane. By tuning

the power in each beam after evaporation, one can typically tune these values by roughly

±50%. However, when adjusting dipole trap powers after the BEC has already formed one

must take care not to excite motion of the gas, because collective motion of the superfluid

will persist for a very long time and can cause deleterious systematic effects.

If we wish to form effectively two-dimensional gases by using extremely tight vertical

confinement, or if we wish to remove ZDT and form circular gases with symmetric horizontal

trapping, then we take advantage of the vertical lattice beams, see Fig. 2.1B. These two

beams are split vertically from the same source and meet each other in the center of the

chamber at a 16◦ angle to form an optical lattice with a spacing of roughly 3.8 µm along the

vertical axis. The vertical confinement from ZDT makes the gas thin enough to fit into a

single site of the vertical lattice. By loading the entire gas into a single site of the lattice we

form a single “pancake” of atoms. At the maximum intensity of the vertical lattice beams, the

vertical trapping frequency is ωz = 2 kHz, much larger than the typical chemical potentials

or temperatures of our gases. Thus, all of the atoms occupy the vertical ground state and

the gas is effectively limited to two-dimensions. If we wish to form circular gases without

limiting the gas to 2D, we can reduce the intensity of the vertical lattice and compensate

by turning on a vertical magnetic field gradient which prevents the atoms from falling out

of the trap under the influence of gravity. In this way we can trap the atoms vertically with

frequencies as low as ωz = 200 Hz while avoiding the elliptical horizontal trapping from the

ZDT beam.

Another crucial control parameter for our ultracold Bose gases is the magnetic field. The
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primary set of magnetic field coils (the “MOT” or “main” field coils) are embedded close

to the vacuum chamber, underneath the vertical objective lens. The main coils produce

approximately homogeneous fields pointing along the vertical z-axis, as well as the vertical

gradients which are often used to levitate the atoms against gravity. Note that a vertical

levitation field gradient which cancels gravity is accompanied by weak horizontal magnetic

anti-trapping of frequency 2π×3 Hz. The offset field is essential for controlling the interaction

strength between pairs of atoms, see Sec. 2.3. Because of a carefully tuned pre-emphasis

circuit, the main coil magnetic field can be jumped to a new value with a time-constant of

roughly 100 µs [81]. Pairs of bias coils are also available along all three axes. The bias coils

play a crucial role in setting an appropriate field magnitude and direction for dRSC as well

as in positioning the horizontal center of the magnetic antitrapping when a vertical gradient

is present.

2.2 Absorption imaging

Essentially all of our experiments conclude with a measurement of the atomic density dis-

tribution via absorption imaging. We primarily use the vertical imaging path (Fig. 2.1B),

along which we can achieve a large numerical aperture NA=0.5 because the objective lens is

only one inch away from the atoms [75]. With perfect elimination of aberrations we could

achieve imaging resolution of 1 µm; in reality, aberrations typically limit us to 1.4 µm. The

magnification of the vertical imaging is 21.5×, such that each 13 µm pixel on the camera

corresponds to 0.605 µm at the atom plane. We use a high intensity imaging beam which

saturates the atomic transition so that we can obtain large signals in a short amount of time

(before atoms fly out of focus) and faithfully image high density samples. We also have a

low resolution horizontal imaging path (Fig. 2.1A) which we use primarily for characterizing

the cooling stages of the experiment or for experiments involving very large distances due

to a long time-of-flight (TOF). The horizontal imaging has a magnification of 1.2× and a
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resolution of 10.8 µm, which is limited by the CCD pixel size.

It is useful to take a brief detour and consider the behavior of a simple, coherent imaging

system with a single ideal lens [70]. In an idealized case which neglects diffraction effects

(geometric optics) there would be a perfect correspondence between the field distribution of

Uo(ξ) of the object and that of the image Ui(u), satisfying

Ui(u) =
1

|M |
Uo

( u
M

)
where the magnification of the system M = −di/do is determined by the distances di (do)

of the image (object) from the lens. In reality, diffraction effects limit the fidelity of the

correspondence between the object and image field distributions. Specifically, the image

field satisfies,

Ui(u) =

∫
d2ξh(u−Mξ)Uo(ξ), (2.1)

corresponding to the convolution of the object field with the amplitude spread function h(r),

which encodes the field distribution on the image plane corresponding to a single point from

the object plane. Note that h is often called the point-spread function, but we reserve that

for a different (related) quantity below. For an ideal lens, the amplitude spread function

depends only on the aperture size of the lens. Ignoring phase factors which do not affect

the intensity distribution of the image and assuming shift invariance of the system, the

amplitude-spread function is the Fourier transform of the pupil function P (k),

h(r) = − M

4π2

∫
d2kP (k)e−ir·k.
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An ideal lens of radius R has a pupil function

P (k) =


1 k ≤ kmax

0 k > kmax

where the cutoff kmax ≡ 2π
λdi

R is determined by the lens aperture. Based on the convolution

theorem, we find a very simple interpretation of Eqn. 2.1 in Fourier space,

Ũi(k) ∝ P (k)Ũo(Mk) (2.2)

where the image field amplitude at a particular wavevector is simply the object amplitude

multiplied by the Pupil function (after appropriately accounting for the magnification). For

the ideal lens, the image field is simply a magnified version of the object field with all features

beyond the cutoff wavevector removed.

The essential difference between a realistic imaging system and the ideal lens above is

the form of the pupil function P (k). Generally, there is still a cutoff kmax set by the

smallest aperture along the optical axis. However, the phase and amplitude of the pupil

function will also vary across the aperture as a result of the aberrations due to realistic

(imperfect) optical elements and misalignments. For example, consider the pupil function

of the imaging system in our apparatus. In scaled polar coordinates (ρ ≡ k
kmax

) one can

write the pupil function as P (ρ, θ) = T (ρ, θ)eiΘ(ρ,θ) in terms of its amplitude and phase.

We generally model the transmittance function as T (ρ, θ) = H(1 − ρ)e−ρ
2/τ2 . Moreover,

including spherical aberration of strength S0, astigmatism of strength α and angle φ, and

defocusing of strength β, one can write the phase term as Θ(ρ, θ) = S0ρ
4 + αρ2cos(2θ −

2φ) + βρ2. Nonzero aberrations and attenuation within the aperture distort and generally

broaden the corresponding amplitude spread function, limiting the fidelity of the imaging

system.
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In our experiment we use strong saturation absorption imaging to detect the atomic

density distribution [130, 83]. In this scheme the atoms are illuminated with a resonant

beam whose intensity I � Isat is much greater than the saturation intensity Isat of the

atomic transition. We use a CCD to measure the intensity distribution in the image plane

Ii(u) = |Ui(u)|2 with (Iout) and without (Iin) the atoms. We extract the measured density

distribution nmeas based on the modified Beer-Lambert law,

nmeas(x)σ0 = − ln
Iout(x)

Iin(x)
+
Iin(x)− Iout(x)

Isat
, (2.3)

where σ0 is the resonant cross section. For absorption imaging with a strong imaging beam,

the intensity profile of the image is primarily determined by the interference of the dark field

scattered by the atoms with the strong imaging beam, as long as the scattered field is not

too large compared to the field of the imaging beam (equivalently, the linear term dominates,

Iout/Iin � 1). In this approximation, the measured atomic density is the convolution of the

true density n(x) with the point spread function P(x),

nmeas(x) ≡
∫
dx′n(x′)P(x− x′). (2.4)

The point spread function P(x) = R(h(x)) is the real part of the amplitude spread function.

Note that the breakdown of this approximation may lead to artifacts which distort the

apparent atomic distribution for high optical densities.

We typically characterize the imaging system by measuring the modulation transfer func-

tion (MTF) M(k) = |P̃(k)| which is the absolute value of the fourier transform of the point

spread function [75, 83]. We typically extract the MTF from a measurement of the fluctua-

tion power spectrum of a thermal gas, using the relationship,

〈|δnmeas(k)|2〉 = NS(k)M2(k), (2.5)
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where N is the particle number and S(k) is the structure factor. At sufficiently large temper-

atures, we can approximate the structure factor of the thermal gas as a constant S(k) = 1.

Therefore, the modulation transfer function is directly proportional to the measured power

spectrum and can be extracted based on the equation above.

Characterizing our imaging system yields many benefits. First of all, by measuring the

MTF we obtain clear feedback by which to optimize the objective alignment and maximize

the imaging resolution. However, even with perfectly optimized alignment, we are still often

interested in features of our gases at length scales comparable to the resolution. If the

key features being measured are even of the same order of magnitude as the resolution limit,

then one must account for the point spread function in order to obtain quantitatively reliable

results. This fact is especially true when measuring scaling exponents for the dependence of

a length scale on some parameter, since the systematic shift from the resolution is nonlinear

and will thereby distort the scaling exponent. We take the point spread function into account

when analyzing the scaling of spin correlations in the shaken lattice (see Sec. 4.3.4) and the

width of jets in Bose Fireworks (see Sec. 5.3).

Finally, a few words of caution. There are a few, slightly different approaches to both

the theory and practice of imaging. Therefore some of the definitions and results here may

not be entirely standard. So, when reading, look for the mathematical definitions and think

carefully before proceeding.

2.3 Controlling interactions with magnetic Feshbach resonances

The interaction strength between ultracold atoms is typically parameterized by the s-wave

scattering length a. In many cases, the scattering length can be thought of as controlling

the collision cross section, which is

σ = 8πa2 (2.6)
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for pairs of identical bosons. Moreover, since the atoms undergo pure s-wave scattering, the

low energy and long wavelength physics can be understood by approximating the interaction

between atoms using the Fermi pseudo-potential [122],

V (r) ≡ gδ(r), (2.7)

where δ(r) is the Dirac delta function and we have defined the interaction strength

g ≡ 4π~2a

m
. (2.8)

In this convenient approximation we can write the interaction energy of the gas in second-

quantized form as simply,

Hint =
g

2

∫
drψ†(r)ψ†(r)ψ(r)ψ(r) (2.9)

for field operator ψ(r). In the mean-field approximation which is generally appropriate for

weakly-interacting, dilute BECs, the interaction energy density is simply εint(r) = g
n(r)2

2

for a gas with density n(r). Notably, when the scattering length is negative the energy is

also negative, and the interactions are effectively attractive.

One of the most remarkable features of ultracold atomic gases is the possibility to tune the

scattering length using Feshbach resonances [36]. Simply by varying the magnetic field near

a magnetic Feshbach resonance (MFR) the scattering length can be made as large or small

as desired and even flipped from positive to negative. Among their many groundbreaking

applications, MFRs enabled Bose-Einstein condensation of atomic species like 85Rb [54] and

133Cs [152]. Indeed, without MFR it would not be possible to form cesium BECs at all

due to the enormous background scattering length. MFR also enabled the formation of

ultracold molecules [37, 72, 88], exploration of the BEC-Bardeen Cooper Schrieffer crossover

[129, 171, 16], and tests of Efimov physics [93].
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A Feshbach resonance arises when a low-energy bound state in a different scattering

channel approaches the scattering threshold of the free atoms. Near the field B0 at which

the bound state and scattering threshold meet, the scattering length takes the form [36],

a(B) = abg

(
1− ∆

B −B0

)
(2.10)

where B is the magnetic field, abg is the scattering length far from resonance and ∆ is the

width of the resonance.

We make frequent use of MFR in this experiment. Most notably, as a result of a broad

∆ = 28.7 G Feshbach resonance at B0 = −11.7 G (where the direction of the magnetic field

is defined by the requirement that the atoms are in the absolute ground state |F,mF 〉 = |3, 3〉

for positive fields) and a background scattering length of 1720 a0, the Cs scattering length

for small fields is extremely large and negative a ≈ −2400 a0. Both the three-body loss rate

which scales as a4 and the collapse of BECs with negative scattering lengths [54] make it

impossible to form a stable BEC under those conditions, which is a major reason why Cs was

the last of the stable alkali atoms to be Bose-Einstein condensed [152]. At the end of dRSC

we typically set the magnetic field to 20.8 G such that the scattering length is moderate

and positive a = 210 a0 during evaporation. This choice is optimal because it is positive

to prevent collapse, sufficiently large to yield a reasonable collision rate for thermalization

during the evaporation stage, and corresponds to a local minimum of the three-body loss rate

due to the Efimov effect [93]. Another common use of MFR is during time-of-flight (TOF)

experiments. There, we set the scattering length to a = 0 immediately after releasing the

atoms from the trap, such that interactions do not distort the momentum distribution during

the TOF.

In this thesis we also introduce some new uses of MFR, including the use of an oscillating

scattering length to induce Bose Fireworks (see Ch. 5). To induce oscillating scattering

lengths at frequencies comparable to the bandwidth of the main coils, we must first calibrate
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Figure 2.2: A plot of the amplitude BAC(f) of the oscillating magnetic field relative to its
DC amplitude BDC for the same driving amplitude. The magnetic field response follows

BAC(f)/BDC =
√
f2

0 /(f
2 + f2

0 ) where f0 = 3.3(1) kHz is the −3 dB bandwidth of the

power in the oscillating field.

the magnitude of the oscillating field at the atoms as a function of the frequency of the

current driving the coils. Attenuation at high frequencies results from the inductance of the

coils and eddy currents. We can calibrate the response by taking advantage of the extremely

rapid three-body loss which occurs near the narrow Feshbach resonance at 19.84 G [36].

We begin by shifting the DC magnetic field to be ∆B = 500 mG away from the narrow

resonance. Then, starting at small modulation amplitudes where the BEC has a long lifetime,

we increase the amplitude until we suddenly observe rapid loss of the BEC. The onset of

loss indicates that the oscillation amplitude has exceeded ∆B such that the atoms spend

time near 19.84 G. The magnitude of the field response extracted from such a measurement

is shown in Fig. 2.2.

While MFR is an extremely powerful technique, its spatial and temporal resolution tend

to be limited by the size of practical magnetic field coils. In Ch. 6 we discuss our development

of a new technique for spatiotemporally controlling interactions by using a laser to optically
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Figure 2.3: Lattice shaking via phase modulation of an acousto-optic modulator (AOM).
Along both the x- and y-axes, an optical lattice with spacing d = 532 nm is formed by
retroreflecting the dipole trapping laser. Two AOMs in the path enable depth and position
control of the lattice. Specifically, we use the −1 diffraction order of one AOM and the +1
order of the second AOM, such that the frequency shifts from the two AOMs cancel each
other. Phase modulating the RF which drives the second AOM by θ2(t) = π

2
s
dsin(ωt) directly

shifts the phase of the diffracted beam, such that the retroreflection picks up a phase of 2θ2(t)
after passing that AOM twice. This results in oscillation of the optical lattice position as
∆x = s

2sin(ωt) for peak-to-peak shaking amplitude s.

control a Feshbach resonance.

2.4 Shaken optical lattices

Shaking optical lattices can be used to engineer effective band structures with desirable

properties, as discussed in Ch. 3. We shake the lattice by phase modulating the RF used to

drive one of the AOMs, see Fig. 2.3. The n’th diffracted order from an AOM is phase shifted

by nφ(t) with respect to the 0’th order, where φ(t) = ft + θ(t) is the phase of the acoustic

wave in the AOM crystal with RF drive carrier frequency f and RF phase modulation θ(t).

In our setup, the final retroreflected beam has been diffracted twice as the −1 order of the

first AOM and twice as the +1 order of the second AOM. The total resulting phase shift of

the beam is ∆θ(t) = 2(f2t + θ2(t) − f1t − θ1(t)). We set the carrier frequencies f1 = f2 to

be equal, and don’t phase modulate the first AOM. We phase modulate the second AOM

as θ2(t) = π
2
s
dsin(ωt) which leads to a total phase shift ∆θ(t) = π sdsin(ωt) and therefore a
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periodic translation of the lattice position by s
2sin(ωt). Note that the absolute position of the

lattice can drift slowly over time since the total optical path length is extremely sensitive to

thermal drifts. However, since we do not resolve individual lattice sites the absolute position

of the lattice is not important.

When performing shaking experiments we make two key adjustments to experimental

parameters to minimize the effects of heating (see Sec. 3.1.3). Here, heating primarily corre-

sponds to scattering events in which pairs of atoms collide and absorb at least one quantum

of energy ~ω (often called a “photon” in the literature) from the shaking. First, since the

rate of such collisions scales as a2 [38, 40, 39] we typically reduce the heating rate by using a

scattering length a = 40 a0, much smaller than the scattering length a = 210 a0 used during

evaporation. Note that, for reasonable shaking amplitudes, it is certainly still possible to

work at larger scattering lengths as demonstrated in Sec. 4.4.5. A second valuable step is

to ensure that the vertical trap depth is sufficiently small to allow high energy atoms to

escape the trap. This constant “evaporation” allows atoms which undergo heating collisions

to leave without further disturbing the remaining atoms.

A number of other technical improvements related to the shaken lattice setup are pre-

sented in Ch. 4 in the context of studying critical dynamics.

2.5 Arbitrary potentials with a digital micromirror device

Digital micromirror devices (DMDs), most commonly used in commercial projectors, are

becoming an extremely popular tool for shaping beams in cold atom experiments [104, 154,

76, 167, 67, 95, 80]. The DMD is an array of small mirrors, 7.6 µm across in the DLP3000

chip that we use. Each mirror can be independently programmed to orient at either the “on-

state” angle or the“off-state” angle, which are typically separated by 24◦. Generally, one

shines light on the DMD from an angle such that outgoing light from the on-state mirrors is

perpendicular to the array while outgoing light from off-state mirrors leaves at a large angle
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Figure 2.4: Illustration of creating arbitrary potentials with a digital micromirror device.
A laser reflecting off of the digital micromirror device (left) becomes patterned depending
on which mirrors are at the “on-state” angle (blue) or the “off-state” angle (green). The
real device has many more mirrors (415,872) than are depicted in this illustration. We
image the patterned, blue-detuned laser onto the atom plane, creating a repulsive potential
proportional to the laser intensity. In the example shown (right) the atoms (red) in an
otherwise harmonic trap are repelled from the C-shaped, blue-detuned laser.

and can be blocked. The large number of mirrors, 608 × 684 for DLP3000, enables precise

control of the intensity profile of the reflected light. Moreover, the pattern can be rapidly

changed (4 kHz for DLP3000) in order to create time-dependent intensity profiles.

In our lab we use the DMD to create arbitrary potentials for the atoms by shaping a

blue-detuned laser (the “DMD laser”) with wavelength 788 nm to create repulsive potentials

corresponding to the distribution of on-state mirrors, see Fig. 2.4. To achieve this effect

we image the blue laser pattern at the DMD plane onto the atom plane using the high-

resolution vertical objective, as shown in Fig. 2.5. First, a non-polarizing beamsplitter cube

combines the DMD laser with a second gaussian beam, which is available for flattening the

curvature of the normal dipole traps but is typically not used. Just before the eyepiece

lens, the DMD laser is reflected from a steering mirror (Optics in Motion OIM 101) which

can be used to fine-tune the position of the DMD potential relative to the atoms. After

the eyepiece lens the laser transmits through a dichroic mirror (Thorlabs DMSP805) which

enables us to simultaneously use the high-resolution objective lens for pattern projection at
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Figure 2.5: Setup of the DMD in our apparatus. (A) A photograph of the DMD and its
electronic control boards mounted with the fiber and mirrors used to illuminate it. (B) A
schematic of the DMD as it is arranged in our apparatus.

a wavelength of 788 nm and imaging at 852 nm. Overall, the projection optics achieve a

total demagnification of 36× such that the 7.6 µm pitch of the DMD mirrors corresponds to

a distance of 0.21 µm in the atom plane.

It is often useful to create optical lattices using the DMD. When the DMD pattern encodes

a lattice structure, in whichs the density of on-state mirrors varies periodically across the

array, the reflected laser is diffracted from the lattice into many orders, see Fig 2.6. With

no aberrations these beams would interfere on the atoms to match the original intensity

pattern on the DMD, but aberrations change the relative phase between the different orders

and severely alter the resulting intensity pattern. By using a beam-selection mask in a Fourier
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Figure 2.6: Beam blocking scheme for creating clean DMD lattices in the presence of aberra-
tions. When forming 1D lattice patterns using the DMD, we place a beam-selection mask in
a Fourier plane along the optical path of the DMD projection which transmits only the two
desired diffraction orders. Aberrations still cause a phase shift between the two remaining
beams, but can only affect the position of the resulting lattice and not its depth or spacing.

plane we block all but two of the diffracted beams. Phase shifts between the two remaining

beams can affect the position of the resulting lattice but not its depth or spacing. Therefore,

blocking the undesired beams is very useful for creating DMD optical lattices which are

not significantly affected by any residual aberrations. A similar approach is effective for 2D

lattices from the DMD: the lattice potential from any three non-collinear beams will not

change as a result of aberrations, except for an overall translation.

Presently, our DMD projection suffers from aberrations. We characterize the aberrations

via the phase profile Θ(k) of the pupil function P (k) of the DMD projection, see Fig. 2.7.

In an ideal imaging system, the phase is uniform across the pupil function and as a result

one achieves the narrowest possible point spread function. To extract the phases of the

experimental pupil function, we begin by projecting clean DMD lattices composed of the

interference between the zeroth order beam and a first order beam of various wavevectors

and angles. In each case the center position of the programmed lattice pattern is the same.

While the phase of the zeroth order beam is fixed, each first order beam gets a phase shift

26



-0.5

k
x
/(π/6)

0

0.50.4
k

y
/(π/6)

0
-0.4

-0.8

-0.8

4

0

-4

-8Ph
as

e 
sh

ift
 (r

ad
)

Figure 2.7: Measurement of aberrations in the DMD projection. The phase shifts Θ(k)
(circles) at various locations across the pupil of the DMD projection optical path. Phase
shifts are detected by creating lattice patterns on the DMD and measuring the position of
the resulting lattice on the atom plane relative to its expected position based on the DMD
pattern.

Θ(k) depending on its wavevector as it passes through the projection system (Eqn. 2.2).

When the two beams interfere on the atoms, the position of the lattice potential will be

shifted by λlatΘ(k)/2π where λlat is the wavelength of the interference. By measuring the

density profile of atoms loaded into many of these DMD lattices we can determine the shift

of each lattice and thus the phases Θ(k) which characterize the aberrations. Future users of

the system may wish to implement a phase plate or adaptive optics in order to compensate

the phase shifts and thereby remove the aberrations. For now, our primary applications of

the DMD (discussed in the next sub-section) are effective even in the presence of these small

aberrations. Another intriguing alternative is to work with the DMD in a Fourier plane,

where one can sacrifice laser power in order to cancel aberrations and create very precise

potentials [167].
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Figure 2.8: Measuring roton-maxon dispersion by using a DMD to perform Bragg spec-
troscopy. (A) An illustration of the scheme for Bragg spectroscopy. DMD lattices of wave-
length λ moving at a speed v strongly excite the gas when they are on resonance with the
quasiparticle spectrum. (B) The excitation spectrum for BECs in the shaken optical lattice,
which have a roton-maxon dispersion relation, measured using moving DMD lattices [76].

2.5.1 Dynamic potentials

Many powerful applications of the DMD involve creating dynamic potentials by cycling

through a series of DMD patterns during the experiment. The built-in control electronics

for the DLP Lightcrafter 3000 are designed to store up to 96 patterns and can be externally

triggered to switch to the next pattern at rates up to 4 kHz. More expensive devices can have

switching rates nearly 10 times faster. For most applications one wants to create smooth

changes in the potential; the desired smooth motion is best approximated by using a series

of patterns in which each pattern creates a potential which is only slightly different from the

previous one. The maximum number of patterns and switching rate limit the smoothness.

However, in many cases the response of the atoms to changes in the potential is sufficiently

slow that the difference between the series of discrete jumps and the desired smooth evolution

can be ignored. For example, see the discussion of aliasing in Bragg spectroscopy below.

Our first application of dynamic DMD potentials was the use of moving DMD lattices

to perform Bragg spectroscopy, as illustrated in Fig. 2.8 [76]. In Bragg spectroscopy the

dispersion relation for small excitations of the gas is measured by looking for resonances in

28



the response of the atoms to moving potentials with a well-defined wavelength (momentum)

and frequency (energy) [118]. To perform Bragg spectroscopy with the DMD we program

a series of optical lattice patterns with the same wavelength but with each lattice slightly

displaced from the previous one. The series is cyclic, returning to the first pattern each time

the lattice position has shifted by one complete wavelength. The excitation energy imparted

by the moving lattice hf depends on the frequency f at which the DMD cycles through the

full set of patterns, and the momentum h/λ corresponds to the wavelength λ of the lattice.

We typically use sets of 9 lattice patterns, so that each pattern switch corresponds to a

lattice phase shift of 2π/9. To better smooth the motion, especially for long wavelengths,

one can increase the number of patterns involved. The dispersion relation shown in Fig. 2.8

corresponds to the points in wavevector and frequency space at which we observe resonant

heating of the atom cloud. We determine those points by probing the atomic sample at a fixed

wavevector and scanning the DMD triggering frequency. For the experiments corresponding

to Fig. 2.8B we applied the exciting optical potential to the cloud for 40 ms, then performed

30 ms TOF to determine the number of atoms remaining in the condensate. Note that we

also implemented a closely related technique with a moving speckle potential to measure the

critical velocity in the same work [76].

It is worth noting that our approach to Bragg spectroscopy with the DMD maps directly

onto the usual approach, using the interference of two beams whose relative angle defines

the wavelength and whose frequency difference defines the imparted energy, when we use

the beam blocking scheme shown in Fig. 2.6. The wavelength of the programmed lattice

determines the angle between the diffracted beams, and the motion of the programmed

lattice effectively creates a frequency difference between the beams. The major advantage of

our approach to Bragg spectroscopy lies in the ease of varying the wavelength and frequency

over a wide range simply by reprogramming the DMD. The disadvantage to generating the

beams with the DMD is aliasing; the discrete jumps between the DMD lattice patterns also
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Figure 2.9: Forming homogeneous gases of arbitrary shape using DMD compression. (A) In
this trapping configuration, the vertical lattice (red) and a magnetic field gradient along the
z-axis are used to provide tight vertical confinement without significant horizontal confine-
ment. The only potential in the horizontal plane is provided by a repulsive DMD boundary
(green). In the end we obtain a thin disk-shaped BEC (blue) of controllable radius R.
We can change the shape of the DMD boundary to create homogeneous gases of arbitrary
shapes. Example images from experiments show homogeneous elliptical (B), triangular (C),
and square (D) BECs.

create higher harmonics in the frequency difference between the beams. If the sequence

includes N patterns, then in addition to the desired excitation at f there will also excitation

at Nf , 2Nf , etc. Generally, even within the constraints of the DMD these higher harmonics

can easily be made both very small and very far off-resonant, and therefore negligible.

Our second major application of dynamic DMD potentials is the creation of homogeneous

gases of arbitrary size and shape, see Fig. 2.9. After the normal evaporation sequence,

our gas is in an elliptical harmonic trap dominated by the ZDT beam. Here, we use the

combination of magnetic gradient levitation and the vertical lattice to provide all of the

vertical confinement without creating significant horizontal confinement. Then, we can turn

off the XDT, YDT, and ZDT beams such that the gas is essentially free horizontally, except

for a hard repulsive boundary created by the DMD. In order to ensure that the entire gas is

confined, we start with a DMD boundary which is large compared to the original gas, and

later use pattern switching to shrink the boundary and thus compress the gas to the desired

size and shape.

Our typical procedure for creating homogeneous gases of arbitrary size and shape is as
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follows. First, we project a DMD potential which is zero everywhere except for a hard

“wall” or boundary, which at this stage is larger than the initial BEC. We then turn on the

vertical lattice and levitation gradient, such that the ZDT trap is not necessary for vertical

confinement. We then switch the DMD once through a series of 40 patterns, which shrink

the DMD boundary down to the desired final size, in steps of roughly 200 nm every 2 ms.

Subsequently we slowly turn off the XDT, YDT, and ZDT beams, so that the BEC expands

to homogeneously fill the boundary set by the DMD potential. In the end, the trap consists

only of the vertical lattice, the magnetic field gradient, and the DMD boundary, as shown

in Fig. 2.9A. Note that the homogeneity of the sample breaks down at the edge due to the

finite resolution of the projected DMD potential.

Not only does this technique enable us to create homogeneous gases, but it allows us to

control both the shape and size of the gas. For example, elliptical, triangular, and square

samples created in this way are shown in Fig. 2.9B-D. In Ch. 5 the use of circular, homoge-

neous samples enables us to make a quantitative comparison between our results and theory.

Furthermore, we use this technique to test the effect of the size of the disk on the width of

the emitted jets, as shown in Fig. 5.17.

One disadvantage of this trap configuration is that we cannot easily create an optical

lattice because we have turned off the XDT and YDT dipole traps. Turning these trapping

beams back on would disturb the homogeneity of the sample. However, it may actually be

possible to turn on lattices in which the incident and retro-reflected beams have the same

intensity, which minimizes the strength of the harmonic trapping for a given lattice depth.

The resulting trap potential in the region within the DMD boundary shouldn’t be relevant

as long as it is small compared to the chemical potential of the sample. Depending on the

details of the desired application, one could in principle turn on at least a weak optical lattice

and still treat the sample as effectively homogeneous.
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CHAPTER 3

BOSONS IN SHAKEN OPTICAL LATTICES

Driven optical lattices provide exciting opportunities for engineering interesting Hamiltoni-

ans in atomic quantum gases [68, 105, 58]. Groundbreaking examples include dynamical

control of tunneling to drive the superfluid to Mott insulator transition [161], the simulation

of frustrated magnetism [142], the creation of artificial gauge fields [4, 143, 3, 112], and the

realization of topological band structures [89].

In the Chin lab we have developed a powerful new approach to creating desirable band

structures with shaken lattices: by shaking the lattice at frequencies slightly large than a

band gap we strongly couple two or more bands [119, 164, 76, 42, 106, 7, 62]. In this chapter

we discuss the the theoretical background and early experiments on bosons in this near-

detuned shaken lattice. First, in Sec. 3.1 we explain Floquet theory, which describes some

powerful, generic features of systems with periodic Hamiltonians. We then apply Floquet

theory to calculate the effective band structure for single particles in the near-detuned shaken

lattice. Next, in Sec. 3.2 we explain the effectively ferromagnetic quantum phase transition

which arises for repulsively interacting bosons in the shaken lattice; this phase transition is

the platform for our study of critical dynamics in Ch. 4. In Sec. 3.3 we discuss the influence of

micromotion on the interaction energy which has enormous consequences for the experiments

discussed in Sec. 7.1. Finally, in Sec. 3.4 we briefly mention our work on understanding the

nature of the domain walls which appear in the ferromagnetic phase.

3.1 Floquet theory for atoms in shaken optical lattices

A crucial starting point for understanding the behavior of atoms in the one-dimensional

shaken lattice is to calculate the single-particle steady-states and the corresponding energy

spectrum. With a time-independent Hamiltonian the best approach is usually to diagonalize
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the Hamiltonian, obtaining eigenstates whose time evolution is a simple phase winding at

a rate proportional to the corresponding eigenvalue (energy). However, time-dependent

Hamiltonians do not have any true eigenstates - an eigenstate at a time t1 will not generally

remain an eigenstate at a later time t2. Therefore, we need a different approach to handle

the time-dependent Hamiltonian for each atom in the shaken lattice,

H(t) = − ~2

2m

∂2

∂x2
+ U0 sin2 (kL[x− x0(t)]) (3.1)

where U0 is the lattice depth, kL is the wavevector at the band edge kL = π
d for lattice

spacing d, and x0(t) is the time-dependent offset of the lattice position. Note that we

generally perform sinusoidal shaking (Sec. 2.4) such that x0(t) = s
2 sin(ωt) where s is the

peak-to-peak shaking amplitude.

A great tutorial for understanding the concepts in this section can be found in Ref. [79],

and a wider review of experiments and theories in this area is found in Ref. [58].

3.1.1 Two-Band Approximation

We can gain valuable intuition by using a band hybridization model of the shaken lattice

[75, 106]. Assuming that the amplitude is small (kLs� 1) we can expand the Hamiltonian

as H(t) = H0 +H ′(t) where H0 is the static Hamiltonian for a stationary lattice of depth U0

and H ′(t) ≈ −kLsU0
2 sin(2kLx) sin(ωt) is a time-dependent perturbation due to the lattice

shaking. The static lattice Hamiltonian has the usual band structure familiar from condensed

matter physics [13]: the energy eigenstates |Ψn(q)〉 form bands En(q) where n is the band

index and the quasimomentum q is within the Brillouin zone −qL < q ≤ qL with qL = ~kL.

Because we shake the lattice at a frequency just slightly greater than the band gap

E2(0)− E1(0) at q = 0 (motivating the term ”blue-detuned” shaking), the time-dependent

perturbation H ′(t) will primarily lead to coupling between the first two bands, see Fig. 3.1.

In a sufficiently deep lattice the Bloch waves look very similar to harmonic oscillator states
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Figure 3.1: Band structure of atoms in the shaken optical lattice. (A) An illustration shows
how shaking the lattice at a frequency ω slightly greater than the band gap at q = 0 couples
the ground band E1(q) (black dashed curve) to the first excited band E2(q) (blue dashed
curve). The lattice momentum is qL = h/λ where λ = 1064 nm is the wavelength of the
lattice laser. (B) In a dressed picture the coupling leads to level repulsion between the
bands which results in the effective ground ε1(q) (solid black) and excited ε2(q) (solid blue)
bands. With sufficient shaking amplitude the effective ground band develops a double well
with minima at q = ±q∗. (C) The effective ground band minimum q∗ is calculated from the
Floquet theory based on our experimental parameters. Above the critical point s > sc, q

∗

closely follows the threshold law q∗ ∝ (s− sc)1/2 in the plotted range.

within each lattice site, and therefore we can approximate the coupling matrix element as

〈ψ2(q)|H ′(t) |ψ1(q)〉 ≈ −kLsU0

(
~2k2L
8U0m

)1/4

sin(ωt) ≡ −W sin(ωt) which defines the cou-

pling strength W . For example, under typical conditions (U0 = 8.86 ER, s = 32 nm,

d = 532 nm) we find W = h × 120 Hz. With this matrix element we can approximate the

full Hamiltonian using a two band model,

H2b =

 E1(q) −W sin(ωt)

−W sin(ωt) E2(q)

 . (3.2)

To further simplify the Hamiltonian we transform into a rotating frame where |ψ2(q)′〉 =

e−iωt |ψ2(q)〉. In this frame we can perform the rotating wave approximation, dropping

terms which have rapidly oscillating phases to obtain the time-independent Hamiltonian
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HRWA =

 E1(q) W/2

W/2 E2(q)− ~ω

 . (3.3)

We can diagonalize this Hamiltonian to obtain the energies of the eigenstates in the rotating

frame,

ε±(q) = E1(q) +
~δ(q)

2
±
√
~2δ(q)2 +W 2

2
(3.4)

where δ(q) = E2(q)/~ − E1(q)/~ − ω is the quasimomentum-dependent detuning of the

shaking from resonantly coupling the two bands. In essence, the near-resonant coupling

between the first two bands leads to level repulsion with a strength W proportional to the

shaking amplitude.

The double-well excitation spectrum in the effective ground band ε1(q) ≡ ε+(q) results

from the interplay between the momentum-dependent detuning and the normal single-well

structure of the un-shaken ground band, see Fig. 3.1B. Because the shaking is blue-detuned,

the ordinary ground band has higher energy than the excited band in the rotating frame,

and therefore level repulsion causes the ground band energy to increase. Near the center of

the bands the detuning is small, and the ground band energy increases dramatically; away

from the center the detuning grows quickly, and the ground band energy is barely affected by

level repulsion at all. For a sufficiently large shaking amplitude s the repulsion is sufficient to

convert εq(0) into a local maximum and thus make the dispersion into a double-well with two

new minima at q = ±q∗. The quasimomentum q∗, as determined from the more thorough

treatment in the next section, is plotted in Fig. 3.1C.

This treatment captures the essence of the double-well excitation spectrum, and one

could skip the next two sub-sections and essentially still understand most of work described

in Ch. 4. However, the more comprehensive treatment of the Floquet quasi-energy spectrum

in the following sub-sections is essential for accurately calculating ε1(q), for predicting the
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results of strong shaking pulses discussed in Sec. 4.3.1, and for treating the interplay of

interactions and micromotion in Sec. 3.3. We will also attempt to put the assumption that

atoms evolve within the single effective ground band ε1(q) and the treatment of its minima

as “ground states” on somewhat more solid footing.

3.1.2 Single-particle effective Hamiltonian

Before specializing to a discussion of our particular system, it is helpful to discuss a few

general principles of the Floquet theory for systems with time-periodic Hamiltonians H(t+

T ) = H(t). If we wished to understand a system with a time-independent Hamiltonian, we

would generally diagonalize the Hamiltonian to find eigenstates which evolve over time with

a simple phase winding. We cannot directly diagonalize the Hamiltonian H since it is time-

dependent. However, if we can find states which return to themselves (up to a complex phase)

after a single Floquet period T , then they are guaranteed to continue returning to themselves

after each subsequent Floquet period as well. If we examine the system stroboscopically such

that we only consider the state after time-evolution in intervals of duration T , then such a

state will appear very similar to an ordinary eigenstate with a simple complex phase winding

over time; we call such states Floquet steady-states.

Floquet theory explains that it is indeed possible to calculate a complete basis of Flo-

quet steady-states for a periodic Hamiltonian [79]. For a steady-state to return to it-

self after each period it must be an eigenstate of the time evolution operator, U(T ) =

T e−
i
~
∫ T
0 dt′H(t′), where T is the time-ordering operator. Therefore, the steady states |n〉

must satisfy U(T ) |n〉 = eiεnT/~ |n〉, where we have written the eigenvalue in a suggestive

form since the operator U is unitary and therefore its eigenvalues must lie on the unit circle.

In this form, the stroboscopic dynamics appears to be generated by an effective Hamiltonian

He defined such that He |n〉 = εn |n〉. The eigenvalues εn are called quasi-energies, because

they essentially play the role of energy but are only defined up to integer multiples of ~ω since
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the complex logarithm is multivalued. To complete this picture, the full time-dependent Flo-

quet states also include a micromotion component, the Floquet function |un(t)〉 = P (t) |n〉

where P (t) =
[
T e
−i
~
∫ t
0 dt
′H(t′)

]
e
i
~Het is periodic with period T since we have removed the

quasi-energy winding from the full time evolution. Together, the steady states, their quasi-

energies, and the corresponding Floquet functions describing the micromotion fully specify

the time-evolution of the system. Analogous to the typical approach for time-independent

Hamiltonians, we can decompose an arbitrary state |ψ(t)〉 into its component Floquet states,

|ψ(t)〉 =
∑
n

an |ψn(t)〉 =
∑
n

an |un(t)〉 e−iεnt/~ (3.5)

and the coefficients an will be time-independent. Since the micromotion is periodic on the

(presumably) fast timescale of the Floquet period, it is instructive to look at the evolution

of states |φ(t)〉 ≡ P−1(t) |ψ(t)〉 in a frame where the micromotion has been removed. That

time evolution is determined by the time-independent effective Hamiltonian as−i~∂t |φ(t)〉 =

He |φ(t)〉.

In order to calculate the effective Hamiltonian and the Floquet steady-states for atoms

in a shaken lattice, we must diagonalize the time-evolution operator over a full period U(T )

[119, 79]. Our typical approach is to perform the diagonalization numerically. We first

calculate the band structure Em(q) and quasi-momentum states |Ψm(q)〉 for the average

Hamiltonian H0 = 〈H〉 (see Eq. 3.1). This basis is extremely convenient because the full

Hamiltonian, including the shaking, commutes with quasimomentum, so we can calculate

independent time-evolution operators U(q, t) among the states at each quasimomentum. We

break up the Floquet period into N discrete time steps ∆t = T/N (N = 100 is typically

sufficient) and computer the time-evolution operators as a Trotter product. In fact, we can

assemble time-evolution operators for arbitrary (discrete) times using the exact evolution

from H0 and a first order approximation of evolution from the remaining H ′(t) = H(t)−H0
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Figure 3.2: Quasienergy and contribution from unshaken bands based on the full Floquet
calculation. (A) The quasienergy in the effective ground band calculated based on the
approach in Sec. 3.1.2 with lattice spacing d = 532 nm, depth 8.86 ER, shaking frequency
f = 8.0 kHz and shaking amplitudes of s = 0, 8, 16, 24, and 32 nm increasing from the top
curve to the bottom curve. (B) The time-averaged wavefunction contribution from states in
the unshaken bands to the effective ground band for s = 32 nm. Each color corresponds to a
different unshaken band, as indicated by the inset legend. Note that the narrow features in
both panels correspond to avoided crossings of the first Floquet band with the fourth band
(near q ≈ 0.8qL) and the fifth band (near q ≈ 0.03qL).

at each time step,

U(q,M∆t) ≈
M−1∏
n=0

(
eiH0(q)∆t/~

) (
1 + iH ′(q, n∆t)∆t/~

)
. (3.6)

By diagonalizing the time-evolution operator over a full period, U(q, T ), we obtain the

Floquet steady-states |ψn(q, 0)〉 at time zero and the corresponding quasi-energies εn(q)

which comprise the effective Hamiltonian He. We can readily obtain the full time-dependent

Floquet states using the time-evolution operators at intermediate times,

|ψn(q, t)〉 = U(q, t) |ψn(q, 0)〉 , (3.7)

thus recovering the micromotion component. In many cases the effects of micromotion are
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negligible, but in others it plays a crucial role in determining the energies of many-body states

once we account for interactions (see. Secs. 3.3 and 7.1). Note that we can readily extend

this calculation, which amounts to a numerical solution of the time-dependent Schrödinger

equation, to predict time-evolution for rapid changes in shaking amplitude during which

the Hamiltonian is not periodic (see Sec. 4.3.1). The quasienergy bands calculated in this

way significantly improve on the two-band approximation and provide sufficient quantitative

accuracy for interpreting our experiments.

The ground quasienergy band ε1(q) from this calculation is shown in Fig. 3.2A for various

shaking amplitudes. Since the Floquet states are composed of superpositions of the unshaken

quasimomentum states, |ψn(q, t)〉 =
∑
m bnm(t) |Ψm(q)〉, we identify the m’th Floquet band

as the one which maximizes the time averaged contribution Bnm =
∫ T

0 dt|bnm(t)|2/T to the

Floquet state from the m’th band of the unshaken lattice. That is, the “first” Floquet state

is the state which looks most like the unshaken first state most of the time. As can be seen

in Fig. 3.2B, for most quasimomenta B11 +B12 ≈ 1, supporting the two-band approximation

described in the previous subsection.

An important difference between the calculated Floquet ground band and that which

would be found from the two-band approximation is the existence of additional crossings

with other bands. In the example shown in Fig. 3.2A, there is a noticeable crossing with

the fourth Floquet band near q ≈ 0.8qL, signified by the sharp feature in the quasienergy

spectrum and the peak in B14 (Fig. 3.2B). An additional, very narrow crossing is apparent in

the peak of B15 at small q. These Floquet band crossings tend to be associated with heating

[7]. It is therefore desirable to operate under conditions in which the crossings are small and

far away from quasimomenta typically occupied by the atoms. Aside from heating, these

crossings can be largely ignored when interpreting our experiments.

39



3.1.3 Interpreting the quasi-energy bands in an interacting system

How should we interpret the quasienergy bands in a system with many interacting atoms?

It is easy to get confused, since many treatments of Floquet theory focus on single particle

examples. The single particle calculations above are highly suggestive: we still have a

“ground band”, and we’re working with ultracold bosons, so we expect them to condense in

the minimum energy state. However, in reality the single particle calculation is inadequate

for supporting such a claim. On its own, the calculation above says that single particles in the

shaken lattice should stay in a Floquet steady-state forever. That is, if we prepare atoms at

q = 0 in the unshaken ground band, and ramp on the shaking lattice at an appropriate rate

(slow compared to the coupling between the first and second bands but quickly compared

to the small avoided crossings with far-off-resonant bands), then atoms should occupy the

Floquet state |ψ1(0, t)〉 perpetually. Specifically, the state of the atoms would not change

even if the quasi-energy band acquired a double well and ε1(0) became a local maximum.

For single or non-interacting particles, one could envision a situation in which an external

force (such as the dipole trap) should eventually cause the quasimomentum to change. One

could predict subsequent dynamics based on the size of external forces compared to the

widths of various avoided crossings in the band structure. While these are often the sorts of

effects explored by explicit treatments of Floquet theory, none of them relate much to bosons

condensing in the minimum energy state. To make matters worse, energy is not conserved

for a time-dependent Hamiltonian, and there is no true minimum of quasi-energy since it is

only defined up to multiples of ~ω; from that perspective, even the question of into which

state bosons should condense becomes murky.

The key to resolving the aforementioned issues is to recognize that the dynamics in

the shaken optical lattice are largely driven by interactions. It is not an external force

which drives the atoms away from q = 0 when it becomes a local maximum, but rather

the interactions which enable pairs of atoms to transition into states with (opposite) finite
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momenta. In that case, our treatment of the system in terms of atoms limited to the effective

ground band should be appropriate as long as the interactions couple atoms to other states in

the ground band much faster than they couple atoms to states in other bands. We generally

consider transitions into other bands, which involve the absorption of a quantum of energy

~ω from the shaking, to be a “heating” process. To be precise, one can consider the energy

that such a process would leave behind in the system even after removing the shaking lattice.

Extensive work has been done to estimate the rates of heating processes in the near-detuned

shaken lattice [38, 40, 39]. With these processes in mind, as long as dynamics in the effective

ground band are fast compared to the heating, the interacting time-periodic system should

still behave like an interacting time-independent system in the effective band.

Once we are limited to a single band and as long as the band-width is small compared

to ~ω, quasi-energy is clearly ordered and we can determine an effective ground state. Our

expectation from statistical mechanics that bosons should condense into the ground state

should be met on timescales comparable to the couplings from interactions within the effec-

tive ground band. Eventually, on the (presumably longer) timescale at which interactions

can couple atoms into other bands, this metastable condensate should decay. Experimen-

tally, we find that for typical parameters and blue-detuned shaking the dynamics of atoms

within the effective ground band take place over 1 ∼ 10 ms timescales, while heating takes

10 − 100× longer [119]. This separation of timescales is an essential feature of any useful

Floquet-engineered system.

3.2 Effectively ferromagnetic quantum phase transition

It is very interesting to consider what happens to a BEC with a double-well single-particle

excitation spectrum [119, 164]. As discussed in the previous section, we expect bosons to

condense in the minimum of the effective band, but the bosons still have two degenerate

minima at q = ±q∗ to choose between. For non-interacting bosons and ignoring the micro-
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Figure 3.3: Illustration of possible ground states of the condensate in a double-well energy
band. When the atoms are repulsively interacting g > 0, the condensate will occupy only
a single minimum (|A±|2 = 1 and |A∓|2 = 0) which yields a flat density profile (blue) that
minimizes the positive interaction energy. When the atoms are attractively interacting g < 0,
the system could in principle occupy both wells equally (|A+|2 = |A−|2 = 0.5), forming a
density wave (red) in order to make the interaction energy more negative.

scopic structure at the scale of lattice sites, there are a wide variety of degenerate states (any

superposition of the two minima) Ψmf(x) =
√
n̄
(
A+e

ik∗x + A−e−ik
∗x
)

(recalling q∗ = ~k∗)

into which the bosons could condense, assuming a homogeneous average density n̄. So, which

of these states should form?

The interactions almost entirely break the degeneracy and determine the nature of the

double-well phase. For bosons with interaction strength g the interaction energy per particle

is Eint = g
2 〈n(x)2〉x / 〈n(x)〉x [122] where the density n(x) = |Ψ(x)|2 and the angle brackets

〈〉x denote spatial averaging. The many-body ground state should minimize Eint. By plug-

ging in the ansatz Ψmf(x) and noting that proper normalization requires |A+|2 + |A−|2 = 1,

we find

Eint =
gn̄

2

(
1 + 2|A+|2|A−|2

)
. (3.8)
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If the bosons are repulsively interacting (g > 0) then Eint is minimized by setting |A±|2 = 1

and |A∓|2 = 0 such that Eint = 1
2gn̄; that is, in the absolute ground state all of the bosons

occupy a single minimum. The form of the interaction energy can be understood by looking

at the density profile, see Fig. 3.3. By only occupying a single minimum, the bosons avoid the

density wave (and the corresponding higher interaction energy) which arises from interference

when atoms occupy both wells simultaneously. This scenario makes the double-well phase

effectively ferromagnetic; we can treat the atoms as a pseudo-spin system in which spin up

(down) corresponds to q∗ (−q∗), and like a ferromagnet the energy is minimized if all atoms

adopt the same pseudo-spin. We will almost exclusively discuss this scenario for the rest of

the thesis.

Before moving on, it is worth mentioning that for attractive interactions (g < 0) one

expects a very different behavior. In that case the interaction energy is negative, and it is

minimized by setting |A+|2 = |A−|2 = 0.5 such that Eint = 3
4gn̄. This choice of coefficients

corresponds to a density wave, see Fig. 3.3. The phase of the density wave (which can be

thought of as the location of its peaks and valleys) breaks an additional U(1) symmetry of the

Hamiltonian. Indeed, such a phase would in many ways look like a supersolid [26, 102, 103],

with the spontaneously broken translation invariance of a solid appearing in a superfluid

phase, and be fascinating to study. Unfortunately, the density wave is only the ground state

under the assumption that the coarse grained density is homogeneous, implicit in our ansatz

above. So far we have been unable to stabilize the density wave against the collapse of the

condensate which typically occurs in BECs with attractive interactions [54].

The essential features of the effectively ferromagnetic quantum phase transition were first

explored in Ref. [119]. The key observations are that a BEC in a double-well energy band

will split up to occupy the minima at q = ±q∗, see Fig. 3.4A. In the ferromagnetic phase

the atoms form domain structures, an example of which is shown in Fig. 3.4B. Within each

domain the atoms all share the same quasimomentum of either q∗ or −q∗, but the pattern
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Figure 3.4: Essential features of the effectively ferromagnetic phase transition. A) After
crossing into the ferromagnetic phase due to a linear increase of the shaking amplitude, the
condensate remains at q = 0 for a delay time (see Sec. 4.1) before bifurcating to occupy the
two minima q = ±q∗ whose instantaneous positions are indicated by the solid black curves.
The density in momentum-space nq is measured using a focused TOF technique, averaged
over many iterations of the experiment, and compared to the peak momentum-space density
of the condensate nq. This figure appears in Ref. [62]. B) Three example domain structures
formed after crossing into the ferromagnetic phase. For more details see Sec. 4.3.1.

of the domains is unpredictable from shot to shot. The dynamics which lead to formation of

domain structures (and the corresponding topological defects) in systems crossing symmetry-

breaking phase transitions turns out to have many interesting universal features, as typically

discussed in the framework of the famous Kibble-Zurek mechanism (KZM) [91, 168]. Those

universal dynamics will be the primary topic of Ch. 4.

Another noteworthy feature is that the phase transition is biased by the initial velocity

distribution of the gas. If the entire gas is initially moving in one direction, then its non-

zero momentum is mostly conserved as the gas crosses the phase transition. The easiest

way to analyze such a scenario is to work in the co-moving frame, in which the gas is

stationary and the energy is shifted by ∆Ebias(q) = −qv. This shift creates an energy

difference of approximately ∆Ebias(q
∗)−∆Ebias(−q∗) = −2q∗v between the two previously

degenerate minima. With an initial nonzero velocity, there is now a single ground state

with quasimomentum in the same direction as the initial velocity. As a result, the system

preferentially occupies that state when it enters the ferromagnetic phase. We frequently

use this effect for calibration (for example, see Sec. 4.3.1). One can also make use of this

effect to deterministically generate more exotic domain structures, as shown in Fig. 3.5. This
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Figure 3.5: Deterministic domain structure formation. Briefly pulsing on a lattice potential
with wavevector q′ formed by the DMD (top row) creates an oscillating initial velocity
distribution. If the gas subsequently crosses the effectively ferromagnetic quantum phase
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other, as explained in the text. The local biasing leads to deterministic formation of a
corresponding domain structure in the ferromagnetic phase (bottom row). The columns
show examples of this effect for (a) q′ = 0.084 qL and (b) q′ = 0.13 qL. The dashed green
lines illustrate that domain boundaries match up with extrema of the lattice potential used
for biasing.

capability presents exciting opportunities for studying the dynamics of domain walls in the

ferromagnetic phase; see Sec. 7.1.1 for more discussion of the specific case in which domains

tend to grow (coarsen) over time. However, biasing from nonzero initial velocity distributions

(especially fluctuating ones) must be carefully avoided in order to observe universal critical

dynamics; see Sec. 4.3.2 for more details.

3.3 Micromotion and Interactions

Understanding the micromotion of the Floquet steady states is important for developing

an intuitive picture of the states involved in the effectively ferromagnetic phase transition.

Moreover, in certain situations the micromotion will play a crucial role in determining the

interaction energy of the system and have a huge impact on its bulk behavior. For example,
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Figure 3.6: Micromotion in the shaken lattice. Plots of the density in the Floquet steady
states with q = 0 (top), q = q∗ (middle), and q = −q∗ (bottom) over one shaking period and
within a single lattice site. The fading curves indicate the density profiles at previous times
within the T/8 step between each plot, making the motion more apparent. Calculated with
lattice spacing d = 532 nm, depth 8.86 ER, shaking frequency f = 8.0 kHz, and shaking
amplitude s = 32 nm.

interaction effects from micromotion can be used to drive the system across a phase transition

in the red-detuned shaking lattice, break the symmetry between the four minima in the two-

dimensional shaken lattice, and engineer density-dependent synthetic gauge fields. We will

discuss those very interesting situations in Sec. 7.1. Here, we develop a basic understanding

of micromotion and its effects on interaction energy using the example of steady-states in

the blue-detuned, one-dimensional shaken lattice.

We plot the Floquet functions unq(x, t) which encode the micromotion for states at q = 0

and at the minima q = ±q∗ in Fig. 3.6. The states share a few common features. As

one generally expects for an oscillator driven at a frequency well above resonance, the peak

density always oscillates directly out of phase with the lattice motion. While the shaking

is sufficiently near detuned that contributions from other bands can be largely neglected,

the detuning is still large compared to the damping and the coupling strength, and thus the
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Figure 3.7: Interaction energy during micromotion. A plot of the instantaneous ratio
〈n(t)2〉x / 〈n(t)〉2x of the average interaction energy in the q = 0 (magenta), q = q∗ (red)
and q = −q∗ (blue) Floquet steady-states to the interaction energy of a state with flat
microscopic density over one Floquet period. The horizontal dashed lines indicate the re-
spective averages over the full Floquet period - note that the averages for q = ±q∗ are
identical. Calculated with lattice spacing d = 532 nm, depth 8.86 ER, shaking frequency
f = 8.0 kHz, and shaking amplitude s = 32 nm.

response is out of phase. It is tempting to make an analogy to a driven pendulum. The

peak in the q = 0 state bounces back and forth during the period, like normal pendulum

motion. In contrast, in the q = q∗ (−q∗) states the density peak executes clockwise (counter-

clockwise) motion, reminiscent of a pendulum driven “over the top” which also executes

either clockwise or counter-clockwise motion. At this level, it’s not clear that the analogy

provides much value, but at least it doesn’t seem harmful. Finally, note that these plots

verify that the Floquet states satisfy an unusual symmetry of the Hamiltonian, in which

space is inverted and time is translated by half of a period T/2 [79].

More important in terms of the observable consequences is the effect of micromotion

on the interaction energy. As we did in Sec. 3.2, it is often most useful to treat bulk

properties of the system by coarse-graining over the microscopic structures (at the scale

of the lattice sites). When we take this approach in the lattice, we must use a modified
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interaction strength in order to account for the micromotion. In the simplest case we assume

that atoms still condense into a single quasimomentum state (or at least into domains of a

single quasimomentum) and that the interactions are too weak to modify the microscopic

wavefunction. In that case we define a renormalized interaction strength g′nq ≡ ηnqg where

the interaction strength for atoms in free space is g = 4π~2a/m [122] and the modifier

ηnq ≡ 1
T

∫ T
0 dt 〈|unq(x, t)|4〉x / 〈|unq(x, t)|

2〉2x accounts for the fact that the density in a

lattice site is higher than it would be for a microscopically homogeneous gas.

The instantaneous interaction modification factor over time for blue-detuned shaking

is shown in Fig. 3.7. By comparing this plot to the wavefunctions in Fig. 3.6 one sees

that large modifiers correspond to a tall and narrow microscopic density distribution. The

modifiers ηnq are shown as dashed lines in Fig. 3.7 and correspond to the time-averages

of the instantaneous modifiers. Under the conditions used in this example, the modifier

for the states q = ±q∗ is slightly smaller than the modifier for q = 0. In principle, this

means that higher density increases the energy of the q = 0 state relative to q = ±q∗ and

therefore shifts the critical point to smaller shaking amplitudes [164]. In practice, the shift

of the critical point is quite small (see Sec. 4.1). Moreover, the interactions do not break the

symmetry between the two minima q = ±q∗. These points make the micromotion effects

difficult to observe for 1D, blue-detuned shaking. However, the interaction effects become

very interesting in other scenarios. For example, in the case of 2D shaking the micromotion

depends sensitively on the relative phase of the shaking between the two lattice directions,

and can break the four-fold symmetry (see Sec. 7.1.3). Finally, in the case of red-detuned

shaking, the micromotion makes it possible to drive the system across the phase transition

by increasing the scattering length (see Sec. 7.1.2).
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3.4 Domain Walls

We have performed a detailed theoretical study of the domain walls in the ferromagnetic

phase in Tongtong Liu, Logan W Clark, and Cheng Chin, ”Exotic domain walls in bose-

einstein condensates with double-well dispersion”, Physical Review A, 94(6):063646, 2016

(Copyright 2016 by the American Physical Society). Based on the one dimensional Gross-

Pitaevskii equation we performed numerical calculations to find the domain wall wavefunc-

tions which minimize the energy. We also derived analytical forms for the domain wall

wavefunction in the limits of weak and strong interactions.

Interestingly, the nature of the domain walls is quite different in the two limits. With

weak interactions the superfluid minimizes its energy by forming “density wave domain walls”

which avoid populating states near zero quasimomentum due to the high kinetic energy

barrier. Since the quasimomentum must be well localized near the minima, in this limit

bosons in the double-well dispersion are closely analogous to an immiscible two-component

BEC [77, 140, 146, 12]. The density wave forms due to the interference between +q∗ and −q∗

at the domain wall. Indeed, the domain wall wavefunction in this limit takes the approximate

form,

ψweak(x) ≈
√
ρ+(x)eik

∗x +
√
ρ−(x)e−ik

∗x (3.9)

where ρ± are the density envelopes of the positive/negative momentum components k = ±k∗.

The envelope functions have a width which scales as L ∝ (µ/ε)−1/2/k∗, where µ is the

interaction energy and ε is the height of the kinetic energy barrier at k = 0. Moreover, the

energy Eweak of the domain walls depends on the interaction strength Eweak ∝
√
µ3ε.

In the strong interaction regime, the system forms “phase domain walls” as just a small

perturbation of the density allows the system to support a smooth winding of the quasimo-

mentum across the kinetic energy barrier. In this limit the wavefunction takes the form
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ψstrong(x) =
√
ρ∞ + δρ(x)eiφ(x) (3.10)

where ρ∞ is the density far from the domain wall. The density variation is

δρ(x) =
ε

g
(6− 4 cosh 2k∗x)sech4k∗x (3.11)

where g parameterizes the interaction strength and the perturbation vanishes for large in-

teractions [106]. The presence of the domain wall is primarily encoded in the wavefunction

phase,

φ(x) = ln
(
ek
∗x + e−k

∗x
)
. (3.12)

In this limit, the width of the domain wall is fixed at L ≈ 0.81π/k∗, the minimum width

which satisfies the uncertainty principle for a wavefunction interpolating smoothly between

the two minima. The energy of the domain wall is also fixed,

Estrong =
8

3

µε

gk∗
. (3.13)

This work can provide a valuable guide for future studies focused on the dynamics of

domain walls in the ferromagnetic phase. For example, one could attempt to understand the

coarsening behavior, including the rotation of domain walls toward the short axes of the con-

densate (see Sec. 7.1.1), based on the energies of domain walls in a two dimensional extension

of this calculation. For more details on these calculations and their possible implications see

Ref. [106].
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CHAPTER 4

SCALING SYMMETRY OF CRITICAL DYNAMICS

Much of the content in this chapter is based on our published work in Ref. [42]: Clark, L. W.,

Feng, L., & Chin, C. Universal space-time scaling symmetry in the dynamics of bosons across

a quantum phase transition. Science, 354(6312):606-610, 2016. The thesis author played the

primary role in the work described in this chapter.

The dynamics of many-body systems spanning condensed matter, cosmology, and be-

yond are hypothesized to be universal when the systems cross continuous phase transitions.

The universal dynamics are expected to satisfy a scaling symmetry of space and time with

the crossing rate which is essentially a result of the Kibble-Zurek mechanism. In this chap-

ter we discuss a test of this symmetry based on Bose condensates crossing the effectively

ferromagnetic quantum phase transition in the shaken lattice. We measure the growth of

(pseudo-)spin fluctuations and the spatial spin correlations for ramping rates varied over

two orders of magnitude. Beyond the critical point we observe delayed development of ferro-

magnetic spin domains with long-range anti-ferromagnetic correlations due to the bunching

of the domain sizes, which is not expected in a thermal distribution of ferromagnets. The

times and lengths characterizing the critical dynamics agree with the scaling predicted by the

Kibble-Zurek mechanism. The measured fluctuations and correlations collapse onto single

curves in scaled space and time coordinates, supporting the universality hypothesis.

This chapter is organized as follows. First, in Sec. 4.1 we provide a detailed explanation

of the Kibble-Zurek mechanism (KZM). We emphasize three key features of our system

which had been largely unexplored experimentally in the context of the KZM: 1) it involves

a quantum (rather than classical) phase transition, 2) it is a Floquet system, and 3) the

system is inhomogeneous. Next, in Sec. 4.2 we derive the mean-field prediction for the

scaling exponents in our system. We then describe the technical details of our experiments

in Sec. 4.3, detailing a number of improvements to the stability of our apparatus and our
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detection methods which enabled this study. Then, we arrive at the main results of the

study, exploring the temporal scaling of the unfreezing process in Sec. 4.4.1 and the spatial

scaling of pseudo-spin correlations in Sec. 4.4.2. We then discuss the breakdown of the KZM

at extreme parameters in Sec. 4.4.3, and derive the critical exponents within their regime

of validity in Sec. 4.4.4. In Sec. 4.4.5 we demonstrate that dynamics over a wide range of

interaction strengths are captured by the same universal functions. In 4.4.6 we briefly present

the results of simulations of the critical dynamics using the Gross-Pitaevskii equation of the

complete shaken lattice system.

4.1 Background

4.1.1 The Kibble-Zurek Mechanism

Critical phenomena near a continuous phase transition reveal fascinating connections be-

tween seemingly disparate systems that can be described via the same universal principles.

Such systems can be found in the contexts of superfluid helium [168], liquid crystals [41],

biological cell membranes [148], the early universe [91], and cold atoms [165, 124]. An im-

portant universal prediction is the power-law scaling of the topological defect density with

the rate of crossing a critical point, as first discussed by T. Kibble in cosmology [91] and

extended by W. Zurek in the context of condensed matter [168]. Their theory, known as

the Kibble-Zurek mechanism, has been the subject of intense experimental study that has

largely supported the scaling laws [50]. Recent theoretical works further propose the so-

called universality hypothesis, according to which the collective dynamics across a critical

point should be invariant in the space and time coordinates that scale with the Kibble-Zurek

power-law [92, 33, 64].

The Kibble-Zurek mechanism provides a powerful insight into quantum critical dynam-

ics. According to this theory, when the time remaining to reach the critical point inevitably
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becomes shorter than the relaxation time, the system becomes effectively frozen, see Fig. 4.1.

The system only unfreezes at a delay time tKZ after passing the critical point, when relax-

ation becomes faster than the ramp. At this time topological defects become visible, and the

typical distance dKZ between neighboring defects is proportional to the equilibrium correla-

tion length. The Kibble-Zurek mechanism predicts that tKZ and dKZ depend on the quench

rate ṡ as,

tKZ ∝ ṡ−a, a =
zν

1 + zν
, (4.1)

dKZ ∝ ṡ−b, b =
ν

1 + zν
, (4.2)

where z and ν are the equilibrium dynamical and correlation length exponents given by the

universality class of the phase transition. While the details of this picture may not describe
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every phase transition, similar predictions hold for a variety of quench types across the

transition [57] and for phase transitions which break either continuous or discrete symmetries

[50].

For slow ramps tKZ and dKZ diverge and become separated from other scales in the

system, making them the dominant scales for characterizing the collective critical dynamics

[92, 33, 64]. This idea motivates the universality hypothesis, which can be expressed as

f(x, t; ṡ) ∝ F

(
x

dKZ
,

t

tKZ

)
, (4.3)

indicating that the critical dynamics of any collective observable f obeys the scaling sym-

metry and can be described by a universal function F of the scaled coordinates x/dKZ and

t/tKZ. In a system satisfying the universality hypothesis, the only effect of changing the

quench rate or any other microscopic parameter is to modify the length and time scales.

4.1.2 Testing the KZM in Quantum, Floquet, and Inhomogeneous systems

A key topic of recent interest has been the application of the KZM to describe dynamics across

quantum phase transitions. Quantum phase transitions have been observed to exhibit critical

scaling in equilibrium similar to the classical case [165, 163]; in fact, in general a quantum

phase transition can be mapped onto a classical phase transition in higher dimensions [134].

Since the dynamical scaling of the KZM is a direct extension of the equilibrium critical

scaling, one might therefore expect the KZM to apply to systems crossing quantum phase

transitions as well. Indeed, early theoretical works suggested that the KZM was compatible

with quantum phase transitions [56, 48, 170, 123]. Atomic quantum gases provide a clean,

well-characterized, and controlled platform for testing this conjecture [24, 57, 124]. They

have previously enabled experiments on the formation of topological defects across the Bose-

Einstein condensation transition [153, 96, 45, 114] as well as critical dynamics across quantum
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phase transitions [135, 20, 34, 115, 28, 110]. Indeed, shortly before our work was completed

a very exciting test of some aspects of the KZM in a spinor BEC was reported [11].

The Kibble-Zurek mechanism also had not previously been experimentally tested in a

Floquet-engineered phase transition [133]. Considering that Floquet systems present many

challenges even to our understanding of equilibrium statistical mechanics [99, 47, 58], as

discussed in the previous chapter, the expected behavior of critical dynamics in Floquet

systems is even more uncertain. Previously, we have seen that for timescales short compared

to heating the near-equilibrium behavior of atoms in the shaken lattice is indeed consistent

with expectations from statistical mechanics in a time-independent double well dispersion

[119, 76]. In much the same way, below we find that the KZM approach to critical dynamics

is quite successful in our Floquet system as long as heating remains small.

It is often expected that the KZM should fail or be drastically modified in inhomogeneous

systems, such as our ultracold Bose gas in the harmonic trap. However, in most cases

when the presence of a harmonic trap modifies the critical dynamics, the primary cause is

the inhomogeneity of the value of the critical parameter across the sample. For example,

inhomogeneity has a huge effect on the critical dynamics of systems crossing the Bose-

Einstein condensation transition [96, 45, 114, 53]. In those cases, the critical temperature

Tc ∝ n2/3 for density n, and therefore varies enormously across a harmonically trapped gas,

dropping all the way to zero at the edge [169]. In our case the critical shaking amplitude is

almost independent of the density. From our calculation (recall Sec. 3.3) the value of sc is

constant within 5% across the whole gas. We will see below that the effect of shifting sc by

5% on our scaling is within our existing error bars. In addition, throughout the experiment,

we are working in the limit where the domain size is much smaller than the sample size, see

Fig. 3D. Thus, it is a noteworthy feature of our experiments that the essentially homogeneous

critical shaking amplitude allows the KZM scaling to survive even in an inhomogeneous gas.
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4.2 Mean-Field Theoretical Scaling

The partition function Z of our system near the critical point where α → 0 and β > 0 can

be written in the path integral form as [164]

Z =

∫
DΨDΨ∗e−

∫
dxdτL

L = Ψ∗∂τΨ + α|∂xΨ|2 + β|∂2
xΨ|2 − µΨ∗Ψ +

g

2
(Ψ∗Ψ)2,

where L is the mean field Lagrangian density, µ = gρ0 is the chemical potential, g is the

interaction parameter and τ = it/~.

Given a fluctuating order parameter Ψ =
√
ρeiθ around the equilibrium value Ψ0 =

√
ρ0

and ρ = ρ0 + ρ̃, we have

Ψ∗∂τΨ = iρ∂τθ + ∂τρ/2

|∂xΨ|2 = ρ(∂xρ)2 +
1

4ρ
(∂xθ)

2

|∂2
xΨ|2 = ρ−3

(
(∂xρ)2

4
− ρ∂2

xρ

2
+ ρ2(∂xθ)

2
)2

+ ρ−1(ρ∂2
xθ − ∂xθ∂xρ)2

−µΨ∗Ψ +
g

2
(Ψ∗Ψ)2 =

g

2
(ρ̃2 − ρ2

0).

Eliminating terms like ∂τρ and ρ0∂τθ that contribute to constants after integration over

τ , we have

L = iρ̃∂τθ +
α

ρ

(
ρ2(∂xρ)2 +

(∂xθ)
2

4

)
+
β

ρ3

(
(∂xρ̃)2

4
− ρ∂2

xρ̃

2
+ ρ2(∂xθ)

2
)2

+
β

ρ
(ρ∂2

xθ − ∂xθ∂xρ̃)2 +
g

2
ρ̃2.
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Since the amplitude excitations are gapped and the angular excitations are gapless, we

can assume ∂xρ̃ = 0 in the long wavelength limit, which gives

L = iρ̃∂τθ + αρ
(∂xθ)

2

4
+ βρ(∂xθ

2)2 + βρ(∂2
xθ)

2 +
g

2
ρ̃2

Completing the path integral over ρ̃, we obtain to leading order in θ

Lθ =
1

2g
(∂τθ)

2 +
α

4
ρ0(∂xθ)

2 + βρ0(∂2
xθ)

2.

The mean field correlation length exponent ν = 1/2 can be derived from the spatial

scaling symmetry with ∂τθ = 0:

α→ λ−1α, x→ λνx.

At the critical point α = 0, the dynamical critical exponent z = 2 is determined by

applying the following scaling transformation to the effective Lagrangian Lθ,

x→ λx, t→ λzt,

and noting that Lθ is invariant when z = 2, except for an overall multiplicative factor λ−4.

Notably z = 2 results from the dominance of the quartic term β|∂2
xΨ|2 at the critical point.

Given z = 2 and ν = 1/2, the Kibble-Zurek temporal and spatial exponents from Eqs. 4.1

and 4.2 are given by a = 1/2 and b = 1/4, respectively. It is generally expected that there

are beyond-mean-field corrections to the critical exponents, but, as we will see below, the
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Figure 4.2: Evolution of the single atom excitation spectrum across the effectively ferro-
magnetic phase transition. The effectively ferromagnetic phase transition occurs when the
ground band evolves from quadratic for s < sc (paramagnetic (PM) phase), through quartic
at the quantum critical point s = sc, to a double-well for s > sc (ferromagnetic (FM) phase)
with two minima at qx = ±q∗ [42].

corrections appear to be smaller than we can resolve with our present experiments.

4.3 Experiment Setup

For this experiment we form 3D condensates at the crossing of the XDT, YDT, and ZDT

dipole traps (see Sec. 2.1). After evaporation the condensates are nearly pure, consisting

of 30 000 to 40 000 atoms with temperatures less than 10 nK in a trap with frequencies of

(ωx′ , ωy′ , ωz) = 2π × (12, 30, 70) Hz, where the long (x′) and short (y′) axes are oriented

at 45o with respect to the x and y coordinates (Fig. 4.3). The tight confinement along the

vertical z-axis suppresses non-trivial dynamics in that direction (see the discussion on the

dynamics in the y-direction below) which is also the optical axis of our imaging system. We

adiabatically load the condensates into a one-dimensional (1D) optical lattice [24] of depth

8.86 ER by retro-reflecting the YDT trapping beam which propagates along the x-axis (and

provides primarily y-axis trapping, motivating its name).

To induce the effectively ferromagnetic quantum phase transition explained in the previ-

ous chapter, we modulate the phase of the lattice beam to periodically translate the lattice

potential by ∆x(t) = (s/2)sin(ωt), where s is the peak-to-peak shaking amplitude and the

58



s
y′

x′
x

z

y

Figure 4.3: A BEC of cesium atoms (spheres) in a 1D optical lattice (pink surface) shaking
with peak-to-peak amplitude s can form ferromagnetic domains (blue and red regions). The
elliptical harmonic confinement has principal axes rotated 45o from the lattice [42].

modulation frequency ω is tuned to mix the ground and first excited lattice bands, as ex-

plained in Sec. 2.4. These experiments rely on a careful choice of the parameters governing

the shaking optical lattice. We set the shaking frequency ω = 2π×8.00 kHz slightly above the

zero-momentum band gap E2(0)−E1(0) = h×7.14 kHz, such that shaking raises the energy

near the center of the ground band. Based on the lattice depth and shaking frequency, we

calculate the critical shaking amplitude sc = 13.1 nm using Floquet theory (Sec. 3.1.2). The

hybridized single-particle ground band energy ε can be modelled for small quasimomentum

q = (qx, qy, qz) by

ε(q; s) = α(s)q2
x + β(s)q4

x +
q2
y + q2

z

2m
, (4.4)

where m is the atomic mass, and the coefficients of its quadratic (α) and quartic (β) terms

depend on the shaking amplitude (Fig. 4.2). During shaking we reduce the scattering length

to a = 2.1 nm using a Feshbach resonance to lower the heating rate [38, 40, 39]. Finally,

immediately before time-of-flight (TOF) we reduce the scattering length to a = 0 to prevent

collisions while the atoms separate into distinct Bragg peaks.

As a brief side note, we have significant freedom to tune many parameters of the shaken

lattice. While the shaking must be near-resonant and blue-detuned to create the double-
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well, without enormous difficulty we have observed the phase transition for lattice depths

from 4 ∼ 11 ER with an appropriate shift in the shaking frequency. Given this freedom,

one surprisingly useful condition worth maintaining is that the least common multiple of the

shaking period and the time steps of the computer controller be small. The least common

multiple tells us how long we must wait before the phase of the shaking, and equivalently

the phase of the micromotion, repeats itself at a subsequent controller time step. For the

shaking period T = 125 µs used in this experiment and our time steps of 20 µs, the least

common multiple is 500 µs. We can therefore shift phase-sensitive procedures, such as the

detection method discussed in the next section, by as little as 500 µs without affecting their

performance. This is a crucial feature for experiments like this one testing the KZM, in

which the physics of interest requires careful, precise control over the timing of detection.

For comparison, many of our original shaking experiments in the lab were done with a lattice

depth of 7 ER and f = 7.3 kHz; under those conditions, the micromotion phase only lined

up with the controller time step every 10 ms, providing insufficient flexibility in setting the

detection time.

In the next section we explain the pseudo-spin reconstruction technique which enables us

to analyze the spin density distribution jz(r) = n+(r) − n−(r) based on the density n+/−

of atoms with pseudo-spin up/down.

4.3.1 Improved domain reconstruction with a hard shaking pulse

Reconstruction enables us to study the in-situ spin density distribution, including the domain

structure. A previous study demonstrated that local variations in the distribution of density

among the Bragg peaks after a short TOF could be used to reconstruct the pseudo-spin

domains [119].

We improve upon the original domain reconstruction scheme by adding an amplification

stage before TOF. After linearly ramping the shaking amplitude at ramp rate ṡ until t =
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Figure 4.4: Illustration of shaking waveform to amplify domains for reconstruction. At the
end of the main procedure, which generates a gas with a domain structure that we wish to
probe, we apply an additional amplification stage in which the shaking amplitude increases
linearly before performing a short time-of-flight and acquiring an absorption image. The
amplification stage dramatically increases the signal to noise ratio for domain reconstruction.

1.4 td when domains have fully formed, we rapidly increase the shaking amplitude by as

much as a factor of 15 over only 0.5 ms (Fig. 4.4). The rapid increase in shaking amplitude

excites the atoms to higher bands while leaving their quasimomentum approximately the

same. For a proper choice of the shaking amplitude and timing during this amplification

stage, the atoms are efficiently transferred to the second excited band before they are released

for TOF. In the second excited band, pseudo-spin down atoms (q = −q∗) will mostly appear

in the −1 Bragg peak while pseudo-spin up atoms (q = +q∗) will mostly appear in the +1

Bragg peak, making them easy to distinguish after the short TOF.

To examine how the amplification process occurs, after initializing the gas entirely into

either the left or right well we collect a series images at different stages during the amplifi-

cation ramp, see Fig. 4.5. We then compare the fraction of atoms in each Bragg peak to a

single-particle numerical simulation of the Schrödinger equation using the complete shaking

waveform during the amplification stage, see Fig. 4.6. Allowing for some deviation of the

actual shaking waveform from the programmed waveform, the theory nicely captures the

evolution of the Bragg peaks during the experiments.

We can understand the time-evolution of the Bragg peaks as follows. First, at times
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Biased to Left Well (20 us intervals) Biased to Right Well (20 us intervals)

Figure 4.5: Image series of atom diffraction peaks after 5 ms time-of-flight for condensates
released from the trap and lattice during the amplification stage. After initializing the system
such that the entire BEC has quasimomentum −k∗ (left column) or +k∗ (right column) we
linearly increase the shaking amplitude from si = 32 nm at time t = 0 to sf = 230 nm at
t = 700 µs, followed by an additional 100 µs held at constant shaking amplitude. These
images correspond to release times from t = 500 µs (top) to t = 780 µs (bottom). The
lattice depth was 7 ER and shaking frequency 7.3 kHz. The colored squares indicate the
regions integrated to determine the number of atoms in each Bragg peak, which is used to
create Fig. 4.6.

t < 0 before the amplification pulse begins, we see the small oscillations between the Bragg

peaks which represent the normal micromotion of a Floquet steady state (Sec. 3.3) and were

discussed in the context of the original reconstruction scheme [119]. Later, at times t > 0 the

large amplitude shaking of the lattice during the amplification stage deterministically drives

diabatic transitions of atoms from the ground Floquet band to a superposition of excited

bands. While the state of the atoms is rapidly oscillating between different superpositions,

a properly shaped pulse will eventually place a large majority of atoms in the desired Bragg

peak for a duration of about 40 µs. We empirically choose a time during this brief interval
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Figure 4.6: Comparison of amplification time series to Schrödinger equation. We extract
the fraction of atoms in each Bragg peak (circles) from images as in Fig. 4.5 throughout the
amplification stage for BECs with k = −k∗ (left) and k = +k∗ (right). The populations of
the ±2 Bragg peaks are offset for clarity. In the top row, solid curves show the theoretical
prediction based on numerical simulations of the Schrödinger equation (Sec. 3.1.2) for the
conditions listed in the caption of Fig. 4.5 with no free parameters. In the bottom row, solid
curves show the best fit to numerical simulations of the Schrödinger equation with the final
shaking amplitude sf as a free parameter, yielding sf = 186 nm. Note that, in these plots,
t = 0 marks the beginning of the amplification pulse.

to remove the shaking lattice and the trap, after which the populations in each Bragg peak

are constant because momentum states are eigenstates for free atoms. A subsequent TOF

separates the Bragg peaks spatially so that we can detect their density distributions.

We do not fully understand why we need to include the final shaking amplitude as a

fitted parameter in order to capture the experimental results. One might be concerned that

interaction effects modify the time evolution. However, we did not observe significant density

dependence of this process; that is, the bragg peak occupations seem to be the same for the

high density central regions and the low density outer regions of the gas. This observation
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Figure 4.7: We amplify the distinction between the pseudo-spin states by rapidly increasing
the shaking amplitude over 0.5 ms before time-of-flight (TOF). After 3 ms TOF we detect the
density distribution by absorption imaging. The examples shown in this figure correspond
to lattice depth V = 8.86 ER, shaking frequency f = 8.0 kHz and amplitude s = 32 nm
before amplification. (A) Sample images used to calibrate the occupation of each Bragg
peak are taken with all of the atoms in pseudo-spin up (top) or down (bottom). Ellipses
identify the Bragg peaks. For these images we use a longer TOF lasting 5 ms. Each spin
predominantly occupies a different Bragg peak. (B) The fraction of density ni/n in each
Bragg peak distinguishes spin up (top) and down (bottom). (C) A sample image shows
the density distribution after 3 ms TOF for a condensate with five domains. The ellipses
mark the two most important Bragg peaks and are colored to indicate the spin state which
dominates each peak. (D) Reconstruction based on the fractions in panel C produces the
spin density distribution corresponding to the TOF image in panel D.

suggests that the deviation is not a result of ignoring interactions in the simulation. We

suspect that the deviation results from nonlinearity of the position response of the optical

lattice to the frequency modulation of the AOMs, since these data were collected before

switching our shaking setup to the more reliable phase-modulation scheme described in

Sec. 2.4. Regardless, while the theory can provide a useful guess for the parameters of

the amplification pulse, we determine the optimal parameters for maximizing the signal

empirically.

Depending on the shaking amplitude immediately before the amplification stage, we
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Figure 4.8: A series of analyses revealing the systematic biasing of domain structures. See
text for details.

adjust the amplification waveform in order to maximize the distinguishability of the two

spin states. We use images of condensates with uniform spin (Fig. 4.7A) to calibrate the

projection of each spin state onto Bragg peaks (Fig. 4.7B). We then adjust the duration

and the final shaking amplitude of the amplification pulse in order to maximize the fraction

of atoms transferred to the desired Bragg peak. In comparison to the procedure without

enhanced shaking used in Ref. [119], the amplification stage improves the fraction of atoms

which distinguish the spin states from 23% to about 71%, corresponding to an increase in

signal by more than a factor of three as well as a reduction in the density of background

atoms by a similar factor.

During normal operation, after the enhanced shaking period, we perform a 3 ms TOF and

measure the density in each Bragg peak (Fig. 4.7C), from which we can reconstruct the spin

density distribution (Fig. 4.7D) using an algorithm similar to that described in Ref. [119].

While this technique provides a powerful probe for the domain structure in the ferro-

magnetic phase, it cannot be used in every situation. In particular, it assumes that the

atoms are almost entirely at q = ±q∗ and will not provide useful results at early times be-

fore that condition is met. Moreover, due to the uncertainty principle it is not possible for

the quasimomentum in a domain to be well localized near q = ±q∗ unless the size l of the
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Figure 4.9: Example image revealing the dipole trap fringes as they appeared in conditions
close to our normal experiment procedure, before correction (see below). The “snake”-like
atomic density profile results from a four beam trap, with the contributing beams marked as
arrows. The trap profile is dominated by the trapping from ZDT, which propagates at 45◦

in this image, and large scale fringes which only appeared when the YDT retro beam was
present.

domain satisfies l � 1/k∗. In the work described in this chapter, at sufficiently late times

(t = 1.4td, see below for details), we observe density distributions after TOF consistent with

nearly all atoms arranging into sufficiently large domains with q = ±q∗, enabling us to treat

them as pseudo-spins and calculate the spin density just after the system unfreezes using

the approach detailed in this section.

4.3.2 Eliminating moving fringes

One of the most serious problems plaguing the lab’s original studies of the effectively ferro-

magnetic quantum phase transition was technical noise. In particular, it was found that a

systematic biasing, presumably caused by an offset of the initial velocity of the gas, would

lead to artificial symmetry breaking and result in most gases becoming completely polar-
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Example image showing atoms in YDT fringes
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Figure 4.10: Characterization of large scale fringes due to YDT retroreflection. (top) By
removing the ZDT beam and adjusting our loading procedure, we can cause the gas to split
between multiple long wavelength fringes caused by the YDT retroreflection. From this
image we found that the spacing between the fringes was 37 µm. (bottom) Here we show
a series of nearly 600 images averaged over the x-axis, revealing the systematic drift of the
position of the fringes due to the slow warming up of the optical table over the course of the
day. These images span approximately 2.5 hours.

ized to one pseudo-spin or the other [119]. Moreover, while the effects were correlated on

timescales of about 10 trials of the experiment, the magnitude and direction of the effect

was inconsistent over time. This biasing would destroy the scaling of the domain structure

which is predicted by the Kibble-Zurek mechanism by creating artificial correlations in the

local current across the gas before the system even approaches the phase transition [62]. I

am going to tell the full story of correcting this problem here, because it might be instructive

for future users of this or similar systems.

We analyzed this biasing effect quantitatively for nearly 400 consecutive experiment trials
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Figure 4.11: New optics to remove the large fringes in the YDT lattice. The large fringes
were caused by reflection of the YDT retro beam from the fiber tip. To remove them, we
inserted two new waveplates in the beam path, such that the retro beam reflected from a
PBS into a beam dump instead of returning to the fiber. Note that there was insufficient
space to insert an optical isolator in the existing path. Note also that additional waveplates
were added on the opposite side of the chamber to ensure that the polarization is linear
entering the AOMs.

in Fig. 4.8. First, in Fig. 4.8A we plot the total spin polarization P =
∫
jz(~R)d~R/

∫
n(~R)d~R

of each reconstructed image. It is troubling that a large number of shots have a polarization

far from zero, as show in Fig. 4.8C. Perhaps even more troubling is the clear oscillatory trend

with trial number. Comparing the trend in polarization to the trends in the center of mass

position x and RMS width R of the gas, see Fig. 4.8B, they appear to have fluctuation on

a similar timescale. We can confirm this quantitatively by looking at the power spectrum

of polarization fluctuations (Fig. 4.8D) and center of mass position fluctuations (Fig. 4.8E)

which exhibit strong peaks at precisely the same frequency. Note that we calculate the

frequency by accounting for the delay of about 15 seconds between each trial. Finally, by

calculating correlation functions CAB = 〈A(j)B(j + dj)〉j /
√
〈A(j)2〉j 〈B(j)2〉j we confirm

that there is a strong shot-to-shot correlation in the total polarization (Fig. 4.8F) and that

the polarization and center-of-mass fluctuation are strongly correlated, though they are phase

shifted (Fig. 4.8G).

This analysis strongly suggested that removing the source of center of mass fluctuations

should dramatically decrease the systematic biasing of the polarization. We eventually found

that the center of mass fluctuation was only present when the YDT retro-reflection, which
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Figure 4.12: A series of analyses revealing the reduction in biasing of domain structures after
eliminating the large, moving fringes caused by the YDT retroreflection. See text for details.

creates the shaking optical lattice, was turned on. To isolate that effect, we loaded BECs

while almost completely turning off the XDT confinement, resulting in “snake”-like density

profiles, see Fig. 4.9. This observation suggested that the YDT retro-reflection, in addition to

creating the desired d = 532 nm lattice, was also creating some very long wavelength fringes

due to small angle interference, which we assumed came from an unintentional reflection

from a lens or window surface. The total trapping potential from those interference fringes

and the ZDT beam propagating at a 45◦ angle had a snake-like appearance. By carefully

turning down the power in ZDT as well, we were able to load atoms into a dipole trap

which primarily took the shape of the long wavelength fringes (Fig. 4.10) which turned out

to have a spacing of about d′ = 37 µm. The relationship d′ = λL/2 sin(θ/2) yields the

small angle θ ≈ 1.6◦ of the interference. Moreover, repeating this experiment for a couple of

hours we saw the fringes drift systematically in one direction, suggesting that the fluctuation

was a result of slow thermal drift of the optical path length difference between the beams

responsible for the interference. This drift is likely a result of slow thermal expansion of the

optical table over the course of each day, caused by the air-cooled MOT coils which are the

only significant heat source on the optical table.

Our first approach to fixing the problem was to attempt to make the fringes stationary.
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Figure 4.13: Example domain structures biased by the moving fringes due to the YDT retro
beam. Images are time ordered, starting from the top left and moving right.

We spent quite a while seeking out tiny reflections of the YDT and YDT-retro beams off of

windows, cubes, or lenses which might have intersected the main beams at the position of

the atoms and been responsible for the fringes. We would then interfere each tiny reflection

with a fraction of the main retro beam on a quadrant photodiode and lock the relative phase

between the beams by feeding back on the phase of the retro beam using an AOM. We were

never able to eliminate the motion of the fringes in this way.

Eventually, we discovered that the fringes were coming from a small reflection of the

YDT-retro beam off of the fiber. Even better, rather than phase locking this reflection we

simply removed it by preventing the YDT-retro beam from reaching the fiber in the first

place, see Fig. 4.11. In the original setup, shown in black, the retro beam in this region

had the same polarization as the incident beam and would normally transmit the PBS to

reach the fiber mount; subsequent reflections from the fiber could transmit the PBS once

again and reach the atoms. By adding the waveplates shown in blue, the retro and incident
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Figure 4.14: Example domain structures after the large, moving fringes were eliminated.
Images are time ordered, starting from the top left and moving right.

beams at the location of the atoms still have approximately the same polarization (up to

errors caused by dichroic mirrors, AOMs, etc.) and therefore we still have an optical lattice,

but the YDT-retro beam reflects from the PBS into a beam dump and never reaches the

fiber. Note that we also added additional waveplates before the two AOMs responsible for

controlling the retro power, so that the polarization would be linear as the beam passed

through the AOMs. Also note that the ideal solution is to add an isolator directly after the

fiber, but there was no space to implement that solution in the YDT beam path. We did

add an isolator after the fiber in the XDT beam path.

To confirm that we had correctly diagnosed and solved the problem, we repeated the

biasing analysis, see Fig. 4.12. In short, the magnitude of typical fluctuations of both the

polarization and the shape and size of the gas was dramatically reduced. Moreover, the strong

peaks from 2 ∼ 4 mHz in the fourier transforms were eliminated, and the main features in
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CPP and CPx has been eliminated. Note that the correlations data still appear to show

much weaker systematic trends on much longer timescales, but these are primarily caused

by slow drifts of the total atom number (and the fact that there are only about 200 trials

included in this dataset). To gain further intuition for the improvement, we have provided

figures showing many domain structures in the previous strongly biased case (Fig. 4.13) and

the much less biased case after eliminating the moving fringes (Fig. 4.14).

In order to focus the study described below on the dynamics across an unbiased quan-

tum phase transition, we perform post-selection based on the total spin polarization P =∫
jz(~R)d~R/

∫
n(~R)d~R of each reconstructed image, which is expected to be close to zero for

unbiased samples. Indeed, under most conditions (0.16 ≤ ṡ < 1.0 nm/ms) we find that more

than 90% of images have total polarization |P | < 0.3. The correlation analysis excludes the

remaining biased images with |P | > 0.3. For very slow ramps (ṡ < 0.16 nm/ms) starting

from s = 0, we find that many samples are biased, likely due to increased susceptibility to a

small, uncontrolled velocity between the condensate and the lattice. We have excluded data

from these conditions to avoid poor statistics.

4.3.3 Lattice Depth Drift and Inhomogeneity

While it is always important to calibrate the lattice depth, it was especially important when

testing the Kibble-Zurek mechanism because the critical shaking amplitude is extremely

sensitive to lattice depth, see Fig. 4.15. Near our typical operating parameters, a change

in the lattice depth by just 0.1 ER or roughly 1% causes the critical shaking amplitude sc

to shift by nearly 0.5 nm or 4%, which can significantly effect the critical dynamics which

occurs very close to the critical point for slow ramps.

To calibrate the lattice depth we load the BEC into the ground state of the optical lattice

and then suddenly shift the position of the lattice by a small amount. This shift transfers

atoms to a superposition of the ground and first excited bands in the lattice, leading to
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Figure 4.15: A heatmap of the ground state quasimomentum q∗ as a function of the lattice
depth and shaking amplitude, based on the Floquet calculation in Sec. 3.1. For a given
lattice depth the critical shaking amplitude corresponds to the smallest amplitude at which
q∗ > 0.

oscillation of the atom number in the Bragg peaks at a frequency fcal = (E2(0)−E1(0))/h,

see Fig. 4.16. By fitting the oscillation of the peak imbalance over time with a sinusoid we

can extract that frequency, equivalent to the q = 0 band gap, which uniquely specifies the

lattice depth.

To account for slow drifts in our apparatus we re-calibrated the lattice depth approx-

imately every 30 minutes to keep variation of the lattice depth at ∆U0 < 0.1ER while

collecting data for the experiments described below.

In addition to the temporal stability of the lattice depth, similar problems can arise when

the lattice depth varies significantly across the gas. We can detect this variation by splitting

the data taken for lattice depth calibration into three segments, corresponding to the “top”,

“middle’, and “bottom” of the gas, see Fig. 4.17A. We can then measure the oscillation of the

peak imbalance over time separately for each segment and extract independent oscillation

frequencies (corresponding to lattice depths) for each region of the gas. The measurement
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Figure 4.16: A plot of the atom number imbalance between the Bragg peaks ∆ = (N1 −
N−1)/(N1 +N0 +N−1) after a sudden jump of the lattice position. The oscillation frequency
determined from a sinusoidal fit (solid curve) indicates the energy difference between the first
and second bands at q = 0, hfcal = E2(0)−E1(0), from which we extract the lattice depth.

of the state of the system before correction is shown in Fig. 4.17B, and indicates a change

in the lattice depth from one end of the gas to the other of approximately 0.5 ER. Before

performing the experiments described below, we carefully adjusted the alignment of the

retroreflected beam to make the frequencies in each region equal. After this correction, the

spatial inhomogeneity of the lattice depth is now less than the ∼0.1 ER temporal fluctuation.

4.3.4 Accounting for Finite Imaging Resolution

Below, we study the one-dimensional domain structures along the lattice direction (x) by

taking cuts gmeas(x) along the long-axis of the measured, normalized correlation functions

g(r). Since the domain walls are predominantly oriented along the non-lattice direction (y),

long axis cuts maximize the range of the correlation functions that we can evaluate but still

reflect the structure along the lattice direction.

To obtain the physical spin correlations we must remove the systematic effects of our finite
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Figure 4.17: Measurement of lattice depth inhomogeneity. (A) We split the Bragg peaks into
top (red), middle (cyan), and bottom (green) sections and calculate the peak imbalance ∆
(see Fig. 4.16) in each section. (B) The peak imbalance over time for each section (circles) is
fitted with a sinusoid (solid curves) to determine the local depth of the lattice, represented
by the frequencies indicated at the top-right corner. In this example, the lattice depth is
decreasing from the top to the bottom of the gas.

imaging resolution. Since the correlation functions depend on the spin density at both ends

of the displacement vector, the measured correlations gmeas(x) are the physical correlations

g(x) convolved with the point spread function P (x) twice [83]. We calculate the Fourier

transform of the deconvolved correlation function g̃(k) = g̃meas(k)/P̃ 2(k) from the Fourier

transforms of the measured correlations g̃meas(k) and of the point spread function P̃ (k).

Inverting the Fourier transform produces the correlation functions g(x) shown in Fig. 4.24.

Furthermore, from the peak position kp in g̃(k) we extract the typical domain size d = π/kp,

and from the full width at half maximum ∆k of the peak we extract the correlation length
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Figure 4.18: Detection of quasimomentum via density deviation. The contrast δn/n between
the ±1 Bragg peaks can be used to assess the quasimomentum q, according to a calculation of
the Floquet eigenstates in the shaken lattice (Sec. 3.1.2). The contrast only weakly depends
on shaking amplitude, shown for s = 0 (solid), s = sc (dotted), and s = 2sc (dot-dashed).
The illustrations represent the density in the three relevant Bragg peaks after time-of-flight.

ξ = π/∆k.

4.4 Results

4.4.1 Temporal Scaling of Phase Fluctuations

We begin our study of critical dynamics by testing the the scaling symmetry of time via the

emergence of quasimomentum fluctuations at different quench rates. Here, fluctuations refer

to deviations of quasimomentum from zero which vary across space and between individual

samples; fluctuations should saturate to a large value when domains having q = ±q∗ are

fully formed. After loading the condensates into the lattice, we ramp the shaking amplitude

linearly from s = 0 to values well above the critical amplitude sc = 13.1 nm and interrupt

the ramps at various times to perform a brief time-of-flight (TOF) before detection. After

TOF we measure the density profiles of the Bragg peaks; ni(r) is the profile of the i’th Bragg

peak.

We use the density fluctuation in the Bragg peaks to detect quasimomentum fluctuation
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Figure 4.19: Sample images show the emergence of non-zero local quasimomentum via the
density deviation between Bragg peaks δn as the system is linearly ramped across the fer-
romagnetic phase transition; four ramps with increasing quench rates (bottom to top) are
shown. Each ramp exhibits three regimes: a subcritical regime before the transition, a
frozen regime beyond the critical point where the fluctuation remains low, and a growth
regime in which fluctuation increases and saturates, indicating domain formation. Time
t = 0 corresponds to the moment when the system reaches the critical point.

in the gas. Non-zero local quasimomentum q changes the local density difference between

Bragg peaks. To detect this change we perform a brief TOF with duration tTOF = 5 ms,

which is long enough to separate the Bragg peaks but short enough that spatial information

is preserved. From our images we calculate the density difference ∆n(r) = n−1(r) − n1(r)

where ni(r) is the density of the i’th Bragg peak. To remove the small offset in ∆n which

exists at momentum q = 0, we calculate the density deviation δn(r) = ∆n(r) − 〈∆n(r)〉,

where the angle brackets denote averaging over multiple images. The deviation δn is nearly

proportional to the local quasimomentum regardless of the shaking amplitude (Fig. 4.18).

Finally, we calculate the contrast fluctuation ∆c = 〈δn2/n2〉 which closely tracks quasimo-

mentum fluctuation in our condensates, where n(r) is the total density. In this case, the

angle brackets denote averaging over many images and over the position within each sample.

In order to remove spurious sources of fluctuation such as photon and atom shot noise,
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Figure 4.20: Quasimomentum fluctuation for ramp rates ṡ = 3.6 (triangles), 0.91 (squares),
0.23 (diamonds), and 0.06 (circles) nm/ms arises at a delay time t = td over a formation
time tf . Fluctuation is normalized for each ramp rate to aid comparison. The solid curves
show fits based on Eq. 4.5. Error bars indicate one standard error.

we calculate the normalized fluctuations ∆C = (∆c −∆ci)/(∆cf −∆ci). Here we subtract

the baseline value ∆ci for each ramp rate, which is given by the average of the three mea-

surements at the earliest times taken below the critical point. Furthermore, even though

quasimomentum fluctuation should continue to grow as q∗2 with increasing shaking ampli-

tude, where ±q∗ are the quasimomenta of the ground states, we find that ∆c appears to

saturate to a nearly constant value for times well beyond td. We attribute saturation to the

typical displacement q∗tTOF/m during TOF becoming larger than the correlation length,

such that fluctuation is dominated by the motion rather than the density of the Bragg peaks.

We normalize ∆c to its saturated value ∆cf at each ramp rate for convenient comparison. We

determine ∆cf by averaging the latest three measured values, which are taken well beyond

the delay time td.

Over a wide range of quench rates the evolution of quasimomentum fluctuation can

be described in three phases (Fig. 4.19). First, below the critical point, quasimomentum

fluctuation does not exceed its baseline level. Second, just after passing the critical point,

critical slowing keeps the system “frozen”, and fluctuation remains low. Finally, the system

unfreezes and quasimomentum fluctuation quickly increases and saturates, indicating the

emergence of ferromagnetic domains. We quantify this progression by investigating the

growth of the fluctuation of contrast (Fig. 4.20). We find empirically that the growth of
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Figure 4.21: The dependence of td (circles) and tf (squares) on the quench rate is well
fit by power-laws (solid curves) with scaling exponents of ad = 0.50(2) and af = 0.50(6),
respectively. The inset shows td on a linear scale. Error bars indicate one standard error.

normalized fluctuations is well fit by the function

∆C(t) =
1

2
+

1

2
tanh

(
t− td
tf

)
, (4.5)

where the time t is defined relative to when the system crosses the critical point at t = 0,

td characterizes the delay time when the system unfreezes, and tf is the formation time over

which the fluctuation grows.

The measurement of fluctuation over time provides a critical test for both the Kibble-

Zurek scaling and the universality hypothesis. First, both td and tf exhibit clear power-law

scaling with the quench rate ṡ varied over more than two orders of magnitude (Fig. 4.21).

Power-law fits yield the exponents of ad = 0.50(2) and af = 0.50(6), respectively. The nearly

equal exponents are suggestive of the universality hypothesis, which requires all times to scale

identically. Indeed, the growth of contrast fluctuation ∆C follows a universal curve when

time is scaled by td (Fig. 4.22), strongly supporting the universality hypothesis (Eq. 4.3).

Note that any observable time characterizing the collective dynamics can be chosen as tKZ

in Eq. 4.3, including td and tf .

Note that it is not possible to reconstruct the spin density under these conditions because
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Figure 4.22: Fluctuations measured for 16 ramp rates from 0.06 to 10.3 nm/ms collapse to
a single curve when time is scaled by td based on the power-law fit. The solid curve shows
the best fit based on the empirical function (Eq. 4.5), and the gray shaded region covers one
standard deviation.

the atoms have not yet settled primarily to q = ±q∗ (Sec. 4.3.1). Here, our intention is to

show the growth of quasi-momentum fluctuations across the critical point and thus the

observable needs to be well defined even in the subcritical and frozen regime. The advantage

of the chosen detection method is that it is particularly sensitive near the critical point when

the quasimomentum just starts deviating from zero, indicating the emergence of fluctuations

in the ferromagnetic phase where the ground states have non-zero quasimomentum. However,

this method has some disadvantages when the quasimomentum becomes large. Specifically,

while ∆C is proportional to q2 for small quasimomentum, that relationship no longer holds

once quasimomentum is large and the motion of atoms with different momentum during

TOF dominates ∆C. It is actually that motion which should dominate the saturated value

of ∆C in our dataset. Moreover, at an intermediate ramp rate of approximately 0.4 nm/ms

the expected displacement for atoms with q∗ at t = 1.4 td becomes equal to the typical

domain size, and we expect the saturated value of ∆C to become essentially independent of

q.
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Figure 4.23: (Left) Two sample images at each quench rate exemplify spin domains measured
near the time t = 1.4 td after crossing the phase transition. These images correspond to linear
ramps starting at s = 0 (ṡ = 0.32-5.12 nm/ms) and s = sc (ṡ = 0.04-0.16 nm/ms). (Right)
Spin correlation functions G0(r) = G(r)/G(0) (Eq. 4.6) are calculated from ensembles of
110-200 images.

4.4.2 Spatial Scaling of Pseudo-spin Correlations

We next test the spatial scaling symmetry based on the structures of pseudo-spin domains

that emerge after the system unfreezes. Here, we cross the critical point with two different

protocols: the first is a linear ramp starting from s = 0, while the second begins with a jump

to s = sc, followed by a linear ramp. We detect domains near the time t = 1.4 td in the spin

density distribution jz(r) = n+(r) − n−(r) based on the density n+/− of atoms with spin

up/down (Sec. 4.3.1). At this time the spin domains are fully-formed and clearly separated

by topological defects (domain walls), as shown in Fig. 4.23. Furthermore, choosing this

time just after domain formation minimizes the time available for non-universal relaxation

processes. We characterize the domain distribution with the spin correlation function [135,
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Figure 4.24: Cuts across the density-weighted correlation functions g0(x) = g(x)/g(0)
are shown for quench rates ṡ = 1.28 (triangles), 0.45 (squares), 0.16 (diamonds), and
0.056 nm/ms (circles). Solid curves interpolate the data to guide the eye. The typical
domain size d and the correlation length ξ are illustrated for 0.056 nm/ms by the arrow and
dashed envelope, respectively.

119],

G(r) =

〈∫
jz(R + r)jz(R)dR

〉
, (4.6)

averaged over multiple images. Both ramping protocols lead to similar correlation functions,

suggesting that the domain distribution is insensitive to increases in the quench rate below

the critical point.

The spin correlations reveal rich domain structure that strongly depends on the quench

rate, see Fig. 4.23. For slower ramps ṡ < 1.3 nm/ms the structures are predominantly

one-dimensional and the density of topological defects increases with the quench rate. The

tighter confinement and finite speed of sound near the critical point along the y− and z-axes

allow spin correlations to span the gas in those directions. The dynamics thus appear one-

dimensional. When the quench rate exceeds 1.3 nm/ms, defects start appearing along the

y-axis, and the domain structures become multi-dimensional. We discuss this effect further

in Sec. 4.4.3. For most of this chapter (and the remainder of this section) we focus on the
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Figure 4.25: Kibble-Zurek scaling of characteristic lengthscales. The dependence of d (green)
and ξ (black) on the quench rate is well fit by power-laws (Eq. 4.2) with spatial scaling
exponents of bd = 0.26(2) and bξ = 0.26(5), respectively. Marker shape indicates linear
ramps starting at s = 0 (squares) or at s = sc (circles). The inset shows the results on a
linear scale. Error bars indicate one standard error.

slower quenches and investigate the spin correlations along the x-axis.

We examine the one-dimensional correlations using line cuts of the density-weighted corre-

lation functions g(r) = G(r)/ 〈
∫
n(R + r)n(R)dR〉 [135, 119]. The results exhibit prominent

decaying oscillation (Fig. 4.24). We extract two essential length scales from the correlation

functions: the average domain size d, or equivalently the distance between neighboring topo-

logical defects, and the correlation length ξ, indicating the width of the envelope function.

These two scales are determined from the position and width of the peak in the Fourier

transform of g(x), see Sec. 4.3.4.

These length scales enable us to test the spatial scaling symmetry. The lengths d and ξ

both display power-law scaling consistent with the Kibble-Zurek mechanism, see Fig. 4.25,

with fits yielding exponents bd = 0.26(2) for the domain size and bξ = 0.26(5) for the

correlation length. Similarly, the correlations, measured at the same scaled time, collapse

to a single curve in spatial coordinates scaled by the domain size d (Fig. 4.26). This result
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Figure 4.26: Collapse of pseudo-spin correlations in scaled space-time. Correlation functions
for ṡ = 0.04-1.28 nm/ms collapse to a single curve when distance is scaled by the domain
size extracted from the power-law fit in Fig. 4.25. The solid curve shows the fit based on
Eq. 4.7; the gray shaded area covers one standard deviation.

strongly supports the spatiotemporal scaling from the universality hypothesis (Eq. 4.3). An

empirical curve,

g0(x) = exp

(
− 1

2σ2

x2

d2

)
cos

(
π

γ

x

d

)
, (4.7)

provides a good fit to the universal correlation function, yielding σ = 1.01(1) and γ = 1.04(1),

indicating that the width of the envelope is close to the typical domain size.

The most striking feature of the universal correlation function is the emergence of oscilla-

tory, anti-ferromagnetic order in the ferromagnetic phase. In thermal equilibrium, ferromag-

nets are expected to have a finite correlation length but no anti-correlation. The appearance

of strong anti-correlation at x = d suggests that domains of size d form preferentially during

the quantum critical dynamics.

To better understand the process which generates domain walls we calculate the domain

size distribution from our images. We identify domain walls by integrating the spin density

along the y-direction, filtering noise at the single pixel scale (0.6 µm) which is below our
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Figure 4.27: Sub-Poisson generation of domain walls. (A) The distribution of domain sizes
L for 110 samples with quench rate ṡ = 0.08 nm/ms is bunched near the average domain

size d. The solid curve shows a fit based on the function A(L/d)a−1e−aL/d, where the coef-
ficient A = aa/Γ(a), which interpolates between the exponential (a = 1) and delta (a→∞)
distributions. The fit yields a = 10(1) for the measured distribution. For comparison, the
dashed curve shows an exponential distribution (a = 1) corresponding to Poisson genera-
tion of defects. (B) Poisson generation of defects would lead to exponential decay of spin

correlations as gP(x) = e−2x/d (dashed curve), which does not exhibit the anti-correlation
seen in the data from Fig. 3E (blue points). The solid curve shows the fit to the measured
correlations based on Eq. 7.

resolution limit, and locating where the spin density changes sign. We calculate the domain

sizes from the distances between neighboring walls.

Since the correlation functions in scaled space are invariant with quench rate we focus

on a single rate ṡ = 0.08 nm/ms, for which the domains are relatively large (d = 6.0 µm)

and easy to resolve. The resulting domain size distribution (Fig. 4.27A) is tightly bunched

around its mean. Indeed, the standard deviation σd = 0.31(2)d is well below the mean. This

bunching would not be expected for a Poisson process, which should exhibit an exponential

distribution due to the constant probability of forming a domain wall at any location. Sim-

ilarly, Poisson generation of domain walls would lead to exponentially decaying correlations

that are qualitatively distinct from the oscillatory correlations observed in our experiments

(Fig. 4.27B).

The direct identification of domain walls presents intriguing possibilities for future studies
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of the topological defects generated during critical dynamics. These opportunities would be

particularly interesting if the shaking technique is extended to higher dimensions in such

a way that the transition breaks a continuous symmetry. In addition, the scaling of the

correlation functions suggests that the anti-ferromagnetic order may be a shared feature

of quantum critical dynamics for phase transitions in the same universality class, meriting

future experiments.

4.4.3 Breakdown of KZM Scaling

We seem to observe a breakdown of the Kibble-Zurek scaling for extremely slow (ṡ <∼

0.04 nm/ms) and extremely fast (ṡ >∼ 1.28nm/ms) quench rates. For the slowest ramp, it

is likely that the inhomogeneity of the density and the finite size of the gas are becoming

relevant. Specifically, while interaction effects only shift the critical point in our system

by a few percent from the center to the edge (see Secs. 3.3 and 4.1), eventually this shift

represents a significant fraction of the distance of the shaking amplitude sd at which the sys-

tem is unfreezing from the critical amplitude sc. Moreover, the combination of the trapping

potential and small changes of the interaction strength during the slow ramp of the shaking

amplitude may lead to small collective motions which could bias the system as it crosses the

phase transition. Finally, even in a homogeneous system one would expect finite size effects

to prevent scaling beyond the point when the domain size is comparable to the system size.

Generically, for fast ramps the KZM scaling should break down when the microscopic

scales of the system become comparable to the scales characterizing macroscopic dynamics.

Specific to our experiments, the breakdown of scaling could result from the impossibility

of localizing the quasimomentum q within a finite domain whose size dmin approaches the

limit from the Heisenberg uncertainty principle, dmin ≈ ~/q. Specifically, to localize the

quasimomentum in a domain at the level of q = 0.1qL we find dmin ≈ 2 µm. which is

close to the expected domain size for the fastest ramps measured (2.56∼5.12 nm/ms, see
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Figure 4.28: Constraints on the equilibrium critical exponents based on dynamics. The
temporal scaling exponents ad and af from Fig. 4.21 (magenta) and the spatial scaling
exponents bd and bξ from Fig. 4.25 (green) constrain the critical exponents ν and z according
to Eqs. 4.8 and 4.9 with 68% (dark) and 95% (light) confidence intervals. The cross marks
the best values with contours of 68% and 95% overall confidence.

Fig. 4.23). Instead of observing domains covering just a small number of lattice sites, we

see the breakdown of the universal scaling due to the relevance of the microscopic length

scale. It is intriguing to note that the temporal scaling seems to continue unperturbed even

beyond this limit, see Fig. 4.21.

4.4.4 Critical Exponents

The combined scaling exponents of space and time allow us to extract the equilibrium critical

exponents based on the Kibble-Zurek mechanism [157] (Fig. 4.28). From the measured

temporal scaling exponent a = 0.50(2) and Eq. 4.1 we derive the constraint,

z =
a

(1− a)ν
, (4.8)
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indicated in magenta in Fig. 4.28. From the measured spatial scaling exponent b = 0.26(2)

and using Eq. 4.2 we derive the second constraint,

z =
ν − b
νb

. (4.9)

indicated in green in Fig. 4.28. More precisely, to determine the constraints on z and ν

presented in Fig. 4.28, we first calculate the relative likelihood of different values of the

dynamic exponents (a and b) based on the reduced chi-squared values for using power-laws

to explain the experimental data in Figs. 4.21 and 4.25. We then convert the likelihood

of the dynamic exponents into the likelihood of the equilibrium exponents, from which we

determine the confidence intervals shown.

The combination of both constraints yields,

ν = b
1−a , (4.10)

z = a
b . (4.11)

Combining the two constraints we obtain the dynamical exponent z = 1.9(2) and correlation

length exponent ν = 0.52(5), which are close to the mean-field values z = 2 and ν = 1/2

up to our experimental uncertainty. Note that the dynamical critical exponent z = 2 results

from the unique quartic kinetic energy ε = βq4
x of our system at the critical point (Sec. 4.2).

4.4.5 Universality vs Interaction Strength

The power of the universality hypothesis (Eqn. 4.3) is that it strictly limits the possible effects

of changing microscopic system parameters. The length- and time-scales characterizing the

dynamics may change, but the functional form of any observable should not. Therefore,

as long as we remain within the universal range (Sec. 4.4.3), the unfreezing process should
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Figure 4.29: Universality of the unfreezing function with scattering length. Contrast fluctu-
ations for linear ramps across the phase transition with scattering lengths 20 a0 (blue), 60 a0
(green), 100 a0 (cyan), and 200 a0 (red). Time is scaled by td(a) extracted from independent
fits based on Eq. 4.5 to the data at each scattering length. The solid curve and shaded region
indicate the universal function and its uncertainty from Fig. 4.22.

follow the universal function shown in Fig. 4.22 and the pseudo-spin correlations should

match the form in Fig. 4.26.

Here we test that prediction by characterizing the critical dynamics for different interac-

tion strengths. Before shaking the lattice we adiabatically ramp the scattering length from

its usual starting value of 40 a0 to final values between 20 a0 and 200 a0. In the Thomas-

Fermi approximation for a harmonic trap the interaction energy scales as µ ∝ a2/5; therefore,

over this range we vary the interaction energy by a factor of approximately 2.5. For each

final scattering length we follow the procedure described in Sec. 4.4.1 to measure the growth

of contrast fluctuations (Fig. 4.29). For each contrast curve, td was extracted and time was

scaled to td. The delay times were found to be td = 22.8 ms(200a0), 23.7 ms (100 a0),

26.0 ms (60 a0), 35.9 ms (20 a0). The growth of contrast does appear to be approximately

consistent with the universal function in scaled time across all of the different interaction

strengths.

Next, we followed the procedure described in Sec. 4.4.2 to measure the pseudo-spin corre-
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Figure 4.30: Universality of pseudo-spin correlations with scattering length. Correlation
functions at t = 1.4 td calculated from domain structures formed for linear ramps starting
at s = sc with scattering lengths 20 a0 (blue /), 40 a0 (magenta �), 60 a0 (green �), 100 a0
(cyan .), and 200 a0 (red ◦). The typical domain size d is extracted independently for the
data at each scattering length based on its fourier transform, as discussed in Sec. 4.4.2.
The solid curve and shaded region indicate the universal function and its uncertainty from
Fig. 4.26.

lations for different scattering lengths (Fig. 4.30). For each correlation curve, d was extracted

and space was scaled to that specific d. All data were collected for 0.32 nm/ms ramps af-

ter jumping to the critical point. The spatial correlation functions appear consistent with

the universal function, within one standard deviation, for scattering lengths from 20 a0 to

200 a0. The dependence of the length scale on scattering length is quite weak: the domain

sizes for each dataset are 3.69 µm (20 a0), 3.82 µm (60 a0), 3.87 µm (100 a0), 4.30 µm

(200 a0). However, the dependence is at least monotonic in the expected direction (larger

scattering lengths lead to bigger domains). Overall, we find that the universal functions still

appear to describe both the unfreezing and the correlations even after a dramatic change in

the interaction strength.
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Figure 4.31: Comparison of correlation functions between simulation and experiment. (a)
Simulated domain structures showing a snapshot of the local current density j normalized
to its RMS value j̄. Each snapshot corresponds to a different quench rate indicated at
the bottom right, with vn = 2nv0 and v0 = 0.98scω/(2

850π). (b) Plots of the normalized
correlation functions before rescaling the distance, cf. Fig. 4.24. (c) Scaling of the typical
domain size d (solid circles) and the correlation length ξ (open circles) extracted from the
simulations, compared with the corresponding experimental results (squares). (d) In scaled
spatial coordinates x/d, the correlation functions for every quench rate collapse onto a single
curve (solid lines), consistent with the experimental results (squares), cf. Fig. 4.26. See
Ref. [7] for more details.

4.4.6 Simulations of the critical dynamics

We have performed simulations of condensates crossing the effectively ferromagnetic quan-

tum phase transition, which are presented in Brandon M. Anderson, Logan W Clark, Jen-

nifer Crawford, Andreas Glatz, Igor S Aranson, Peter Scherpelz, Lei Feng, Cheng Chin,

and K Levin, ”Direct lattice shaking of bose condensates: Finite momentum superfluids”,

Physical Review Letters, 118(22):220401, 2017 (Copyright 2017 by the American Physical

Society). We briefly summarize that work here.

We simulate ultracold bosons in the shaken lattice using the Gross-Pitaevskii equation

(GPE), which describes the time-evolution of a Bose condensate under the mean-field ap-

proximation. Unlike our simulations of domain walls (see Sec. 3.4), for which we used an

effective model where the GPE is directly modified to include quadratic and quartic terms in

the dispersion, in this work we time evolve the GPE with an explicit lattice potential which
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oscillates over time. With this approach we can directly observe evolution of the superfluid

in the shaken lattice without making assumptions about its effects, aside from the mean-field

approximation implicit in the GPE. As a result, these simulations also manifest effects like

heating due to absorption of shaking “photons” which would not ordinarily appear in an

effective model. Note that a naive GPE simulation does not accurately capture the behavior

of our system, because it does not include the fluctuation which seeds the domain structures

that form in the ferromagnetic phase. In practice, we approximate this fluctuation using

phenomenological noise and dissipation terms. We find that the simulations capture quite

a few of the key features observed in the experiments, in particular yielding similar scaling

exponents and universal correlation function, see Fig. 4.31. For further discussion of our

simulation results, please see Ref. [7].

10.1038/nature24272
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CHAPTER 5

BOSE FIREWORKS

Much of the content in this chapter is based on our published work [43], which can currently

be found as a preprint arXiv:1706.05560 will appear in Nature with doi:10.1038/nature24272.

The thesis author played the primary role in the work described in this chapter.

5.1 Background

Scattering experiments have frequently provided fascinating insights into fundamental ques-

tions of physics. Scattering in many-body quantum systems presents a new frontier, in which

the interplay of many collision events can create phenomena which appear completely differ-

ent from the underlying pair scattering processes. In this chapter we report on a new such

phenomenon, in which collisions in Bose-Einstein condensates with periodically modulated

interaction strength lead to ejection of matter-wave jets. The emitted jets form a remark-

able, fireworks-like structure (Fig. 5.1) even though the underlying microscopic process is

simply isotropic, s-wave scattering. Surprisingly, this behavior is robust across a huge range

of modulation frequencies and belongs to a new class of processes analogous to superradiance

that has not been observed in former experiments.

Ultracold atomic gases provide a powerful platform in which control over pair-wise in-

teractions empowers us to investigate scattering in quantum many-body systems [36]. Past

experiments on colliding Bose-Einstein condensates have revealed many important features,

including matter-wave interference [10, 6], halos of scattered atoms [35, 30], four-wave mix-

ing [51, 149], and correlations between counter-propagating pairs [120, 121, 87]. However, a

regime with strong stimulation of spontaneous collisions [126, 55, 147, 14, 166, 116, 117, 52,

151, 132] analogous to superradiance [85, 113, 138] has proven elusive. Here we access that

regime, finding that runaway stimulated collisions in condensates with modulated interaction
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Figure 5.1: Example image series of Bose fireworks in a harmonic trap with approximately
symmetric horizontal trap frequency ωr = 2π × 6 Hz and tight vertical trapping ωz =
2π × 260 Hz. The conditions are adc = 10 a0, amplitude aac = 40 a0, and f = 5 kHz.

strength cause the emission of matter-wave jets which resemble fireworks. In spite of the

isotropic nature of the underlying s-wave collisions, the jets are also spontaneously directed

such that they only propagate in the plane of the disk-shaped condensate. Moreover, jets ap-

pear only above a threshold modulation amplitude and their correlations are invariant even

as the ejected atom number grows exponentially. Hence, we show that the structures and

occupations of the jets stem from the quantum fluctuations of the condensate. Our findings

demonstrate the conditions for runaway stimulated collisions and reveal the quantum nature

of the matter-wave emission.
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Figure 5.2: In a typical experiment we modulate the scattering length as a(t) = adc +
aacsin(ωt) where ω ≡ 2πf for a time τ before collecting an image of the resulting density
distribution.

5.2 Theory

The interplay between spontaneous and stimulated scattering events underpins many in-

teresting physical phenomena. In general, spontaneous events dominate for low scattering

rates. When the scattering rate exceeds a threshold, stimulated processes can “run away”,

leading to exponential amplification of outgoing particles. As a result, the character of the

emission dramatically changes. A well-known example is the laser, in which a sufficient rate

of stimulated emission results in a coherent wave of photons. Here, we show that runaway

stimulation of collective atom-atom scattering in a driven Bose-Einstein condensate causes

it to emit a burst of matter-wave jets.

5.2.1 Condensate filling space

Before treating the realistic, finite size system below, we can gain valuable intuition by

treating a condensate which fills all of space. Here, we will find that the oscillating interaction

strength induces a dynamical instability which allows pairs of atoms to collide and populate

modes with opposite momentum and total energy close to one quantum of the oscillating

field. As a result, the populations of those modes grow exponentially and there is a strong

correlation between pairs of modes with opposite momentum.

To treat the infinite system, the general Hamiltonian with which we begin is,
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H =
∑
k

~2k2

2m
b
†
kbk +

g(t)

2V

∑
k1k2q

b
†
k2+q

b
†
k1−qbk1bk2

where bk are annihilation operators for bosons with momentum k, V is the volume of space,

and we modulate the scattering length a(t) = adc + aaccos(ft) = adc + aac
2 eiωt + aac

2 e−iωt,

which we have taken internally to calling “wiggling,” for lack of a better, convenient short-

hand, with angular frequency ω = 2πf . This modulation corresponds to an oscillating in-

teraction strength g(t) =
4π~2a(t)

m = gdc + gac
2 eiωt+ gac

2 e−iωt. Note that we expect the phase

of the modulation to be unimportant since the dynamics will generally be slow compared to

the modulation period.

We make the Bogoliubov approximation by setting b0 = b
†
0 =
√
N where N is the number

of particles in the condensate. In so doing, we assume a macroscopic occupation of the ground

state which is not significantly depleted by the dynamics. This approximation fails once the

depletion of the original condensate mode becomes significant. However, it is very useful for

predicting the essential features of spontaneous jet formation and amplification. Generally,

even at the stage when depletion becomes significant the primary effect is to reduce the

amplification rate.

For a time-independent interaction strength the typical Bogoliubov treatment would

proceed by re-writing the Hamiltonian as

H =
∑
k 6=0

~2k2

2m
b
†
kbk +

Ng(t)

2V

∑
k

(b
†
kb
†
−k + bkb−k + 2b

†
kbk)

from which we split off the terms which include k and −k to obtain:

Hk = (
~2k2

2m
+ ng(t))(b

†
kbk + b

†
−kb−k) + ng(t)(b

†
kb
†
−k + bkb−k)

where we have defined n ≡ N/V . If the condensate fills space, these pairs of modes are
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completely independent of other modes. At this point we diverge from the typical Bogoliubov

treatment because of the time-dependent interaction term.

We use the Heisenberg equation of motion

ḃk =
i

~
[H, bk] = − i

~
(E(k) + ng(t))bk −

i

~
ng(t)b

†
−k

where we have defined E(k) ≡ ~2k2
2m . In order to focus on the essential features of Bose fire-

works we approximate gdc = 0 since, in the experiments described below, ngdc � ~ω, ngac.

We transform to a rotating frame by defining bk ≡ e−iE(k)/~ck. Substituting these new

operators we obtain

ċk = − i
~
n(
gac

2
eiωt +

gac

2
e−iωt)ck −

i

~
n(gdc +

gac

2
eiωt +

gac

2
e−iωt)e2iE(k)/~c†−k

and we are now in position to invoke the rotating-wave approximation. We will drop all

terms oscillating with frequencies of ω or faster, keeping only terms which oscillate at the

detuning δ ≡ 2E(k)
~ − ω � ω. Making the rotating-wave approximation we obtain,

ċk = −ingac

2~
eiδtc

†
−k ≡ −i

γ

2
eiδtc

†
−k,

where we define the growth rate γ ≡ ngac
~ . At this stage it is already clear that we should see

growth of modes with small detuning, corresponding to ejected atoms with roughly half of

a quantum (~ω/2) of the oscillating magnetic field. Note that this aggressive rotating-wave

approximation is well justified as long as the dynamics are slow compared to the modulation

frequency; that is, the modulation amplitude should satisfy ngac � ~ω.

From the coupled time-evolution equations in the rotating-wave approximation we can
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obtain the uncoupled second-order differential equation,

c̈k − iδċk −
(γ

2

)2
ck = 0

Ignoring, for the moment, that ck are operators, we see that this differential equation takes

a familiar form. The solution has the familiar form of exponentially growing and decaying

terms. The occupation numbers |ck|2 should have exponentially growing and decaying terms

with exponents (assuming δ < γ)

λ± = ±
√
γ2 − δ2.

As we anticipated, the resonant modes with δ = 0 have purely exponential growth and

decay solutions with rate λ± = ±γ. In this approximation, the apparent “linewidth” of

amplification comes entirely from power broadening; growth drops to zero when δ ≥ γ.

5.2.2 Correlations of jets in a finite BEC

While treating a finite size system is more challenging than the infinite system above, there

are a couple of key advantages that make our system significantly more accessible theo-

retically than the closely related colliding condensates [126, 55, 147, 14, 166]. First of all,

the mean-field(s) in the case of colliding condensates are moving through each other over

the course of their collision. As a result, the region in which the outgoing modes are be-

ing amplified, which corresponds to the region where the condensates overlap, has inherent

anisotropy and time-dependence. In our case, we can make the condensate mean-field nearly

homogeneous and circular, and its only time-dependence comes from depletion due to the

fireworks themselves (which we neglect here). Therefore, in this section we are able to de-

rive an analytical form for the correlation functions which explains the autocorrelation peak

(near θ = 0) quite well (Fig. 5.13).

98



For a finite size system, the many-body Hamiltonian describing our system is,

H =

∫
d3rΨ†(r, t)

p2

2m
Ψ(r, t) +

∫
d3rΨ†(r, t)V (r)Ψ(r, t)

+
g(t)

2

∫
d3rΨ†(r, t)Ψ†(r, t)Ψ(r, t)Ψ(r, t)

where Ψ is the bosonic field operator, V (r) is a static external potential which determines the

initial shape of the condensate, and m is the mass. Dynamics are driven by an oscillating in-

teraction strength g(t) =
4π~2a(t)

m where the scattering length follows a(t) = adc+aacsin(ωt),

see Fig. 5.2.

We begin by invoking a few key assumptions. First, since most of this work can be

understood in the regime where the depletion of the condensate is negligible, we will use the

Bogoliubov approximation of a fixed, macroscopically occupied condensate. Therefore, we

decompose the field operator into a quantum field describing the excited modes Ψe(r) and

a classical field ψ0(r, t) which corresponds to the condensate wavefunction. Second, since

we do not observe significant ejection of atoms outside the horizontal plane, we will assume

that the emission is only into horizontal modes and ignore the vertical structure of the gas.

Further assuming an idealized trap and ignoring the healing length, we can approximate the

condensate as a homogeneous cylinder of radius R and density n, such that the classical field

describing the condensate is ψ0(r) ≡
√
nρ(r) where

ρ(r) =


1 r ≤ R

0 r > R

in cylindrical coordinates with the horizontal radius r. Since the trap potential V (r) pri-

marily serves to contain the condensate and does not significantly affect jet propagation, we

will neglect its effects on the time evolution of the excited modes. Moreover, it is convenient
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to work in Fourier space, using the transformations

ρ(r) =
1

(2π)3/2

∫
d3keik·rρ̃(k),

Ψe(r, t) =
1

(2π)3/2

∫
d3keik·rb(k, t).

We can now invoke the rotating wave approximation. We define b(k, t) ≡ e−iωt/2c(k, t).

Time evolution of the rotating operators c(k, t) is governed by the Hamiltonian Hc = H −∫
d3k~ω2 c

†(k, t)c(k, t) in which we drop terms which oscillate at multiples of ω. We also drop

the elastic scattering term proportional to adc, which is negligible in this work. Together,

these steps yield the Hamiltonian:

Hc =
~2

2m

∫
d3k(k2 − k2

f )c†(k)c(k)

+
~γ
4

∫
d3k1d

3k2

(
c†(k1)c†(k2)

ρ̃(k1 + k2)

(2π)3/2
+ h.c.

)

where the excitation rate is

γ =
2hnaac

m
.

Below, in the absence of the decay term, the excitation rate will appear as the rate of

exponential growth for the excited atom number.

The time evolution of the excited field in the Heisenberg representation yields, which

yields

ċ(k) = −i ~
2m

(k2 − k2
f )c(k)− iγ

2

∫
d3k1

ρ̃(k+ k1)

(2π)3/2
c†(k1),
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where kf ≡
√
ωm/~ is the carrier wavenumber.

The first term contains the kinetic energy of the excited atoms and the second term

contains the interactions which populate the excited modes.

The kinetic energy term primarily leads to two effects: the resonance condition and the

threshold behavior. While we will see that resonant modes with k = kf can grow expo-

nentially, this term prevents the growth of modes which are sufficiently far from resonance.

Therefore, even in the finite-size case treated here, we expect the dynamics to be domi-

nated by wavepackets whose carrier momentum is on resonance while their envelopes take

the shape of the condensate. For such wavepackets the first term also encodes their motion

out of the condensate. Those parts of the wavepacket which leave the condensate no longer

grow, leading to the threshold behavior. While a full solution becomes challenging in this

case, approximate treatments incorporating the threshold behavior have been discussed, for

example, in Ref. [13].

Here, for the purpose of calculating the correlation function, we impose the resonance con-

dition and assume that the system is sufficiently above the threshold that the kinetic energy

term is negligible here. Furthermore, notice that the integral effectively performs a projec-

tion onto the homogeneous condensate density profile ρ(r); that is,
∫
d3k1

ρ̃(k+k1)

(2π)3/2
c†(k1) =

c
†
in(−k) where the subscript “in” denotes a projection onto the inside of the condensate

boundary and we can decompose the operator as c(k) = cout(k) + cin(k). The evolution

equation is then

ċin(k) + ċout(k) = −iγ
2
c
†
in(−k).

This equation has the solution

cout(k, t) = cout(k, 0),
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cin(k, t) = cin(k, 0)cosh(
γ

2
t)−ic

†
in(−k , 0)sinh(

γ

2
t), (5.1)

in which all amplitudes inside the condensate boundary grow, and those outside do not. The

thermal fluctuation at the relevant energies is expected to be negligible, so we can assume

that the initial state is the vacuum and all of the excited modes are initially empty. Therefore

we have

c(k1, 0) |0〉 = 0〈
c(k1, 0)c†(k2, 0)

〉
= δ(k1− k2).

The correlation function is defined as

g(2)(k1, k2, t) ≡

〈
c†(k1, t)c†(k2, t)c(k2t)c(k1, t)

〉
〈n(k2, t)〉 〈n(k1, t)〉

.

Using Wick’s theorem, which applies because the time evolution is linear (Eq. 5.1), we can

rewrite the correlation function as,

g(2)(k1, k2, t) = 1 +
|n(k1, k2, t)|2 + |m(k1, k2, t)|2

〈n(k2, t)〉 〈n(k1, t)〉
,

where n(k1, k2, t) =
〈
c†(k1, t)c(k2, t)

〉
is the contribution from the density matrix, we

have defined n(k, t) ≡ n(k, k, t), and m(k1, k2, t) = 〈c(k1, t)c(k2, t)〉 is the anomalous

contribution. Substituing the solution for the excited field from Eq. (5.1), we obtain,

n(k1, k2, t) =
ρ̃(k1− k2)

(2π)3/2
sinh2(

γ

2
t),

for the density matrix. Note that sinh2( γ2 t) contains one term which is exponentially grow-

ing at a rate γ. Accounting for the effects of the kinetic energy term, which leads to the

threshold behavior, yields a reduced exponential growth rate satisfying γ′ = 2hn(aac−at)/m,
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consistent with our observations in Fig. 5.15.

Furthermore, far above the threshold we obtain

m(k1, k2, t) = −i ρ̃(k1 + k2)

(2π)3/2
cosh(

γ

2
t)sinh(

γ

2
t)

for the anomalous contribution. Combining these results, we find the correlation function

g(2)(k1, k2, t) = 1 +
|ρ̃(k1− k2)|2

ρ̃(0)2
+
|ρ̃(k1 + k2)|2

ρ̃(0)2
coth2(

γ

2
t).

We can simplify the correlation function by assuming that |k1| = |k2| = kf and calcu-

lating the correlations as a function of the angle φ between k1 and k2. Furthermore, taking

into account the disk-shape of our condensates and noting that our observations are made

at times satisfying γt� 1, we obtain the time-independent correlation function:

g(2)(φ) = 1 +

∣∣∣∣∣2J1(kfRφ)

kfRφ

∣∣∣∣∣
2

+

∣∣∣∣∣2J1(kfR(φ− π))

kfR(φ− π)

∣∣∣∣∣
2

, (5.2)

where Jn are the Bessel functions of the first kind and in our experiments the coefficient

kfR� 1 is sufficiently large that we have made small angle approximations for the last two

terms.

While the approximation of ignoring the motion of the outgoing wavepackets (that is,

mostly dropping the kinetic energy term except for the resonance condition) was discussed

above, it is crucial to note that this approximation is likely responsible for discrepancies be-

tween the experiment and theory. It is possible that finding a way to incorporate the motion

of the outgoing wavepackets into the theory will account for the suppression and broadening

of the peak at 180◦, for example. The motion of the outgoing jets almost certainly also plays

important roles in determining the average density and fluctuations in the remnant conden-

sate which is left behind after the jets are ejected, in setting the threshold for secondary

collisions, and in the effects of excitations such as vortices in the initial condensate on the

103



R

x

y
z

Figure 5.3: Disk-shaped Bose-Einstein condensates (blue) of radius R are trapped at the
intersection of two lasers, which create a repulsive cylindrical shell (green) and an attractive
sheet (red).

fireworks pattern (see Sec. 7.2).

5.3 Experiment Setup

To observe jets we typically perform experiments on thin, pancake-shaped condensates of

30 000 cesium atoms (Fig. 5.3). The condensates homogeneously fill a circle of typical radius

R = 8.5 µm in the horizontal plane while being tightly, harmonically confined vertically to a

root-mean-squared radius of 0.5 µm. The trap depth in all directions is sufficient to confine

the condensates, but weak enough to allow ejected atoms to propagate nearly undisturbed.

Note that the fireworks appear qualitatively similar in more ordinary harmonic traps, as

shown in Fig. 5.1. Here, the use of homogeneous disk traps facilitates data analysis and

quantitative comparisons with theory.

Horizontal confinement is provided by a repulsive 780 nm laser which is shaped into a

circle of controllable radius by a digital micromirror device (DMD) before being projected

onto the atoms through the high-resolution objective lens, see Sec. 2.5.1. The resulting

barrier has a height of h × 150 Hz and thickness of 4 µm. Vertical (z-axis) confinement is
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approximately harmonic with frequency ωz = 2π × 210 Hz and depth h× 500 Hz.

After loading the condensates into this trap we modulate the magnetic field around

17.22 G, near the zero-crossing a Feshbach resonance, at frequency f which causes the s-wave

scattering length a of the atoms to oscillate [125], see Fig. 5.2 and Sec. 2.3. Below, except

where explicitly discussed, we maintain a small, positive average scattering length adc = 5 a0,

in terms of the Bohr radius a0. For typical experiments we hold the modulation amplitude

at a constant value aac for a duration τ before imaging the atomic density distribution.

5.3.1 Defringing

While methods for defringing have been well established and are commonly used in cold

atoms (for example, see Ref. [94]), such that they don’t need to be rehashed here, the use

of defringing for analyzing fireworks images deserves a crucial message of warning. Since

the density in fireworks is typically small, especially when they have propagated far enough

away from the remnant condensate to be easily resolved, the signal to noise ratio may not

be very large; as a result, fringes in the absorption imaging beam may create artifacts in

images comparable in magnitude to the fireworks themselves. It is quite appropriate to use

defringing to remove these artifacts, and when generating images for simple visual inspection

there is not much harm to be done. However, when processing images in order to perform

quantitative analysis, such as calculating atom numbers or correlations, one must use extreme

caution to ensure that there are not any atoms in the region chosen as the “background” for

defringing. Because the emission of jets begins slowly, with a small number of atoms, the

atoms in the leading edge of the jets may not be visually apparent due to their extremely low

density. However, they can easily lead to defringing artifacts which ruin the results of any

further quantitative analysis of the primary jet signal. Note that secondary collisions could

also eject small numbers of atoms into regions which one expected to be empty. One must

be absolutely certain that no atoms are in the background region before applying defringing
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at the beginning of any quantitative analysis. For this work, we implement defringing only

when there is a large region at the boundary of our images which is too far away for any

ejected atoms to have reached during the modulation time.

5.3.2 Correlations

Below, we calculate the angular correlation functions

g(2)(φ) =
〈
∫
dθn(θ) [n(θ + φ)− δ(φ)]〉

〈
∫
dθn(θ)〉2

, (5.3)

where n(φ) is the angular density of atoms emitted at an angle φ, δ(.) is the Dirac delta func-

tion, and the angle brackets denote averaging over ensembles of many images. To calculate

these correlations from our data we use discrete angular slices of width 10 mrad. Moreover,

for each condition we include only atoms within an annulus whose inner and outer radii

are symmetric around the distance at which ejected atoms are most dense. For Fig. 5.13

the annulus has thickness 10 µm, whereas for Fig. 5.17 the thickness increases to 20 µm to

improve the signal strength for conditions with few jets.

Especially when calculating correlations for conditions in which the jet density is very

low, it is important to remove spurious contributions to the correlation from small, fluctu-

ating backgrounds (including fringes in the imaging beam). In each trial of the experiment

with atoms present, we are actually measuring nmeas(θ) = nreal(θ) + nbkg(θ) where nreal(θ)

represents the signal from our atoms and nbkg(θ) is some fluctuating, correlated background

corresponding to technical noise. In that case, the correlation function that we would naively

calculate from raw data would be (temporarily ignoring the δ-function contribution for sim-

plicity),

g(2)(φ)naive =
〈
∫
dθ(nreal(θ) + nbkg(θ))(nreal(θ + φ) + nbkg(θ + φ))〉

〈
∫
dθ(nreal(θ) + nbkg(θ))〉2

, (5.4)
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which deviates from the physical correlation function because of the contributions from

the background. In order to remove the background, we first acquire an additional set

of images with no atoms present, effectively measuring nbkg(θ) independently (in practice,

we intersperse these background-only images within each real dataset to account for slow

drifts in performance of the experiment). Then, to ensure that the background does not

contribute to the denominator, we subtract the average background from the measured

data n′meas(θ) = nmeas(θ) − 〈nbkg(θ)〉 and the background-only data n′bkg(θ) = nbkg(θ) −

〈nbkg(θ)〉. Next, as long as we assume that the fluctuations in the real signal and the

background are uncorrelated, we can remove the background-only correlations by calculating

the real correlations as,

g(2)(φ)real =
〈
∫
dθn′meas(θ)n

′
meas(θ + φ)〉 − 〈

∫
dθn′bkg(θ)n′bkg(θ + φ)〉

〈
∫
dθn′meas(θ)〉

2
. (5.5)

Two other subtleties in calculating the correlations deserve mention. First, the half-

widths at half-maximum shown in Figs. 5.14 and 5.17 are corrected for small systematic

shifts due to our finite imaging resolution of 1.4 µm similar to the case of the pseudo-spin

correlations in the effectively ferromagnetic phase (see Sec. 4.3.4). Since we use narrow

annuli for correlation analysis, we approximate the angular resolution by considering the

point spread function for atoms at the midpoint of the two radii defining the annulus.

Second, unlike in the case of pseudo-spin correlations treated in the previous chapter,

here we are often calculating correlations between regions containing small atom numbers,

and as a result it is important to remove the autocorrelation of atoms when comparing to the

theory (this corresponds to accounting for the term containing the δ-function in Eq. 5.3).

The width of the point spread function is not insignificant compared to the width of the

angular slices; for example, the width of a 10 mrad angular slice at a distance of 70 µm

from the center is 0.7 µm, smaller than our imaging resolution of about 1.4 µm. Therefore,

before subtracting the delta-function contribution we must convolve it with the point-spread-
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Figure 5.4: When calculating angular correlation functions from images of fireworks, the
choice of the center relative to which we define the angular density can lead to systematic
effects. While the correlations at small angles (left) are essentially unaffected, correlations
near 180◦ (right) change significantly when the center is shifted by microns. The values in
the legend denote the coordinates of the corresponding annulus center; the units are camera
pixels, which correspond to 0.60 µm in the atomic plane.

function; note that this also means that the delta-function affects g(2) for small angles, not

just g(2)(0).

5.3.3 Systematic Distortions of the Fireworks Pattern

The calculated correlations can depend very sensitively on small distortions of the fireworks

pattern. Experimentally, we suppress these as much as possible by turning off the XDT,

YDT, and ZDT dipole traps and shifting the residual trapping (a sum of the weak magnetic

antitrapping and a horizontal weak trapping from the vertical lattice) to be concentric with

the DMD circle by offsetting the bias field. Even so, slight distortions generally remain, such

that the center of the fireworks pattern is not exactly the center of the remnant BEC (this is

the lowest order effect; other distortions are also possible). Since the residual potentials are

very weak, the distortions are only relevant for atoms which have traveled large distances

apart. Therefore, the systematic effects have the strongest influence on the appearance of

the correlation peak at 180◦ (which we call the π-peak). Equivalently, this effect can be
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Figure 5.5: Two tests for systematic issues in Fireworks correlation functions. A) An example
calculation of the π-peak for a complete dataset (black solid curve) as well as four independent
sets of opposing 45◦ angular slices of the data (colored, dashed curves). B) Correlations
calculated within two independent annuli of thickness 20 µm centered around radii R =
95 µm (red) and R = 130 µm (blue) as well as the cross-correlation between the angular
densities in the two annuli (dashed green). All correlations were measured only within a
finite angular slice of width π/4.

seen in the distortion of the calculated correlations when the center of the annulus used for

data analysis is translated, see Fig. 5.4. Shifts of the center position by a few microns have

no significant effect on the peak at 0◦ (0-peak) but dramatically distort the π-peak. This

observation is especially troubling because the π-peaks in our primary data (see Fig. 5.13)

are shorter and wider than expected. Ideally, we would like to ensure that these effects do

not result from technical issues.

While we certainly cannot completely rule out technical distortions as the cause of the

short, broad π-peaks in general, we have made significant effort to rule out technical issues

which could account for the π-peaks. Here we will describe two noteworthy examples. First,

in Fig. 5.5A we compare the π-peak correlations calculated for the entire sample with cor-

relations calculated for narrow angular slices of the data. For example, the magenta dashed

curve was calculated using the angular density n(θ) limited to absolute angles from 0 to π/4

and from π to 5π/4. If there were large-scale (i.e. not too much rapid spatial variation)
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systematic distortions of the fireworks profile which were consistent from trial to trial, we

would expect to see taller, narrower π-peaks within each of these independent angular slices.

Any such effect in the example data shown (and in every dataset that we have tested) is

very small and insufficient to account for the deviation of the π-peak from theory.

In the second example shown in Fig. 5.5B we illustrate how we can determine the most

appropriate center location for the analysis annulus based on cross-correlations in the angular

densities measured using independent annuli at two different radii. We partition the angular

density into 8 independent angular slices of width π/4 and in each slice generate a plot as

shown in the example Fig. 5.5B. If the center is positioned properly, and the fireworks are

propagating radially away from the center, then the cross-correlation between the inner and

outer annuli (the dashed green curve) should also be centered at φ = 0. If it is not (in the

example it is offset by 10 mrad), then we can try to reposition the center to minimize the

offsets measured across all of the angular slices. With the optimal choice of center location

we can generally limit the offsets to less than 5 mrad in every slice, which is insufficient to

account for the π-peak.

5.3.4 Frequency Limits

In this chapter we will discuss fireworks experiments performed at frequencies f = 1 ∼

10 kHz. In theory, nothing fundamentally limits us from using lower or higher frequencies.

On the low frequency end, the behavior of the fireworks should not qualitatively change

until the frequency approaches either the trap depth or the chemical potential. On the

high frequency end, one might not expect a qualitative change until the magnetic field

oscillation frequency reached the binding energy of a Cs2 molecular state, at which point

additional features due to the binding of molecules should appear. However, in practice the

low frequency limit is reached when we start to excite collective modes of the trap in the

vertical direction, leading to rapid variation of the density and a flow of atoms leaving the
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Figure 5.6: Top-down images of condensates after modulating the scattering length at f =
3.5 kHz and aac = 60 a0 show condensates ejecting a sudden burst of narrow jets. Note that
the internal structure of the remaining condensate suffers from imaging artifacts due to the
extremely high density. Each image corresponds to a single, independent realization of the
experiment.

trap vertically. Moreover, the practical high frequency limit occurs because the threshold

modulation amplitude necessary to achieve fireworks (rather than just spontaneous emission)

becomes unreasonably high (and the background of spontaneously emitted atoms becomes

very large even when the amplitude exceeds threshold). Either limit could probably be

overcome if someone felt a strong urge to do so. For instance, one could change the vertical

trap configuration to adjust the resonance positions or increase the density of the gas.

5.4 Results

5.4.1 Essential Features

When we monitor the behavior of the condensate under the typical experimental procedure

(Fig. 5.2), for the first few milliseconds of modulation little change is observed, until suddenly

the jets emerge and propagate radially away from the condensate, see Fig. 5.6. The specific

pattern of jets appears to be random in each repetition of the experiment. Even so, the

jets have similar angular widths, and jets often appear to be accompanied by a partner

propagating in the opposite direction. Side-view images of the condensates indicate that

atoms are predominantly ejected in the horizontal plane, see Fig. 5.7. All of these behaviors

are observed throughout a wide range of frequencies f = 1 ∼ 10 kHz.
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Figure 5.7: Side-view images of the condensates taken at f = 3.5 kHz show atoms emitted
predominantly in the horizontal plane. Each image corresponds to a single, independent
realization of the experiment.

To understand the microscopic process responsible for ejection of atoms, we extract the

kinetic energy per atom by monitoring their distance from the condensate over time. We

find that each atom has half of a quantum of the oscillating field, Ek = hf/2 where h is

the Planck constant (Fig. 5.8). This relationship confirms our expectations that the ejected

atoms come from collisions in which two atoms absorb and equally share an energy of hf from

the modulation and are ejected in opposite directions. From this microscopic perspective, the

situation is similar to collisions between two condensates, during which counter-propagating

pairs of atoms are ejected while conserving momentum and energy[35].

The preferential emission in the horizontal plane and the jet structure are salient and

indicative of a collective collision process occurring throughout the condensate; uncorrelated,

s-wave collisions should generate a diffuse, spherical shell of outgoing atoms. The observed

features suggest that atoms produced in each collision stimulate further scattering into the
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Figure 5.8: The measured kinetic energy per emitted atom for a range of modulation fre-
quencies. The standard error is smaller than the symbol size. The inset illustrates the
microscopic process leading to jets, in which two atoms collide, absorb one quantum from
the oscillating field, and are ejected in opposite directions.

same outgoing direction. Sufficient driving makes this stimulation run away and causes large

numbers of atoms to go in particular directions and appear as jets while other directions have

far fewer atoms and appear nearly empty. Note that the small, constant average scattering

length is important for suppressing elastic collisions which scatter the atoms out of the

jets. With sufficiently large positive or negative average scattering lengths adc we no longer

observe jets.

The disk shape of the condensates precludes strong stimulation for atoms emitted ver-

tically, which rapidly escape the condensate before stimulating further collisions. This

anisotropy results in the predominantly horizontal emission which we observe. However,

for sufficiently high frequencies and modulation amplitudes the atoms from spontaneous col-

lisions are detectable in side-view images as a low density halo out of the plane, see Fig. 5.9.

The vertical lattice is almost certainly responsible for the apparent gap between the main
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Figure 5.9: An example side-view image of fireworks from the disk trap with R = 8.5 µm,
modulation amplitude aac = 100 a0, and frequency f = 8 kHz. A low density halo containing
approximately 40% of the total ejected atoms is visible outside of the horizontal plane.

horizontal emission and the halo, since atoms emitted at small vertical angles cannot leave

the primary well of the lattice.

The atoms ejected out-of-plane should be kept in mind when analyzing the images from

the vertical camera. Under the conditions of the figure shown, the out-of-plane emission

contains approximately 40% of total ejected atom number. Since we are forced to image the

column density, these atoms can contribute a large uncorrelated background which reduces

the height of peaks in the calculated correlation functions (see Sec. 5.3.2). It might be

possible to eliminate this background by using microwaves to repump only the in-plane

atoms (due to the large magnetic field gradient) before imaging. We were unable to remove

this background in the results reported below.

There seems to be a common misconception (hopefully only slightly exacerbated by our

explanations) that there is a dichotomy between modes containing jets and modes which are

empty. No such dichotomy exists; we observe modes with large occupations, modes with

small occupations, and modes in between. The appearance of jets merely reflects the large

variance. To illustrate this, we present a histogram of the atom numbers in 20 mrad slices
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Figure 5.10: A histogram of the atom numbers measured in 20 mrad angular slices from 73
images of fireworks with f = 1.9 kHz.

from typical images in Fig. 5.10. If there were two types of modes, containing jets or nothing,

we would generally expect a bimodal distribution with a peak near zero and another peak

with large occupation. Since there is actually a smooth distribution of occupations, reflecting

the distribution which results from amplified quantum fluctuation (see below), the histogram

is instead unimodal. The distribution of occupations should be unimodal for any system in

which all of the modes are equivalent. In particular, the sample should be isotropic and all

modes should share the same unimodal distribution of initial occupations (in this case, the

modes are all initially empty).

5.4.2 Threshold

Runaway stimulated scattering only occurs when outgoing atoms stimulate further collisions

faster than they escape the condensate. We estimate that the ejected atoms escape at a rate

Γ = α vR where
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Figure 5.11: Examples of threshold behavior at three frequencies. A plot of the number of
ejected atoms Ne for modulation at frequency f = 1.3 kHz for duration τ = 46 ms (blue
circles), f = 4.5 kHz for τ = 25 ms (orange squares), and f = 8.2 kHz for τ = 19 ms (green
diamonds). Solid curves show fits based on Eq. 5.8 (methods).

v =

√
hf

m
(5.6)

is the velocity of an ejected atom with mass m and α is a dimensionless constant of order

unity[147]. Moreover, a careful theoretical treatment yields an excitation rate for the ejected

population γ = 2hnaac
m which is proportional to the modulation amplitude and the density n

of the condensate (see Sec. 5.2). Therefore, runaway stimulation occurs if the gain is larger

than the loss γ > Γ. When only the modulation amplitude is varied, we can recast the

threshold condition as aac > at where

at = α
m

2h

v

Rn
(5.7)

is the threshold amplitude.

To test for the existence of a threshold for jet formation we measured the number of

atoms ejected from the condensate at many different modulation amplitudes, see Fig. 5.11.
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Figure 5.12: Threshold amplitudes extracted from fits as shown in Fig 5.11. The solid curve
shows a fit based on Eq. 5.7 which yields the value of the numerical coefficient α = 2.1(1).
All error bars show standard errors.

To determine the threshold at each frequency, we measure the number of atoms ejected as

a function of the modulation amplitude. Here, the total duration τ of the experiment is set

to the time an atom takes to travel 80 µm to the edge of our field of view. We fit the results

using an empirical model,

Ne = Aa2
ac +B(aac − at)Θ(aac − at), (5.8)

where A and B characterize the strength of the spontaneous and strongly stimulated contri-

butions to emission, respectively, and Θ is the Heaviside step function.

Below the threshold only a few atoms are ejected in a diffuse cloud, primarily from spon-

taneous scattering. Above a certain amplitude, which we identify as the threshold amplitude,

the condensate suddenly starts ejecting many more atoms in the form of narrow jets. We

further test the predicted behavior of the threshold (Eq. 5.7) by varying the modulation

frequency to change the velocity of outgoing atoms (Eq. 5.6), see Fig. 5.12. Our results

verify the expected dependence at ∝
√
f and yield an empirical value α = 2.1(1).
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Figure 5.13: Azimuthal density-density correlations calculated from 90 images of jets emitted
from condensates driven at f = 1.9 kHz and aac = 60 a0 for modulation durations of 4.4 ms
(green diamonds), 5.6 ms (red squares), and 8.0 ms (blue circles). The solid curve shows the
theoretical correlation function based on Eq. 5.2. The inset magnifies the peak near φ = 0◦.

5.4.3 Correlations among Jets

Many essential features of the jets are characterized by their correlations[126, 55, 147, 14, 166,

116, 117, 52, 151, 113]. Specifically, we plot angular correlation functions (see Sec. 5.3.2)

in Fig. 5.13. As expected, we consistently detect two peaks in the measured correlation

functions, one near φ = 0◦ (the 0-peak) and the other near φ = 180◦ (the π-peak). The

0-peak results from collectively stimulated collisions, which lead to preferential bunching of

the ejected atoms into the same modes. The π-peak appears because forward and backward

jets are mutually stimulating as a result of conservation of momentum in the underlying pair

scattering process.

The 0-peaks are in close agreement with the prediction for runaway stimulation, see

Fig. 5.13 inset. The slight reduction in the height of g(2)(0) is likely a result of our finite

imaging resolution and the aforementioned spontaneous emission out of the plane.

In addition to the jet profile, the correlation function (see Eq. 5.3) also indicates the
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variance σ2 =
[
g(2)(0)− 1

]
〈Nθ〉2 + 〈Nθ〉 of the atom number Nθ ejected in a direction

θ. For runaway stimulation and many ejected atoms, the standard deviation σ ∝ N is

proportional to the number of ejected atoms, supporting the observed jet-like appearance.

This contrasts with the case of spontaneous scattering, where the fluctuation σ ∝
√
N comes

only from shot noise, leading to a diffuse halo.

The correlation function is remarkably consistent throughout the amplification process

even as the number of atoms in jets grows by an order of magnitude, see Fig. 5.15. When the

modulation duration varies from τ = 2 ∼ 14 ms we find that both the width and height of

the zero peak remain constant. This observation is consistent with the expectation that the

gain in our system is isotropic in the horizontal plane; as a result, the stimulated emission

into each horizontal mode depends only on its occupancy and the runaway stimulation does
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not change the jet structure.

5.4.4 The π-Peak

Conservation of momentum in pair scattering should in principle cause each jet to be ac-

companied by a counter-propagating partner, such that the π-peak has the same area as the

0-peak. Taking the ratio of the areas we obtain A(180◦)/A(0◦) = 70 ∼ 85%, suggesting that

this expectation is largely met. However, the peaks near φ = 180◦ are shorter and wider

than those near φ = 0◦. We note that the profiles of the peaks near φ = 180◦ are much more

sensitive to technical distortions of the atom trajectories, since this peak comes from atoms

on opposite sides of the image which are separated by approximately 150 µm at the time of

detection. In addition, broadening of the correlation peaks has been predicted for analogous

system[117].

Our preliminary results suggest that the π-peak gets broader and shorter for larger gases.

Unfortunately fireworks from larger gases may also be more sensitive to systematic effects

in the loading of the homogeneous gas. Even so, it is quite possible that the reduction of

the π-peak is physical and not technical; the trend in the π-peak most likely results from

the motion of outgoing jets which is not properly accounted for in the theory. Investigation

into the nature of the π-peak is currently ongoing in the lab.

5.4.5 Fireworks seeded by Quantum Fluctuations

Since the correlations appear to be time-independent, the distribution of atoms in the ampli-

fied jets should reflect the fluctuation of the original condensate. The thermal fluctuations

are expected to be negligible since the thermal population 1
eEk/kBT−1

≤ 0.03 atoms per out-

going mode is small for our condensate with a temperature of T = 7 nK and modulation

frequencies f ≥ 1 kHz. As a result, quantum fluctuation should dominate the initial popu-

lation, suggesting that we observe parametric amplification of the vacuum fluctuation. To
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Figure 5.15: The number of atoms per mode (circles) grows rapidly over time before satu-
rating when the condensate is depleted. An exponential fit to the first five data points (solid
curve) extrapolates to an initial level of 1.0(3) atoms per mode; the shaded region covers
one standard error.

further probe this feature we calculate the apparent number of atoms per outgoing mode

as a function of the driving time, see Fig. 5.15. Here we estimate the number of outgoing

modes as M ≈ 180◦/∆θ = 78 where ∆θ = 2.3◦ is the measured half-width at half-maximum

of the peak at g(2)(0). The growth of the atom number over time is well described by an

exponential until the depletion of the condensate becomes relevant. An exponential fit ex-

trapolates to an apparent initial number of 1.0(3); in the case of quantum fluctuation this

value represents a virtual population.

5.4.6 Fireworks Scaling Saturates Uncertainty Limit

An important prediction is that the width of the jets has a simple relationship to the size

of the condensate and the modulation frequency by the Heisenberg uncertainty principle,

see Fig. 5.16. In particular, the uncertainty principle suggests that the lower limit of the
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Figure 5.16: Example images of jets ejected from condensates of different radii with modu-
lation frequency f = 1.9 kHz and amplitudes of aac = 70 and 80 a0 respectively.

transverse spread of momentum in a jet ∆k ∝ 1/R is set by the radius of the condensate, and

the radial momentum kf ∝ 1/
√
f is determined by the oscillation frequency. As a result,

the uncertainty-limited angular width follows ∆θ = ∆k/kf ∝ 1/(Rkf ). The complete

calculation, see Eq. 5.2, yields ∆θ ≈ 1.62/(Rkf ). The measured angular widths of jets

emitted from condensates of various sizes and oscillation frequencies saturate this uncertainty

limit, see Fig. 5.17.

Note that the condensates of R = 6.8 µm and 12.4 µm used in Fig. 5.17 typically contain

N = 26 000 and 41 000 atoms, respectively. Even with these slight differences in atom

number, the density of the gas with R = 12.4 µm is approximately half as that of gases with

R = 6.8 µm. We did not make any effort to keep the density constant between the different

radii, because density is not expected to affect the width of the jets; it only affects their

growth rate. This expectation seems to be validated by the results, which all agree with the

density-independent prediction.

Finally, it is interesting t note that the angular width of the jets does not appear to depend

on their distance from the condensate. Specifically, our theoretical predictions (Sec. 5.2) are

made for the so-called “far-field” scenario, in which the jets have propagated sufficiently
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Figure 5.17: The deconvolved widths of the peaks at g(2)(0) for condensates with radius
R = 6.8 (blue diamonds), 8.5 (green circles), and 12.4 µm (orange squares). Solid curves
indicate the theoretical widths based on Eq. 5.2. Error bars indicate one standard error. For
details on experimental parameters refer to the methods.

far from the remnant condensate that their width is dominated by their initial spread of

momentum, rather than their initial spread in space. In the far-field, the modes should not

be significantly overlapping in space. In the so-called “near-field” region in which the width

of the jets is less than the width of the original gas (which matches the width of the mode

envelopes), our theory would seemingly indicate that many modes are still overlapping. We

can quantify the “field” of particular experimental conditions by comparing the typical half-

width of a jet r∆θ where r is the distance of the jet from the center of the condensate to

the radius R of the condensate. The results shown in Fig. 5.17 span a wide range r∆θ/R ≈

0.1 ∼ 0.6, though they are generally closer to the near-field. Surprisingly, we still observe

excellent agreement with the far-field theory. It would be interesting for future theoretical

work to attempt to explain this observation.

The jet emission process can be further investigated as a function of the coherence length,
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shape, or collective motion of the gas. One could probe the excitations present in more

exotic states of matter by amplifying them into more readily detectable jets. Moreover,

the observation that jets come from parametric amplification of the vacuum fluctuation

suggests that this is a promising new platform to generate twin matter waves for metrological

applications[27, 108, 74]. Jet emission should also be taken into account in schemes for

Floquet engineering which utilize oscillating interactions[128, 109]. The observation that

jets result from amplified quantum fluctuations suggests that this system overcomes the

challenge of generating a scenario in which all other sources of excitations are suppressed.

The suppression of other sources of noise makes this system well suited for amplifying the

fluctuations which appear in more exotic states of matter than the ordinary BECs tested

here.
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CHAPTER 6

SPATIOTEMPORAL CONTROL OF THE INTERACTION

STRENGTH

Much of the content in this chapter is based on our published work [44]: Clark, L. W., Ha,

L.-C., Xu, C.-Y. & Chin, C, ”Quantum dynamics with spatiotemporal control of interactions

in a stable Bose-Einstein condensate,” Phys. Rev. Lett. 155301, 9, 2015 (Copyright 2015

by the American Physical Society). The thesis author played the primary role in the work

described in this chapter.

6.1 Background

Feshbach resonances play an essential role in many exciting experiments on atomic quantum

gases, as discussed in Sec. 2.3. Indeed, none of the work described in this thesis would have

been possible without the ability to tune the scattering length using Feshbach resonances.

The fundamental reason is that one cannot even dream of forming condensates of 133Cs

without tuning the scattering length away from its large and negative background value[152,

36]. Moreover, the surprisingly sophisticated dynamics of Bose fireworks described in the

previous chapter result from a simple oscillation of the scattering length. Even the shaken

lattice experiments described in Ch. 3 and 4 relied on Feshbach resonances in subtle but

crucial ways. First, the small average scattering length during shaking kept the heating

of the gas due to inter-band collisions manageable[119, 38, 40, 39]. Second, the domain

detection technique described in Sec. 4.3.1 only works because the scattering length is tuned

to zero and thus interactions are negligible during time-of-flight[42].

In light of the many applications already discussed for relatively slow, global changes

of the scattering length, it is easy to imagine that fast, local control of interactions would

bring a plethora of new quantum-mechanical phenomena into the realm of ultracold atomic

125



gases. Indeed, temporal modulation of interactions has been theoretically proposed as a

route for creating anyonic statistics for atoms in optical lattices [69, 73] as well as new types

of quantum liquids [1, 136] and excitations [139, 127, 2]. Spatial modulation would grant

access to unusual soliton behavior [131, 21], controlled interfaces between quantum phases

[78], stable nonlinear Bloch oscillations [137], and even the dynamics of acoustic black holes

[15]. Oscillating interactions could also provide a powerful tool in Floquet engineering,

specifically for creating density-dependent synthetic gauge fields [128, 109], see Sec.7.1.

Unfortunately, the conventional technique of magnetic Feshbach resonance (MFR) [84, 36]

is usually unable to provide the desired spatiotemporal control of interactions. In most setups

MFR is limited because the magnetic coils are too large for very fast or local modulation of

the field. Specific to our setup, the main field coils have a bandwidth of just a few kHz (see

Fig. 2.2) and are essentially limited to producing global fields and linear gradients[81].

A promising approach to overcome the limitations of MFR is optical control of Feshbach

resonances (OFR), with which high speed, spatially resolved control of interactions can be

realized. Early work in this direction [61, 25, 60, 144] focused on direct optical coupling

of the atomic scattering state to an excited molecular bound state. Others have used the

narrow intercombination transition in alkaline-earth-like atoms [160, 59, 158, 23, 159] where

OFR has the additional benefit of providing control of interactions to species in which MFRs

do not exist. Another approach is to provide a bound-to-bound optical coupling which shifts

a state already coupled to the continuum [18, 17].

While these past efforts have shown significant promise, they generally encountered two

major obstacles. First, in previous experiments OFR has limited the quantum gas lifetime

to the millisecond timescale [17, 159, 66] due to optical excitation to molecular states. Short

lifetimes prevent quantum gases from reaching equilibrium or evolving normally over typical

dynamical timescales. Second, the change of interaction strength from OFR is often accom-

panied by an optical potential. This potential can result in a parasitic dipole force which
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Figure 6.1: Illustration of scheme for optical control of Feshbach resonances. A Feshbach
resonance occurs when a laser (yellow) brings a molecular energy level (blue surface) close
to the atomic scattering threshold (red surface). Here, the atom-molecule coupling makes
atomic interactions more attractive at higher laser intensity. When operating at the tune-out
wavelength, the beam does not shift the energy of single atoms.

dominates the dynamics when the interactions are spatially modulated [158].

In this chapter we develop and implement a new scheme for optically controlling inter-

actions while maintaining a long quantum gas lifetime and negligible parasitic dipole force.

Using this scheme we can achieve a change of the scattering length by 180 Bohr radii with

only a slow radiative loss of 1.6 s−1. In the next Sec. 6.2 we describe our scheme in detail

and predict its performance in 133Cs. Following that in Sec. 6.3 we explain the technical

challenges to implementing this scheme, both in general and specific to our apparatus. Then,

in Sec. 6.4, we present our results confirming the excellent performance of our scheme and

implementing it to perform interaction modulation spectroscopy and explore the dynamics

of condensates with locally attractive interactions.

6.2 Scheme for optically controlling Feshbach resonances

We optically control Feshbach resonances by using a far detuned laser to light shift molecular

states near the atomic scattering threshold (Fig. 6.1). The large detuning from all atomic
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and molecular transitions offers low heating and loss rates for the quantum gas. For a laser

with intensity I, the total light shifts of atoms (subscript a) and molecules (subscript m) are

given by [100]

δEa = (αa + βaµa)I

δEm = (αm + βmµm)I,

where α is the scalar polarizability and the vector polarizability βµ depends on the mag-

netic moment µ. The polarizabilities are calculated based on the laser detuning and the

polarization-dependent dipole matrix elements of the transitions to the excited states below.

Since our target molecular states are very weakly bound, they have similar polarizability to

free atoms: αm ≈ 2αa and βm ≈ βa ≡ β. Assuming the molecular and atomic magnetic

moments differ µm 6= 2µa, the vector light shift can bring the molecular states closer to the

scattering state, inducing a resonant atom-molecule coupling. In the past, optical shifts of a

magnetic Feshbach resonance have been achieved using specific bound-to-bound transitions

[18, 17, 66, 156] and recently using a far detuned laser [32]. Here, since this scheme does

not rely on proximity to any atomic or molecular transitions, in principle the lifetime is

only limited by the one-body off resonant scattering rate. Moreover, we choose a tune-out

wavelength λT to eliminate the dipole force on the atoms (δEa = 0) [101, 154], such that

only the molecular shift

δEm ≈ β(µm − 2µa)I (6.1)

remains (Fig. 6.1). Under these conditions the laser can shift the energies of molecular states

without creating parasitic dipole forces for free atoms. This scheme can be implemented in

atomic species with a magnetic Feshbach resonance and a tune-out wavelength far-detuned

from electronic transitions, see Sec. 6.4.7.

The effect of such a laser on the scattering length can be conveniently understood by
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Transition ωfi/2π (THz) |〈f ||d||i〉| (10−29 C·m) Γf/2π (MHz) C+
fi C−fi

D1 335.116 3.81 4.557 7
24

1
24

D2 351.726 5.36 5.219 5
48

11
48

Table 6.1: The parameters used to calculate the polarizability and scattering rate for the D1
and D2 transitions of Cs.

recognizing that the molecular shift (Eqn. 6.1) is equivalent to that caused by an effective

magnetic field

Beff(I) = βI (6.2)

proportional to the laser intensity. Therefore, near a magnetic Feshbach resonance the

scattering length follows [36] (see Sec. 2.3),

a(I) = abg

[
1− ∆

B(I)−B0

]
, (6.3)

where B(I) = Bex +Beff(I) is the total field including the real external magnetic field Bex,

∆ is the width of the resonance, and B0 is the resonance position.

6.2.1 Theoretical calculation of light shift and scattering rate

To predict the tune-out wavelength λT and the effective field shift (Eqn. 6.3) from OFR we

calculate the scalar and vector polarizabilities. Our Cs atoms are prepared in the absolute

hyperfine ground state |F = 3, MF = 3〉 where the total angular momentum F = J+I is the

sum of electron angular momentum J = 1/2 and nuclear spin I = 7/2, and MK (K = F, J)

is the projection onto the quantization axis. At low field we have |F = 3, MF = 3〉 =

−
√

7/8 |MJ = −1/2, MI = 7/2〉+
√

1/8 |MJ = 1/2, MI = 5/2〉.
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(dot-dashed) polarizabilities in the absolute ground state of Cs, see equations 6.4 and 6.5.
Only the D1 (894 nm) and D2 (852 nm) lines are included in the calculation. Two possible
tune-out wavelengths exist with circularly polarized light, 869.7 nm for σ+ and 891.0 nm for
σ− polarization. We employ σ+ polarization for this work.

The scalar (α) and vector (βµ) AC polarizabilities of an atom for detuning which is large

compared to the hyperfine splitting are [100]

αi =
(−1)Ji

2~ε0c
√

3(2Ji + 1)

×
∑
f

(−1)Jf

 1 0 1

Ji Jf Ji

 |〈f ||d||i〉|2
×

(
1

ωfi − ω
+

1

ωfi + ω

)
(6.4)
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βiµi =
(−1)Ji

2~ε0c

√
3Ji

2(Ji + 1)(2Ji + 1)

(
AMJ

Ji

)

×
∑
f

(−1)Jf

 1 1 1

Ji Jf Ji

 |〈f ||d||i〉|2
×

(
1

ωfi − ω
− 1

ωfi + ω

)
, (6.5)

where |f〉 represents a relevant excited state, ε0 is the vacuum permittivity, c is the speed

of light,

 j1 j2 j3

j4 j5 j6

 is the Wigner 6-j symbol, |〈f ||d||i〉| and ωfi are the reduced dipole

matrix element and resonance frequency for the transition from |i〉 to |f〉 (Table 6.1), ω is
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the laser frequency, MJ is the projection of Ji onto the laser propagation direction, and

A = (Iσ+ − Iσ−)/I accounts for the beam polarization. We include in the calculation only

the D1 and D2 transitions, which dominate in the wavelength range that we consider. The

next most significant excited state provides a correction at the 10−3 level, which is negligible

for our purposes. We set MJ to its expectation value of 〈MJ 〉 = −3/8 for atoms in the

|F = 3, MF = 3〉 state. The calculated polarizabilities are shown in Fig. 6.2.

The total off-resonant photon scattering rate s(I) is,

s(I) =
I

2~2ε0c

∑
f

d2
fiΓf

(ωfi − ω)2
, (6.6)

where d2
fi = C±fi|〈f ||d||i〉|

2 is the squared dipole matrix element, C±fi is a numerical factor

primarily accounting for the Clebsch-Gordan coefficients with beam polarization σ±, and Γf

is the spontaneous emission rate of the excited state |f〉 (Table 6.1).

6.2.2 Optimal performance of OFR

The figure of merit M for choosing the wavelength and polarization of the laser is the ratio

of the effective field shift Beff = βI from OFR to the photon scattering rate s(I),

M =
βI

s(I)
(6.7)

A larger absolute value of M indicates a greater shift in molecular states for a particular

quantum gas lifetime. M is optimized by using pure circular polarization. The tune-out

wavelengths for σ+ and σ− polarization are both suitable choices with almost identical

M to within 5%, see Fig. 6.3. The two choices remain differentiated by the sign of the

change in scattering length, da/dI < 0 for σ+ and da/dI > 0 for σ−. In the experiments
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described below we employ σ+ polarization with M = −130 mG·s at the tune-out wavelength

λT = 869.7 nm.

Optimal performance of the full OFR scheme is obtained when a laser with maximum M

is employed near a proper magnetic Feshbach resonance. The sensitivity of scattering length

to the effective field shift from OFR (based on Eqn. 6.3) is

da

dBeff

∣∣∣∣
|a/abg|�1

=
abg

∆
(6.8)

near the zero crossing B(I) = B0 + ∆ where the condensate can be stable. This result

suggests that a narrow resonance with a large background scattering length will offer wide

tunability for a given laser intensity. However, one must be cautious to avoid extremely

narrow resonances which can greatly enhance the three-body recombination rate. In this

work we choose the Feshbach resonance at 47.8 G, for which we have abg/∆ = 6.6 a0/mG

from coupled channel calculations [22].

Overall, optimal performance is obtained via the independent optimizations of M , which

is determined by the laser, and da/d(βI), which is determined by the choice of Feshbach

resonance. For Cs atoms near the Feshbach resonance at 47.8 G and a laser of σ+ polar-

ization at the tune-out wavelength λT = 869.7 nm, the product of these two factors yields

Mabg/∆ =−860 a0·s. This value indicates that a change of the scattering length by 860 a0

should be possible while inducing a scattering rate of 1/s.

6.3 Experiment Setup

In this section we will explain some technical details of our implementation, which may

interest both others who wish to implement OFR and future users of this particular appa-

ratus, to varying degrees. First, we provide the parameters of the system specific to these

experiments. Second, we will explain our strategy for forming stable condensates near the
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47.8 G Feshbach resonance. Third, we relate some brief cautionary tales about the “spot

of death” and the drift of the coil temperature which caused us a few headaches. Fourth,

we demonstrate a convenient method for reliably measuring the intensity profile of the OFR

laser at the plane of the atoms. Finally, we show the intensity modulation bandwidth that

we were able to achieve with an acousto-optic modulator (AOM) and future prospects for a

speedup using an electro-optic modulator (EOM).

6.3.1 Experiment Setup

The experiments in this chapter are performed in a 3D trap composed of the XDT, YDT,

ZDT, and vertical lattice beams. This harmonic trap has fixed horizontal frequencies

(ωx, ωy) = 2π × (12, 30) Hz. We tune the vertical frequency ωz from 2π × 70 Hz to

2π× 470 Hz using the vertical lattice intensity, which we vary to suit the needs of individual

experiments. Our samples typically contain from 3∼10×103 atoms with peak densities from

1∼4×1013 cm−3. When we test the response of condensates in optical lattices to oscillating

OFR intensity, one of the horizontal trapping beams is retro-reflected to create a 1D optical

lattice with spacing d = 532 nm and depth h × 9.28 kHz. For most of the experiments

described in this chapter we form our BECs near the d-wave magnetic Feshbach resonance

at 47.8 G [97] with a small and positive scattering length of a = 200∼300 a0. The magnetic

field in our system is stable to within 1 mG with systematic calibration error of 5 mG, suf-

ficient to form stable BECs even at this narrow resonance (see the next subsection for more

information).

We optically control interactions with the intensity of the OFR laser, which propagates

along the magnetic field direction. The change of scattering length due to OFR is insensitive

to small changes in the wavelength and polarization of the OFR laser. However, both

parameters must be carefully controlled to eliminate the residual light shift. The source of

the laser is a free-running single-mode diode with 100 mW output power, which can be tuned
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via its temperature. We determine the laser frequency using a wavemeter with an accuracy

of 100 MHz, sufficient to make the residual light shift negligible.

6.3.2 Magnetic fields and the formation of stable condensates near the

47.8 G Feshbach resonance

This experiment presents a number of challenges in the realm of magnetic field control due

to our need to work near the moderately narrow 47.8 G Feshbach resonance. First of all,

we need to be able to form stable BECs slightly above the zero crossing. However, it is not

possible to simply “jump” the magnetic field there after forming a BEC at the usual lower

magnetic field of ∼ 20 G, because the gas heats up enormously (compared to its few nK

temperature) even if it quickly crosses the narrow resonance. Perhaps a better way to say

that is that we cannot cross the resonance quickly enough.

Therefore, for this experiment we adjust the evaporation procedure in order to jump the

magnetic field across the 47.8 G Feshbach resonance before the end of evaporation. However,

this presents additional challenges. We normally perform evaporation by slowly reducing the

magnetic field gradient which counteracts gravity [81], and only at the end of evaporation

does the gradient go to zero. Unfortunately, near the narrow resonance the presence of

a field gradient creates a corresponding scattering length gradient, making it difficult to

achieve efficient evaporation. In light of these issues, we form condensates as follows: 1)

increase the initial dipole trap depth by increasing the intensity of the ZDT beam, 2) ramp

the gradient down to zero to perform an efficient initial evaporation at low field, 3) jump

the field to slightly above 47.8 G where the scattering length is roughly a ≈ 200a0, and 4)

slowly ramp down the ZDT intensity toward its normal value to complete evaporation. This

procedure is still less efficient than the usual procedure, but can produce cold condensates

containing N ≈ 10 000 atoms. Note that jumping back across the resonance down to low

field for imaging also seems to significantly disturb the atoms; therefore, it is preferable to
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recalibrate the imaging and repumper laser frequencies and perform the imaging at the same

field at which experiments are performed.

A few other magnetic field issues are worth mentioning. First, when using the expansion

during TOF to measure the scattering length as in Sec. 6.4.2, we would ordinarily (i.e. away

from the narrow resonance) use a levitation gradient of B′ ≈ 31 G/cm to prevent the BEC

from falling out of focus for the high resolution vertical imaging. However, near the zero

crossing of the narrow resonance a gradient of that magnitude causes the scattering length

to vary by ∆a ≈ 100 a0 over a distance of 5 µm which is comparable to the vertical diameter

of the gas. This magnitude of variation would ruin the measurement, and therefore we must

allow the gas to drop under the influence of gravity. Dropping the gas makes the vertical

imaging useless, so we use the lower resolution horizontal imaging instead. We also take

special care to ensure that the magnetic field is constant within a few mG while the gas

drops.

The last noteworthy magnetic field issue is caused by the slow drift of the main coil

temperature over the course of the day. Because the coils are air cooled, they heat up very

slowly over the course of a few hours if the experiment is running (the primary heating occurs

while a large magnetic field gradient is present). While the controller keeps the current in

the coils consistent, thermal expansion causes the magnetic field experienced by the atoms

to drift. Therefore, while performing these experiments, we tried to keep the duty cycle of

the experiment consistent such that the coils would reach equilibrium and the magnetic field

would be constant. We monitored the temperature of the coils in real time and adjusted

the duty cycle to maintain a constant temperature within δT ≈ 0.1 K, corresponding to

a magnetic field uncertainty of δB ≈ 1 mG. Finally, the magnetic field near our atoms

shifts by approximately 7 mG when the building elevators are in the sub-basement [162]; it

was important to make sure that the field controller which cancels this effect is operating

correctly when performing these experiments. If one observes occasional trials which jump
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Figure 6.4: Lossy region formed by a focused reflection of the OFR beam from the objective
lens, whose position in the atom plane is indicated by a small clump of atoms circled in
white. Originally, the laser for optical control of Feshbach resonance was partially reflected
and focused by the first surface of the objective lens, resulting in a strongly attractive
potential and rapid atom loss.

by a consistent amount away from the expected behavior, it may be caused by the elevator.

6.3.3 Lifetime Issues

Before achieving the lifetime performance presented below, two serious issues were limiting

the lifetime of the atoms in the presence of the OFR laser. First, these experiments were

performed using a diode laser (Eagleyard EYP-RWL-0870) which tend to have a pedestal of

extremely weak emission covering a wide range of frequencies. The fraction of pedestal light

near the D1 and D2 lines of Cs caused rapid scattering of the laser and loss of atoms. Sending

the laser through an interference filter (Semrock FF01-910, at an angle of approximately 36◦)

before the fiber removes the worst components of the pedestal.

The second issue was much more exotic. Whenever we turned on the OFR laser, we

would see faster loss rates than expected and an extra “spot” of atoms a few microns away

from the main BEC, as shown in Fig. 6.4. Eventually, we realized that the spot was actually

the (approximate) focus of the small fraction of OFR laser light reflected from the first
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Figure 6.5: Example of OFR beam tomography using the shift of a microwave resonance. In
each image, atoms are depleted from locations at which the OFR laser provides the effective
magnetic field labeled above each image. See text for details on the procedure.

surface of the objective lens. Moreover, as a result of the waveplate and polarizer below the

objective lens (whose primary purpose is to reflect the vertical MOT laser [75]) the reflected

light had approximately the opposite circular polarization. As a result the reflection was far

from the tune-out wavelength for its polarization, creating a strongly attractive potential,

and it induced rapid loss of the atoms it attracted because the beam was focused to high

intensity. We resolved the issue by translating the objective lens horizontally in order to

move the reflected spot far away from the BEC.

6.3.4 Beam profiling using microwave tomography

The OFR laser in our system propagates vertically through the atoms, approximately along

the optical axis of the vertical imaging and in the same direction as the imaging beam. As
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a result, coarse alignment and profiling of the beam can be done using the vertical camera.

However, chromatic aberrations distort the results sufficiently that we need a better approach

when the details of the beam profile are crucial, such as for the local collapse measurement

in Sec. 6.4.6.

In order to obtain a reliable beam profile, we can directly measure the influence of the

OFR beam on the local effective magnetic field using a microwave resonance, see Fig. 6.5.

First, we load a large 2D gas with weak horizontal trapping. We then turn on deep optical

lattices along XDT and YDT to minimize the motion of the atoms. After slowly turning

on the OFR beam, we apply a weak microwave pulse over tens of ms to excite some atoms

from the ground |3, 3〉 state to the excited |4, 2〉 state. In regions where atoms are resonant

with the microwaves, they end up in a mixture of spin states, causing them to undergo rapid

loss due to spin-exchange collisions. By scanning the microwave frequency we can measure

the resonance frequency at each location in the gas relative to its resonance with zero laser

intensity (marked 0 mG in the figure) and therefore extract the local effective magnetic field

shift due to the OFR laser.

6.3.5 Intensity modulation bandwidth

The temporal modulation experiment (see Fig. 6.11 below) requires rapid control of the beam

intensity. We send the OFR beam through an acousto-optic modulator (Isomet 1205C-1)

and use a fast RF switch (Mini-Circuits ZFSWA-2-46) to control the acoustic wave which

drives the modulator. We measure the 3 dB bandwidth of intensity modulation to be 10 MHz

using a fast photodiode, see Fig. 6.6.

6.3.6 Polarization Purity

One of the most difficult challenges when implementing this scheme, particular when one

wants high resolution features to create spatial patterns of the scattering length, is to avoid
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Figure 6.6: Intensity modulation bandwidth of the OFR laser. A plot of the fraction of the
maximum intensity modulation of the OFR laser which can be achieved by modulating the
RF power driving an acousto-optic modulator.

inhomogeneities of the beam polarization which lead to a position-dependent tune-out wave-

length. While a global change in the polarization can be compensated with a change in the

wavelength, it is much harder to account for inhomogeneity. Polarization inhomogeneity is

inevitable as a result of polarization- and angle- dependent reflection from both mirror and

lens surfaces, for example. At the very least, it is important to make sure that the beam

is well collimated when passing through polarization optics (such as cubes or waveplates)

so that their effects are as homogeneous as possible. One can estimate the necessary polar-

ization purity for a given experiment by noting how the potential changes with polarization

near the tune-out wavelength. For example, the dipole potential for the 115 W/cm2 beam

used in Sec. 6.4.6 follows dV ≈ −dAkB× 1 µK where dA = Iσ−/I represents the fraction of

intensity at the wrong polarization. Given that our gases typically have chemical potentials

on the order of kB × 10 nK, we are sensitive to even a 0.1% variation in the intensity at the

wrong polarization across the beam, which would perturb the density profile by 10%.

140



-100 -50 0 50

0

1

2

3

4

Sc
at

te
rin

g 
Le

ng
th

 (1
00

 a
0)

Magnetic Field - 48G (mG)

OFR on

OFR on

OFR o�

OFR o�

(d)

0.64 0.69 0.74
λ - 869nm (nm)

-0.08

-0.04

0

Co
nd

en
sa

te
 N

um
be

r

103

104

(c)

(b)(a) Theory Experiment

870850 890
-25

0

25
Po

la
riz

ab
ili

ty
/k

B (n
K 

cm
2  /

 W
)

λ (nm)

D2 D1

0 1.2 1.80.6
Hold time (s)

Figure 6.7: Stable optical control of scattering length at a tune-out wavelength λT. (a) The-
oretical polarizability of Cs atoms in the absolute ground state for σ+ polarization (Sec. 6.2).
The star marks the tune-out wavelength where polarizability is zero. (b) Measured polar-
izability (circle). A linear fit yields λT = 869.73(2) nm (star). (c) Number of condensed
atoms remaining over time with (circle) and without (square) exposure to OFR at a mag-
netic field of 48.19 G. We fit the decay dynamics (solid curves) and find that OFR exposure
adds a one-body loss process with a time constant of 0.63(2) s (see Sec. 6.4.3) at intensity
I = 225 W/cm2. (d) Scattering length a determined from the free expansion of BECs with
(circle) and without (square) exposure to the OFR laser. When the scattering length be-
comes negative (a < 0) the condensate collapses (cross). The solid curves derive from a
single fit to all a > 0 data using Eq. (6.11), which yields ∆ = 157(3) mG, B0 = 47.766(4) G,
and βI = −38(1) mG. All error bars indicate standard error.

6.4 Results

6.4.1 Tune-out wavelength

For cesium atoms one possible tune-out wavelength is 869.7 nm with a σ+ polarized laser,

which is far detuned from atomic transitions but maintains a large vector polarizability

(Fig. 6.7a). To confirm the tune-out wavelength experimentally, we measure the atomic

polarizability at different wavelengths. To test the polarizability we measure the displace-
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ment of the BEC caused by an intensity gradient OFR laser. At the tune-out wavelength,

the beam should not move the condensate. For this experiment we operate at B = 22 G

where the dependence of interactions on the OFR shift is negligible. We prepare the OFR

beam with a waist of 70 µm, which is large compared to the BEC, and displace the beam to

achieve a slope of dI/dx = 5 (W/cm2)/µm across the sample. A finite total polarizability

γ = α + βµ leads to a force of F = γdI/dx on the atoms, which offsets the center of the

harmonic trap by ∆x = F/mω2
x. By measuring the shift in the center of the BEC, we extract

the polarizability

γ =
mω2

x∆x

dI/dx
, (6.9)

yielding the data shown in Fig. 6.7b.

We find the tune-out wavelength to be λT = 869.73(2) nm for σ+ polarization, in fair

agreement with the prediction of 869.66 nm. We attribute the difference to the electronic

transitions not included in the calculation and the imperfect beam polarization; we estimate

that Iσ− ≈ 0.005I. Therefore, at the intensity I = 225 W/cm2 used for most of this chapter,

we estimate that the residual dipole potential kB×1 nK is negligible compared to our typical

chemical potential of kB × 10 nK, where kB is the Boltzmann constant.

In addition, at the tune-out wavelength we test the assumption that βm ≈ βa ≡ β for

weakly-bound molecular states. We measure the effective field shift βI induced by the laser

using microwave spectroscopy. We compare the microwave result to the shifts in energy of g-

wave and d-wave molecular states. Within 5% all methods yield values which are consistent

with the theoretical prediction (Eq. (6.5)).

6.4.2 Extracting scattering length from BECs after free expansion

A precise way to measure the scattering length is to release the BEC from the harmonic trap,

simultaneously switch the magnetic field and OFR beam intensity, and measure the BEC
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Figure 6.8: Comparison of scattering length from free expansion to a coupled channel model.
The scattering length extracted from free expansion with no OFR laser (circle) compared
to the scattering length based on the coupled channel calculations in Ref. [22] (solid curve).
The dashed curve shows the calculated scattering length shifted by -16 mG, which is within
the model uncertainty. Error bars show standard error.

radius after a period of free expansion. This method yields measured radii R which scale as

a1/2, making it more sensitive than in situ measurements or free expansion measurements

with constant magnetic field which yield R ∝ a1/5 [150]. Ref. [31] shows that, during

expansion, the BEC density profile is parabolic with time-dependent Thomas-Fermi radii

Rk (k = x, y, z). The time evolution of the ratios λk(t) ≡ Rk(t)/Rk(0) is described by the

three coupled differential equations,

λ̈k =
af
ai

ω2
k

λxλyλzλk
(6.10)

where ωk is the trap frequency before release, ai = 250a0 is the scattering length before

release, and af is the scattering length during expansion which is determined by the magnetic

field and OFR intensity. Note that there is one equation for each λk and the trap frequencies

are independently calibrated, such that the only unknown variable is the scattering length.

To determine af as a function of magnetic field and OFR intensity, we execute the
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experimental procedure over a range of magnetic fields with and without exposure to the

OFR beam at I = 225 W/cm2. For this experiment we use a vertical trapping frequency of

ωz = 2π×105 Hz much greater than the horizontal frequencies of (ωx, ωy) = 2π×(14, 31) Hz,

which causes the vertical expansion to dominate after release. Thus, after an expansion time

of 16 ms we measure only the vertical radius of the gas. For each combination of magnetic

field and OFR intensity, we determine the scattering length af by comparing the measured

radius to the numerical solution of Eq. (6.10).

The resulting scattering lengths with and without the OFR laser are shown in Fig. 6.7d.

We fit the scattering lengths with a theoretical model [36]

a(I) = abg

[
1− ∆

B(I)−B0

]
, (6.11)

where B(I) = Bex + βI is the effective magnetic field including the contribution βI from

OFR (Eq. (6.1)) and the external field Bex, abg ≈ 950 a0 is the background scattering length

at this Feshbach resonance [22], ∆ is the width of the resonance, and B0 is the resonance

position. The fit yields βI = −38(1) mG, sufficient to shift from a = 180 a0 to zero. In the

absence of the OFR beam we compare our results to coupled channel calculations [22], see

Fig. 6.8.

6.4.3 Condensate lifetime with OFR

In the presence of the OFR laser, we expect the lifetime to be limited by one-body off-

resonant scattering of photons, since our scheme does not rely on proximity to resonant

atomic or molecular transitions. In practice, while we predict the one-body loss process to

have extremely weak wavelength dependence, we find significant wavelength dependence of

the lifetime within the tuning range of our laser, see Fig. 6.9. We attribute this observation

to the two-body loss caused by photoassociation or molecular resonances which happen to

be within the tested wavelength range. After finding a wavelength which minimizes this loss,
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Figure 6.9: A plot of the number of atoms remaining in a BEC initially containing 10 000
atoms after exposure to the OFR laser tuned over a range of wavelengths near the tune-out
condition.

we make minute adjustments to our laser polarization to shift the tune-out wavelength to

the loss minimum. The required change in polarization is small, such that its effect on the

effective field shift is negligible.

Having minimized two-body loss, we model the lifetime by accounting for the one-body

loss process induced by OFR and the pre-existing three-body loss process. With both pro-

cesses the decay of density n is described by the differential equation

∂n(r, t)

∂t
= −L1n(r, t)− L3n(r, t)3, (6.12)

where L1 (L3) is the one-(three-)body decay constant. We assume that the loss is slow

such that the system remains in equilibrium. Integrating the Thomas-Fermi density profile

[122] over space with fixed scattering length and absorbing trap-dependent factors into the

modified decay constant L′3 we obtain,

dN

dt
= −L1N − L′3N

9/5 (6.13)
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which describes the decay of total atom number in the presence of one- and three-body loss.

Note that the one-body lifetime is independent of trap geometry.

To determine the lifetime experimentally, we compare the decay of condensate number

with and without exposure to the OFR laser at Bex = 48.19 G (Fig. 6.7c). We chose this

field to obtain realistic decay rates near the Feshbach resonance but be far enough away

to avoid inducing condensate dynamics or significantly altering the three-body loss with

the OFR beam. We keep the trap depth constant throughout the decay, so that the BEC

continues to evaporate and maintain an approximately constant temperature while exposed

to the laser. With no OFR exposure we fit the decay to the numerical solution of Eq. (6.13)

with negligible L1 and find L′3 = 5.6 × 10−4 s−1 in our trap geometry. We use this fixed

value to fit the decay in the presence of OFR to Eq. (6.13) and obtain L1 = 1.58(4) s−1,

corresponding to a time constant of τ = 1/L1 = 0.63(2) s, with OFR intensity 225 W/cm2.

The fitted time constant represents more than an order of magnitude improvement over

existing OFR schemes, but it is still shorter than the off-resonant scattering time constant

of 3.2 s (Eq. (6.6)). We expect that the lifetime is shorter than the scattering time constant

because the recoil heating from a single scattering event is kB × 200 nK, much larger than

the critical temperature TC ≈ 30 nK of the condensate. Thus each scattering event can

lead to the loss of multiple atoms from the condensate. There may also be a contribution

from photoassociation resonances or molecular transitions which remain near the chosen

wavelength.

6.4.4 Extraction of scattering length from in-situ BEC density profiles

The long lifetime of BECs exposed to the OFR laser allows us to corroborate the change

of scattering length based on in situ measurements of the density profile. We slowly ramp

on the OFR beam to four different final intensities over 200 ms and measure the resulting

density profiles (Fig. 6.10a). Higher intensities of the OFR laser shrink the BEC and increase

146



-20 -10 0 10 20
-40

-20

0

20

40

Co
lu

m
n 

D
en

si
ty

 (μ
m

-2
)

Position (μm)

(b)(a)

Column Density (μm-2)
0 50

0

O
FR

 In
te

ns
ity

 (W
/c

m
2 )

225

169

113

56

10 μm

Figure 6.10: Effect of OFR on in situ density profiles. (a) In situ images of BECs at 47.97 G
after ramping on the intensity of the OFR laser over 200 ms. Each image is the average of 10
trials. (b) Horizontal line cuts (circle) obtained by averaging the middle five pixels from each
image in panel (a), similarly arranged from top (no OFR laser) to bottom (225 W/cm2).
The solid curves are the corresponding cuts from a fit to each image with Eq. (6.14). For the
225 W/cm2 case we first perform a Gaussian fit to the wing to account for thermal atoms
before fitting the remaining BEC. The fitted scattering lengths, in order of increasing beam
intensity, are a = 230(33), 175(25), 120(16), 96(13), and 78(16) a0 in good agreement with
the free expansion result.

its density, consistent with weakening the repulsive interactions.

We fit the measured in-situ column density of BECs with a Thomas-Fermi density profile

[122]

n(x, y) = n0

(
1− x2

R2
x
− y2

R2
y

)3/2

, (6.14)

where

n0 =

(
1

2π

)
(5Nωxωy)3/5

(
m2

3~2aωz

)2/5

, (6.15)

is the peak column density and the Thomas-Fermi radii are

Rk = ω−1
k (15~2m−2Nωxωyωza)1/5. (6.16)
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The only free parameter is the scattering length a which appears in n0 and Rk, while the

atom number N = 3500 and trap frequencies (ωx, ωy, ωz) = 2π×(10, 22, 75) Hz are calibrated

independently. We compare horizontal line cuts of the images to the corresponding cuts from

the fit in Fig. 6.10b. The extracted scattering lengths are in excellent agreement with the

free expansion result in Sec. 6.4.2.

6.4.5 Interaction Modulation Spectroscopy

The stability of this scheme enables us to explore temporal and spatial control of interactions

in a quantum gas. We first perform interaction modulation spectroscopy by recording the

response of the BEC to an OFR beam with oscillating intensity. We perform these experi-

ments either in the bulk, with the vertical trap frequency ωz increased to 2π×470 Hz, or in a

weak one-dimensional optical lattice in the horizontal plane with spacing 532 nm and lattice

depth h× 9.28 kHz, in which the system remains a superfluid [76]. For this experiment only

we introduce the optical lattice in order to test the consequences of modulated interactions

in a lattice gas, as discussed in many theoretical proposals [69, 2, 73]. Combining the exper-

iments in both geometries, we observe a variety of resonance features over a wide range of

timescales, as shown in Fig. 6.11, highlighting the versatility of this technique.

At lower frequencies we observe excitations in the trap and in the optical lattice. The

oscillating scattering length drives parity-conserving transitions to the second excited state

in the vertical trap at 890(10) Hz and the second excited band of the optical lattice at

8.18(2) kHz. This demonstrates that the plentiful theoretical proposals [69, 73, 1, 136, 2,

139, 127] which require rapid oscillation of scattering length in the bulk or in the lattice are

well within reach of our scheme.

At higher frequencies the oscillating intensity of the OFR beam induces formation of

molecules. We identify a broad resonance at 133(7) kHz corresponding to a virtual molec-

ular state embedded in the continuum, as well as narrow resonances at 197(1) kHz and
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Figure 6.11: Interaction modulation spectroscopy. The BEC at 47.976 G is exposed for a
hold time t to the OFR laser, which is intensity modulated at frequency ω/2π. We measure
the number of condensed atoms remaining after exposure, normalized to the off-resonant
number, under three conditions: (open circle) t = 100 ms with no optical lattice, (filled
circle) t = 20 ms with a one dimensional optical lattice of depth h× 9.3 kHz, (open triangle)
t = 500 ms with no optical lattice. Resonances are observed at 0.89(1), 8.18(2), 133(7),
197(1), and 11,649(2) kHz, determined from fits (solid curve) to each resonance (Gaussian
for 133 kHz, Lorentzian for others). The illustrations indicate the nature of each resonance.
The van der Waals energy scale is EvdW = h× 2.7 MHz for Cs molecules.

11.649(2) MHz corresponding to a weakly-bound Feshbach molecular state and a deeply-

bound van der Waals molecular state, respectively. All observed resonance positions are

in excellent agreement with theoretical calculations given below. These resonances provide

direct evidence that OFR can access interaction physics on timescales as short as 10 ns.

We have determined the origin of each of the resonances excited by interaction modulation

spectroscopy (Fig. 6.11). The first resonance at 890(10) Hz corresponds to excitation in the

vertical harmonic trap. Since the BEC density is even across the trap center, the oscillating

interaction strength provides an even perturbation which can only excite the gas to states

with the same parity as the ground state; thus the first excited state is forbidden. The ratio

of the resonance frequency to the vertical trapping frequency of 470 Hz is 1.9, suggesting

that the samples are close to the quasi-2D regime (chemical potential µ� 470 Hz) and OFR

is driving excitations to the 2nd excited harmonic oscillator state.

The second resonance at 8.18(2) kHz corresponds to excitations to the second excited
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Figure 6.12: Energy levels for Cs2 molecules. A schematic of the three molecular resonances
observed in our experiment, based on the energy levels in ref. [97]. The red ball indicates
the condensate, and arrows represent the coupling to three molecular states by interaction
modulation spectroscopy.

band of the optical lattice. For comparison we perform band structure calculations for our

lattice depth of h× 9.28 kHz, yielding energies of h× 6.58 kHz and h× 8.18 kHz for the zero

quasimomentum states in the first and second excited bands, respectively. The observed

resonance is consistent with transitions to the second excited band; no resonance appears

at the first excited band energy because the parity of the ground state is again conserved.

Transitions to higher parity-allowed bands are also not observed, which we attribute to the

weaker coupling strength to those states.

The highest three resonances correspond to coupling of the free atoms to Cs2 molecular

states. The process is analogous to the binding of dimers with an oscillating magnetic field

[145]. The locations of the observed features are consistent with known Cs2 molecular states

(Fig. 6.12). We compare our data to coupled channel calculations [22] at the average effective

magnetic field B = 47.957 G. The 133(7) kHz resonance corresponds to a molecular state

above the atomic threshold, with an energy of 95 kHz based on extrapolation of coupled

channel calculations into the continuum. The feature is broad because the molecular state is

embedded in the continuum. The 197(1) kHz resonance corresponds to a primarily d-wave
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Figure 6.13: Condensate dynamics with spatially modulated interactions. Time series of
in situ images of BECs with N = 12000 atoms after a quench from uniform a = 200 a0
at 47.965 G to the spatially modulated a shown in the top panels. The OFR beam has
peak intensity of 115 W/cm2 and a waist of 14 µm, while the final magnetic fields are
(a) 47.949 G, (b) 47.935 G, and (c) 47.925 G. Each image is the average of 6 or 7 trials.
The red dashed lines show where a equals zero. The white dashed lines in panel (c) guide
the eye to the motion of the solitonic wave towards the trap center. (d) Illustration of the
local collapse dynamics, in which the initial BEC (left) undergoes transverse compression
followed by localized central collapse (right).

bound state calculated to be at 208 kHz and the 11.649(2) MHz resonance corresponds to a

g-wave bound state calculated at 11.731 MHz [22]. These molecules are individually stable,

but their collisions with each other and the remaining atoms lead to net loss of atoms from

the trap.

6.4.6 Local Collapse

Next, we demonstrate spatial modulation of the interaction strength within a quantum gas.

For this experiment we employ an OFR beam which is small compared to the size of the BEC,

leading to a reduced scattering length only in the center of the gas. After preparing the BEC
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we quickly turn on the OFR beam and simultaneously change the magnetic field. We study

the subsequent dynamics of the sample by measuring its in situ density profile over time

(Fig. 6.13). For example, when the interactions remain repulsive throughout the condensate,

we observe collective excitations for the duration of the experiment (Fig. 6.13(a)). For all

images the small distortion at the center of the gas results from the dipole potential due to

slightly non-uniform laser polarization (Sec. 6.3).

Intriguing dynamics occur when the interactions become locally attractive. When the

scattering length is negative in a small region near the center of the trap (Fig. 6.13b),

we observe a brief period of transverse compression followed by a rapid drop in central

density between 20 and 32 ms after the quench, signaling local collapse of the condensate

(illustrated in Fig. 6.13d). A large fraction of the sample survives at the edges for more

than 100 ms. With even stronger attractive interactions (Fig. 6.13c), faster central collapse

occurs after 8 ms. Subsequently, the dense remnants at the edge of the sample move toward

the center of the trap (see white dashed lines in Fig. 6.13c). Beyond 32 ms only thermal

gas survives, indicating that the remnants have undergone further collapse. This behavior

is reminiscent of bright matter wave solitons [141, 90, 46]; the remnants form at a small

negative scattering length but become unstable as they move toward the center where the

scattering length is more negative. Further investigation into the nature of these remnants

provides an intriguing course for future work. Moreover, the variety of behaviors observed

in this experiment establishes the richness of the quantum dynamics accessible with space

dependent interactions.

6.4.7 Implementing OFR with other atomic species

Our scheme for OFR is quite general and should perform well with a variety of atomic species.

For example, calculations based on 87Rb in the absolute ground state |F = 1,MF = 1〉

yield the figure of merit M = −45 mG·s. Moreover, past experiments with 87Rb sug-
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gest two potential candidates for the Feshbach resonance. For 87Rb in |F = 1,MF = 1〉, the

1007.4 G resonance [18] has a sensitivity of da/d(βI) = 0.5 a0/mG [36], which would allow

a change of scattering length by 100 a0 with a 5/s one-body scattering rate. If a tune-out

wavelength is not required, then the interstate Feshbach resonance at 9.13 G [155] offers

da/d(βI) = 6.7 a0/mG, where a is the scattering length between the |F = 1, MF = 1〉 and

|F = 2, MF = −1〉. This resonance allows a change of 300 a0 with a 1 s−1 scattering rate,

which is only about three times worse than the tunability in Cs condensates.

Beyond alkali atoms, quantum gases of heavy, magnetic atomic species like erbium and

dysprosium [107, 5] are promising candidates for OFR. Their rich sets of optical transitions

provide many options for obtaining a favorable ratio of the vector light shift to the scattering

rate. Moreover, such highly magnetic elements have an abundance of Feshbach resonances

[65, 19], many of which could provide favorable properties for implementing OFR.

153



CHAPTER 7

FUTURE DIRECTIONS

Many interesting ideas arose over the course of completing the work described above. Some

of them show quite a lot of promise, and we have pursued them to varying degrees. The

purpose of this chapter is present the most promising ideas, with a particular focus on

those with preliminary experimental results or at least some interesting theory. Perhaps we

will have an opportunity to finish some of these projects in the future. However, my real

hope is that future students will be inspired by some of these ideas and continue the work

themselves. The ideas involve either the shaken lattice, and are presented in Sec. 7.1, or the

Bose Fireworks, and are presented in Sec. 7.2.

7.1 Shaking Lattice

7.1.1 Coarsening of domain structure

Many systems which cross a phase transition will form intricate structures of finite domains

separated by topological defects, as discussed in Ch. 4. In general, the structures which form

are not in true thermal equilibrium, but the defects are topologically stable and therefore

typically persist on timescales much longer than the timescale of the critical dynamics.

However, in many systems the domains will tend to slowly grow over time, a process called

coarsening or phase ordering [29].

The coarsening process is expected to satisfy the dynamic scaling hypothesis, in which

the domain structures present at later times look statistically identical to those at early

times except for an increase in the length scale [29]. For example, the correlation function

should satisfy,

g(r, t) = f(r/L(t)), (7.1)
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Figure 7.1: A schematic of the procedure used for preliminary coarsening experiments. After
preparing the BEC we increase the shaking amplitude to its hold value sh > sc in 50 ms.
After a variable hold time th during which the shaking amplitude is constant, we rapidly
increase the shaking amplitude to s = 32 nm before performing a 2.5 ms time-of-flight and
acquiring an absorption image.

where the function f describes the form of the correlations and the single characteristic

length scale L(t) grows over time. Moreover, the length scale typically grows as a power law

over time. Much like in the case of the Kibble-Zurek mechanism, there is no general proof of

this hypothesis. Therefore, it is quite valuable to test it experimentally in many systems with

diverse properties in order to elucidate when and why it does (or does not) succeed. Studying

the appearance of finite, metastable domain structures and their subsequent coarsening may

also shed light on the process of prethermalization and the subsequent evolution toward true

thermal equilibrium in near-integrable quantum systems [98]. Furthermore, in general the

universal correlation function observed immediately after unfreezing and that which appears

through the coarsening process may differ, and it would be interesting to study the transition

between these two regimes.

In our original study of the Kibble-Zurek mechanism (Ch. 4), we avoided coarsening

effects by measuring the domain structures at a fixed point in scaled time. However, when

left to evolve for a longer time after the phase transition, we clearly observe coarsening of the

domain structure. Here, we discuss a few preliminary experiments which provide an overview
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Figure 7.2: Correlation functions during coarsening at four shaking amplitudes. Normal-
ized correlation functions g0(dx, dy) calculated from ensembles of 60 images collected after
procedures as shown in fig. 7.1.

of coarsening behaviors that we have observed in the ferromagnetic phase, and which can

perhaps provide a foundation for future work using this system to study this important topic.

We studied the coarsening process using the experimental procedure shown in Fig. 7.1. In

a fixed time of 50 ms we ramped on the shaking across the critical amplitude sc = 13.1 nm

to a holding amplitude sh. We then held the system at sh for a variable hold time th,

followed by a rapid ramp to s = 32 nm for detection. For various values of sh and th we

performed 60 iterations of the experiment, reconstructed the pseudo-spin distribution using

the procedure described in Sec. 4.3.1, and calculated the normalized pseudo-spin correlation

functions shown in Fig. 7.2. The top row shows the initial correlation functions, which are
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Figure 7.3: Decay of the atom number during the coarsening process. We measure the
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in the minority pseudo-spin state as a function of the coarsening time for four different
shaking amplitudes (indicated in the legend). Atoms appear to be preferentially lost from
the minority pseudo-spin during coarsening.

not quite identical (nor do they quite match the universal form seen in Fig. 4.23) due to the

differences in the quench rate across the transition and a short coarsening time between the

unfreezing time and reaching sh. See the last two paragraphs of this section for suggestions

for improving the procedure. For now, we will assume that the initial domain distributions

are essentially the same. In every case, the domains clearly grow over time.

Many intriguing features can be seen in the pseudo-spin correlation functions. Regardless

of the hold amplitude sh, the domains clearly coarsen over time, as indicated by the expansion

of the central region with positive correlations. Moreover, the coarsening rate appears to be

greatest when the system is held as close as possible to the critical point. We have found

that the energy of a domain wall shrinks as the system approaches the critical point (from

the ferromagnetic side) due to the shrinking of the kinetic energy barrier at q = 0, see

Sec. 3.4 and Ref. [106]. One might speculate that the domain walls have a correspondingly
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smaller effective mass closer to the critical point. In that way the domain walls can move

around more quickly, and thereby enable the domains to coarsen more quickly as well. With

this dataset we have not attempted to make a quantitative test of the scaling hypothesis,

due to imperfections in the procedure and finite size effects as the domain size approaches

the system size at later times. However, our system appears well suited to further studies

exploring the scaling hypothesis.

Coarsening in this system appears to involve the expulsion of atoms in regions of minority

pseudo-spin from the trap, see Fig. 7.3. Regardless of the holding amplitude, the number

of atoms in the majority pseudo-spin state appears to remain nearly constant over time,

while the number of atoms in the minority pseudo-spin state drops. This suggests that

coarsening proceeds not just by increasing the domain size, but also by increasing the overall

polarization of the gas. However, this may be predominantly a finite size effect; it seems

unlikely that the non-zero overall polarization could be relevant (or even present) in the case

of an infinite system.

We observe an interesting evolution of the orientation of the domain walls during coarsen-

ing. We have ample evidence that the initial domain wall orientation is always predominantly

perpendicular to the shaking lattice. For example, if we shake the XDT lattice instead of

the usual YDT lattice, the domain walls just after unfreezing are rotated by 90◦, as shown

in Fig. 7.4. Moreover, when the hold amplitude is sufficiently close to the critical point, the

domain walls seem to remain predominantly in this orientation. We see this behavior at

sh − sc = 7 nm and 3 nm, where the positively correlated region in the center of the corre-

lation functions is oriented nearly vertically until it becomes distorted by the finite size of

the sample (two rightmost columns in Fig. 7.2). However, for larger shaking amplitudes the

domain walls appear to rotate quickly to the short axis of the trap. In the leftmost column

of Fig. 7.2 showing sh − sc = 17 nm, even though the correlated region remains small, it

clearly rotates by about 45◦ in less than 100 ms. The predominance of domain walls along
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Figure 7.4: Example images of domain structures soon after unfreezing when shaking the
XDT lattice. As usual, the domain walls are preferentially orientated perpendicular to the
axis of the shaking lattice.

the short axis was originally observed in Ref. [119]. We suspect that domain walls have lower

energy if they are perpendicular to the shaken lattice when the system is close to the critical

point, but that for sufficiently large shaking amplitudes the domain wall energy is lowered

by minimizing its area, which is achieved by rotating toward the short axis of the gas. Since

this effect relies on the finite size of the gas, it might distort the behavior predicted by the

scaling hypothesis.

While we can often simplify our analysis by looking only at the structure along one

dimension, as we did in Ch. 4, the rotation of the domain walls is a valuable reminder that

the domain structure can become nontrivial in 2D or even 3D. Since the excitation spectrum

of the gas is fundamentally anisotropic as a result of the 1D shaken lattice, we should consider

the possibility that scaling laws are anisotropic as well. For example, it is natural to predict
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anisotropic Kibble-Zurek scaling exponents in this system. While the system can have only

one unfreezing timescale, the speed of sound is different along the x- and y-axes (and only

the x-axis speed of sound depends on the shaking amplitude). This difference might lead

one to observe a different spatial scaling exponent for the y-axis than the one we measured

along the x-axis, if the domains were not limited by the finite size of the gas along that axis.

The experiments presented in this chapter were not performed with an ideal procedure.

The primary issue is that these experiments were performed before correcting the biasing

issues discussed in Sec. 4.3.2. A second issue is that the duration (50 ms) of the ramp to sh

is fixed, rather than the ramp rate. Since the ramp rate varies between conditions, the initial

domain structures at the beginning of the hold time vary depending on sh, as can be seen

in the variation in the correlations measured at th = 0 in the top row of Fig. 7.2. Ideally

the quench rate should be held constant, and the ramp to the desired holding amplitude sh

should become fast immediately after unfreezing, so that the initial domain distribution is

independent of sh. In addition, it is not necessary to include the ramp to s = 32 nm for

detection, since we can perform amplified detection at any shaking amplitude (see Sec. 4.3.1).

In order to test the coarsening hypothesis (Eqn. 7.1), it would be best to initialize the

system in the ferromagnetic phase with the smallest possible domains so that the domains

have room to grow before becoming comparable to the size of the gas. It might be even more

interesting to initialize the system with various deterministic domain structures by biasing

the initial velocity distribution, as demonstrated in Fig. 3.5, to test how long the memory of

the initial distribution lasts during the coarsening process.

7.1.2 Interaction-driven phase transition and condensation in a single

particle excited state

The behavior of Bose-Einstein condensates in a red-detuned shaking lattice is quite different

from that in the usual case of blue-detuned shaking. With red-detuned shaking, a phase
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Figure 7.5: Illustration of the effects of red-detuned shaking on the band structure. (a) For
red-detuned shaking experiments we shake the optical lattice at angular frequency ω slightly
smaller than the band gap at the edge, ~ω < E2(qL) − E1(qL). (b) A dressed picture in
which the second band is shifted by the shaking frequency E2(qL) → E2(qL) − ~ω. The
gap between the bands is very small near the edge, leading to a significant admixture of
the bands, but much the much larger gap near q = 0 prevents significant admixture. (c)
The Floquet quasi-energy spectrum for the band adiabatically connected to the ground band
E1(q), as a function of the shaking amplitude. The spectrum is determined by numerically
solving for the Floquet steady states with lattice spacing d = 532 nm, depth 8.87 ER, and
shaking frequency f = 5.2 kHz.

transition occurs in which atoms are transferred from the band center to the band edge.

Both phases have only a single minimum in the band, unlike the blue-detuned case. The

interplay between micromotion and interactions is essential in the red-detuned case, and the

system can be driven across the phase transition just by increasing the scattering length.

In fact, we see that sufficiently strong interactions can drive the system to Bose condense

in a single particle excited state. Moreover, we find that under certain conditions both

inequivalent phases can still coexist simultaneously.
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Figure 7.6: Micromotion in the two possible superfluid states with red-detuned shaking.
Plots of the density in the Floquet steady state with q = 0 (top row) and q = qL (bottom
row) over one shaking period. The fading curves indicate the density profiles at previous
times within the T/8 step between each plot, making the motion more apparent. Calculated
with lattice spacing d = 532 nm, depth 8.87 ER, shaking frequency f = 5.2 kHz, and shaking
amplitude s = 32 nm.

We can understand the effect of red-detuned shaking on the band structure using the

two-band approximation, see Fig. 7.5A. Here, the shaking frequency is slightly red-detuned

from the gap at the edge of the band, ~ω < E1(qL) − E0(qL). In some ways, this leads

to the “opposite” effect from blue detuned shaking; instead of increasing the ground band

energy near the center, level repulsion in the dressed picture (Fig. 7.5B) causes the energy

to decrease near the band edge. Note that, when the shaking frequency is resonant with

any transition from the ground band to the first excited band, we observe much more rapid

heating.

The effective ground band in the red-detuned shaken lattice based on the full Floquet

calculation is shown in Fig. 7.5C. Note that only half of the Brillouin zone is shown, since

it is symmetric. The main feature is that shaking decreases the energy at the band edge

ε1(qL), as expected from the two-band approximation. At a critical shaking amplitude sc

it becomes degenerate with the normal ground state, ε1(qL; sc) = ε1(0; sc), and for larger

shaking amplitudes s > sc we find that the condensate undergoes a phase transition to

occupy the new ground state q = qL. Note that, in the lattice, the quasimomentum states
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Figure 7.7: Interaction energy during micromotion with red-detuned shaking. A plot of
the ratio η = 〈n2〉x / 〈n〉

2
x of the average interaction energy in the q = 0 (magenta) and

q = qL (red) Floquet states to the interaction energy of state with flat microscopic density.
The horizontal dashed lines indicate the respective averages over the full Floquet period.
Calculated with lattice spacing d = 532 nm, depth 8.87 ER, shaking frequency f = 5.2 kHz,
and shaking amplitude s = 32 nm.

q = −qL and +qL are the same; therefore, pairs of atoms can collide and both transfer to

the band edge while conserving total quasimomentum.

There are also two clear avoided crossings with other Floquet bands, near q ≈ 0.33 qL

and q ≈ 0.9 qL. The first crossing is particularly strong, but we have seen no evidence that it

qualitatively changes the expected behavior, though it is likely responsible for some heating.

Therefore, we will ignore the presence of this crossing for the remainder of the discussion,

focusing on the local minima at q = 0 and qL with a barrier in between.

The interplay of micromotion and interactions has very interesting effects in the red-

detuned shaken lattice (recall Sec. 3.3). The micromotion of the states at the band center

and edge is shown in Fig. 7.6. Both states oscillate in phase with the motion of the lattice,

reaching peak density at their greatest displacement and minimum density when moving

163



C
he

m
ic

al
 P

ot
en

tia
l ¹

(q
) 

- ¹
(0

) 
(H

z)

Quasimomentum q (qL)

Figure 7.8: A plot of the relative chemical potentials of condensates at different quasi-
momenta with red-detuned shaking and coarse-grained interaction energy scales gnflat =
0 (black), 50 (red), 100 (magenta), and 150 Hz (blue). Calculated with lattice spacing d =
532 nm, depth 8.87 ER, shaking frequency f = 5.2 kHz, and shaking amplitude s = 29 nm.

through zero displacement. However, the micromotion of |qL〉 is much more extreme than

that of |0〉 because shaking is much closer detuned at the band edge. Put another way,

|qL〉 includes a much greater admixture of the state in the unshaken excited band, which is

more spread out than the state of the ground band. As a result, the effective interaction

strength at the band edge is much lower, see Fig. 7.7. Compared to the result for blue-

detuned shaking (Fig. 3.7), the effect of micromotion on interactions in the red-detuned case

is enhanced because the difference in detuning between the relevant states is much greater.

As a result of the micromotion, interaction effects can determine the preferred phase.

Indeed, the micromotion causes the chemical potential µ = g′qnflat to decrease at the band

edge relative to the band center as the density increases, see Fig. 7.8. Here, g′q is the effective

interaction strength of the quasimomentum state |q〉 (see Sec. 3.3) and nflat is the coarse-

grained density. Therefore, while sufficient shaking amplitude can always drive the system

across the phase transition on its own, interactions can also drive the system across the phase
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Figure 7.9: Examples of red-detuned shaking reconstruction. (A) Density profiles of the
superfluid with red-detuned shaking after performing a 10 ms ToF to separate the Bragg
peaks. For superfluids entirely in the q = 0 state (top) atoms only occupy Bragg peaks
with momenta q0,j = (2j)qL, while superfluids with q = qL (middle) occupy Bragg peaks
with momenta qL,j = (2j + 1)qL. If the superfluid is split into domains with different
quasi-momenta (bottom), these domains will be reflected in the density profiles of the Bragg
peaks. (B) The reconstructed spin densities Jred(r) = n0(r) − nL(r) corresponding to the
raw images in panel (A); see text for details.

transition as one increases the scattering length or the density.

Experimentally, we can probe the state of the system in the red-detuned shaking lattice

by reconstructing the in-situ quasimomentum distribution, as shown in Fig. 7.9. We typically

prepare the system with a lattice depth of V = 8.86 ER and shaking frequency of f = 5.2 kHz.

Then, after shaking the lattice for some time, we perform an ordinary TOF for 5-10 ms

and collect an absorption image. Raw example images are shown in Fig. 7.9A. While an

amplification pulse like those discussed in Sec. 4.3.1 could potentially enhance the signal even

further, the large separation in quasimomentum between the band center and edge naturally

causes the relevant momentum peaks to separate in this case. After TOF, we can identify

the density profiles n′j(r) corresponding to momenta qj = jqL for integers j. Even integers

correspond to atoms at the band center, while odd integers correspond to atoms at the band

edge. Therefore, we reconstruct the density profiles at the band center n0(r) =
∑
j n
′
2j(r)
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Figure 7.10: Example images of superfluids driven across the red-shaking phase transition
by increasing interaction strength. BECs initially prepared in the q = 0 state at a shaking
amplitude s = 29 nm near the phase boundary undergo a 100 ms ramp of the scattering
length from ai = 20 a0 to af = 150 a0. Each column corresponds to images taken at a
different time and instantaneous scattering length, indicated at the top.

and at the band edge nL(r) =
∑
j n
′
2j+1(r), from which be calculate the pseudo-spin density

Jred(r) = n0(r)− nL(r). Examples of reconstructed pseudo-spin density profiles are shown

in Fig. 7.9B.

Before moving on to our main results, it is worth emphasizing the difference between the

interpretation of “domain” structures in the red-detuned and blue-detuned shaken lattices.

We have extensively discussed the blue-detuned case, where we see domains of atoms in the

two degenerate ground states of the Ferromagnetic phase. There, for any shaking amplitude
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Figure 7.11: Example images with red shaking in a wide trap. Reconstructed images of
circular superfluids with scattering length a = 110 a0 undergoing red-shaking with amplitude
s = 26 nm. The circular trap has horizontal trap frequencies of ωr = 2π× 6 Hz and vertical
trap frequency ωz = 2π× 260 Hz. Near the center of the trap the interaction energy scale is
approximately gnflat/h ≈ 150 Hz.

or interaction strength these two states are equivalent, because of the inversion symmetry

of the system, and their coexistence is not an enormous surprise. At first glance we observe

similar “domain” structures in the red-detuned shaken lattice; for example, see the bottom

image of Fig. 7.9B where there are four domains: two clear regions with q = 0, a large domain

in the center with q = qL, and a very small domain with q = qL near the top left corner.

However, in this case the two states only degenerate at the phase boundary, which depends

on the shaking amplitude, scattering length, and density. In practice the two states are never

truly degenerate, and they correspond to different phases. Therefore, on the surface their

coexistence is more reminiscent of simultaneous appearance of two phases at the coexistence

line of a first order phase transition, such as the coexistence of water and ice as an ice cube

is melting. In the blue-detuned shaken lattice, the q = 0 state only coexists with q = ±q∗
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Figure 7.12: Average red-shaking “donut”: The average spin density of the images shown in
Fig. 7.11.

for a brief time during the unfreezing dynamics, and even then it does not exist as separate

domains but as a small and rapidly shrinking amplitude across the whole gas. In short, it is

worth emphasizing that in many ways the physics of the red-detuned shaken lattice should

be quite different from that of the blue-detuned case.

We find that the system can be driven across the phase transition simply by increasing

the scattering length. For these experiments we start with a very small scattering length

of a = 20 a0, and ramp the shaking amplitude slowly up to s = 29 nm where the system

is close to the phase transition but the single particle ground state is still at q = 0. Then,

over 100 ms we linearly increase the scattering length to a = 150 a0. We reconstructed

example images taken at 20 ms intervals during this process, which are shown in Fig. 7.10.

At the beginning of the ramp the gas is almost entirely in the q = 0 state. The variation

in the initial state likely results from small residual drifts of the lattice depth, in spite of

our best efforts to eliminate them. Because we use a smaller detuning of 270 Hz here than

we used in the blue-detuned case (∼ 860 Hz), the band structure is even more sensitive to

changes in the lattice depth. We suspect that these experiments would benefit from further
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improvement of the lattice depth stability, or from the use of a different set of parameters

at which the physics is lest sensitive to drifts. Regardless, as the scattering length increases

the atoms are increasingly likely to be found at the band edge, and at the highest scattering

length a = 150 a0 almost the entire gas has crossed the phase transition to q = qL. Thus we

demonstrate that interactions play a fundamental role in determining the preferred phase

of this phase transition. In fact, sufficiently strong interactions have effectively caused the

bosons to condense in a single particle excited state; the condensate appears at the band

edge even though the single particle energy is minimized at the band center [164].

In order to further explore interaction effects in the red-detuned shaken lattice, we per-

formed experiments in a round trap with weaker vertical confinement. By turning off ZDT

and using the vertical lattice and magnetic field gradient to provide vertical confinement, we

create a trap with approximately symmetric horizontal trapping frequencies of ωr = 2π×6 Hz

and vertical trap frequency ωz = 2π × 260 Hz. The larger gas in this trap allows for more

space in which the superfluid can create regions in opposite phases. By tuning just below

the non-interacting critical shaking amplitude and using a large scattering length a = 110 a0

we observe a large number of samples with coexisting phases, shown in Fig. 7.11. The pat-

terns show an intriguing variety from shot to shot, and present an intriguing topic for future

studies.

One consistent feature is the preferential transfer to the q = qL state near the center of

the gas. This preference can be easily seen in the average spin density, shown in Fig. 7.12,

which has a large region at q = qL near the center surrounded by q = 0 at the edges. This

imbalance is driven by the higher density at the center of the harmonic trap, which makes

the band edge more favorable than the center as a result of the same micromotion effects

described above.

In addition to continuing the lines of investigation described above, it would be interesting

to test the behavior of the gas after a quench across the red-detuned shaking phase transition.
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Figure 7.13: Basis states for pseudo-spin reconstruction in the 2D shaken lattice. Example
images after an amplification pulse and a 10 ms TOF with condensates initialized with quasi-
momentum (A) |kx, ky〉 = |−k∗,+k∗〉, (B) |+k∗,+k∗〉, (C) |−k∗,−k∗〉, and (D) |+k∗,−k∗〉.
A small error in the initialization procedure leads to the small fraction of atoms at |+k∗,+k∗〉
which appear as an isolated spot in the upper-right quadrant of panel (D). Compare to
Fig. 4.7A.

In the blue-detuned cases, we observed behavior at early times consistent with the prediction

for dynamical instability, while at later times we saw coherent oscillations of the population

between different momentum states [62]. While it seems likely that the system just after

a quench should also exhibit dynamical instability, it is not clear what to expect at later

stages, especially in light of the coexistence of the two phases observed above.
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Figure 7.14: Example reconstructed pseudo-spin densities in the 2D shaken lattice. (A)
Atoms in the 2D shake lattice have two pseudo-spin degrees of freedom, based on their
quasimomentum along the x/y-axes (Jx/y). This panel shows the mapping from the re-

constructed pseudo-spin densities to false color. (B) Two example reconstructed images of
pseudo-spin domains in the 2D shaken lattice.

7.1.3 2D shaking

We have performed preliminary experiments testing the behavior of condensates in a 2D,

blue detuned shaken lattice. We use a 2D shaken square lattice with equal lattice depths,

shaking frequencies, and amplitudes along the x- and y-axes; each lattice has conditions

equivalent to those used in Ch. 4. In the Ferromagnetic phase, the second shaking lattice

splits each of the original degenerate minima into two minima, resulting in a total of four

degenerate single particle minima at |kx, ky〉 = |±k∗,±k∗〉.

Experimentally, the higher density of samples confined in lattices along both axes as well

as the simple presence of two driving forces tends to lead to much faster heating. It is even

more imperative in this case to ensure that the vertical trap depth is low, so that evaporation

continues as the system is shaken and the temperature of the gas can remain low. Under

that condition, we are able to obtain sample lifetimes on the order of those observed in the

1D shaken lattice.

At this point, it will probably not come as a surprise that we use a short TOF in order
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Figure 7.15: The energy of repulsively interacting condensates with uniform quasimomentum
in the ferromagnetic phase with 2D shaking, calculated based on the numerical calculation
described in Sec. 3.1.2 while accounting for the micromotion effects described in Sec. 3.3.
Five examples for different relative phases between the x- and y-axis shaking are shown, with
the phase indicated by the shaking locus at the bottom left corner of each energy landscape.

to reconstruct the in-situ quasimomentum distribution. In the case of 2D shaking, we use

a procedure identical to that described in Sec. 4.3.1, but performed simultaneously on both

lattices. To test the reconstruction procedure, we bias the gas with an initial velocity toward

one of the minima, then cross the phase transition in order to produce pure samples in a

single quasimomentum state in the ferromagnetic phase. For each ground state, the density

distributions after the amplification pulse and a 10 ms TOF are shown in Fig. 7.13. From

these images we calculate 2D basis “vectors” analogous to those shown in Fig. 4.7B, which

we can use to reconstruct the in situ pseudo-spin density distribution as shown in Fig. 7.14.

As a result of the micromotion, the energy of a repulsively interacting condensate with

uniform quasimomentum in the 2D shaken lattice depends on the relative phase between

the x- and y-axis shaking lattices, see Fig. 7.15. Since the single particle Floquet calculation

is separable, the wavefunction describing 2D micromotion ukx,ky(x, y, t) = ukx(x, t)uky(y, t)

can be considered the product of 1D shaken lattice wavefunctions uk(x, t) along each axis.

Recall Fig. 3.6, which showed that the 1D states in the ferromagnetic phase at q = ±q∗ are

“circulating”: they oscillate out of phase with the lattice shaking, with a minimum density

when passing through zero displacement in one direction and a maximum density when

passing through in the opposite direction. In 1D, the density oscillations of q∗ and −q∗

have opposite phase, but when averaged over a full Floquet period the effective interaction
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Figure 7.16: Observation of interaction effects in the 2D shaken lattice. (top row) The
averages of 10 TOF images for gases in the ferromagnetic phase of the 2D shaken lattice
with relative phases of 0◦ (linear shaking, left), 90◦ (circular shaking, center), and 180◦

(linear shaking, right) between the x- and y-axis shaken lattices are shown. Colored boxes
indicate the regions containing atoms from each of the four wells (see Fig. 7.13). (bottom)
The fraction of atoms in quasimomentum states along the main diagonal (N++ +N−−)/N
depends strongly on the relative shaking phase.

strengths are the same. In a linearly-shaken 2D lattice, where the phase θxy = 0◦ is zero

between the x- and y-axis shaking, there are now two possibilities. For states along the main

diagonal (|q∗, q∗〉 or |−q∗,−q∗〉) the two factors ukx(x, t) and uky(y, t) of the wavefunction

oscillate in phase and reach their peak density at the same time, leading to an extremely

high interaction energy at that peak. For the off-diagonal states (|−q∗, q∗〉 or |q∗,−q∗〉),

the two factors reach peak density at opposite phases of the shaking, moderating the overall

interaction energy. After averaging over the whole shaking period, the total interaction

energy is higher for the on-diagonal states than the off-diagonal states, as seen in the leftmost
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and rightmost panels in Fig. 7.15. Therefore, instead of four degenerate many-body ground

states, in the presence of linear shaking the system has only two ground states. Shaking the

system with a circular waveform with θxy = 90◦ restores the symmetry between the four

minima even in the presence of interactions, as seen in the middle panel of Fig. 7.15.

We have performed preliminary experiments in the 2D shaken lattice to test this predic-

tion. Both lattices along the x- and y-axes have a depth of 8.86 ER and shaking frequency

8 kHz. After adiabatically loading the gas into the lattice, we slowly increase the shaking

amplitude at a rate of 0.2 nm/ms up to an amplitude of s = 20 nm. The asymmetry between

the wells is most significant when the system unfreezes close to the critical point, where the

interaction energy is a large compared to the kinetic energy of the wells. We then quickly

ramp the shaking amplitude to s = 32 nm where we allow a coarsening period of 100 ms,

which we expect to enhance the original imbalance between the populations in each well

(see Fig. 7.3). Finally we perform a 5 ms TOF and measure the number of atoms in each

quasimomentum well.

The average density distribution after TOF for three different relative phases of the

shaken lattices are shown in the top row of Fig. 7.16. As predicted, for linear shaking, we

see a much greater population in the off-diagonal states, while for circular shaking we see

relatively even population in each of the four wells. We present the imbalance for many

shaking phases by plotting the fraction of atoms in the main diagonal (N++ + N−−)/N ,

where N±± is the total number of atoms in |±q∗,±q∗〉 in the bottom panel of Fig. 7.16.

These results demonstrate some of the interesting behaviors which arise from the inter-

play of interactions and micromotion in the shaken lattice. Moreover, these results lay the

foundation for future investigations into the nature of the effectively ferromagnetic phase

transition in the 2D shaken lattice. In order to study the behavior of a BEC in a dispersion

with four degenerate wells, one must use a circular shaking waveform.
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Figure 7.17: Fireworks from a gas with a seeded excited-state population. Example images
of the jets which result from wiggling at various frequencies (indicated above each column)
and fixed amplitude aac = 110 a0. Before wiggling a 200 µs pulse of the 1D, d = 532 nm
lattice along the x-axis seeded a small population of excited state atoms with a kinetic energy
of 5.3 kHz per atom.

7.2 Bose Fireworks

7.2.1 Fireworks as an Amplifier

The Bose Fireworks effect can be used as a versatile amplifier for a small populations in

excited states outside a condensate. Simply modulating the scattering length with sufficient

amplitude will cause the initial population N0 in an excited mode to be amplified exponen-

tially. Of course, it will also create a background of spontaneous jets (the amplified quantum

fluctuations studied above), but the average final population in the originally occupied mode

should remain a factor of order N0 above the average background level. The amplifier can

have a narrow bandwidth limited by the power broadening or the decay rate of atoms from
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the condensate, and and it operates simultaneously for any direction of the initially excited

mode(s).

As a preliminary demonstration of this amplifier, we have used the fireworks effect to

amplify a small excited state population which we seed by pulsing on an optical lattice.

First, we applied a 200 µs pulse of the optical lattice along the x-axis. The brief pulse of the

lattice achieves a small phase imprinting, effectively seeding populations of 700(100) atoms

each in the +2 kL and -2 kL momentum states along the lattice axis. The excited modes

seeded by the lattice have an energy of 4ER = h× 5.3 kHz per atom.

We then modulated the scattering length with a fixed amplitude aac = 110 a0 and various

frequencies around the resonance. During this amplification phase, the lattice remains off.

We image the density distribution once the jets have traveled far enough from the condensate

to be easily identified. Example images across a range of frequencies are shown in Fig. 7.17.

Away from the resonance at low frequencies, we observe the normal fireworks effect. Since

the jet momentum is smaller than the seeded momentum, we observe an inner ring of normal

jets as well as the initial population seeded into the higher momentum modes. Away from

the resonance at high frequencies we see similar behavior, but the inner ring of fireworks is

very weak. The asymmetry of the off-resonant behavior is likely a result of the threshold

amplitude, which rises with frequency and suppresses the jet emission for high frequency

modulation. For a sufficiently large modulation amplitude, this asymmetry would likely

disappear.

When modulating on resonance at f = 10.6 kHz we observe strong amplification of the

seeded mode with minimal population of the other, originally empty modes. We measure

a final population of 4900(300) atoms each in the initially seeded modes, corresponding

to amplification by a factor of seven. The background modes with the same momentum

but different angles, which are initially empty, contain a total of 4600(1100) atoms after

amplification. If we approximate the number of unique modes as 2π/w where w is the
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Figure 7.18: Example images taken after modulating the scattering length with amplitude
aac = 40 a0 at low frequency f = 1 kHz for various durations (indicated above each column).
In some images we clearly see groups of atoms, indicated by red arrows, which have traveled
twice as far from the condensate as the main fireworks.

FWHM of a mode, then there are approximately 160 modes under these conditions and this

background level corresponds to 31(7) atoms per mode.

It is also noteworthy that the amplified modes do not appear as narrow jets as in the

spontaneous case, but rather have an envelope approximately the size of the original conden-

sate. This behavior is actually precisely what we predict (see Sec. 5.2); it is the spontaneous

case in which the jets are narrow even in the near-field that we do not fully understand.

7.2.2 Secondary Collisions

When the population of atoms in the primary ring of momentum states with magnitude kf

becomes comparable to the population of atoms remaining in the condensate, new collision

processes can become relevant. In Ch. 5 we focused on the effects of collisions which excite

two atoms out of the condensate into pairs of counter-propagating modes at kf , which we

call primary collisions. Under the right conditions one can also observe collisions between

outgoing atoms at kf and the remaining condensate atoms or even between pairs of outgoing

atoms; we call these secondary collisions. If the modulation amplitude is not too far above

threshold, then secondary collisions will still tend to be rare, because even when the number

of atoms in the primary jets is large, many of them will have escaped the condensate already

and they will be spread out. Instead, modulating the scattering length at large amplitude
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Figure 7.19: (left column) The average of images taken at various times (indicated at the
left) after beginning to modulate the scattering length with amplitude aac = 125 a0 at
frequency f = 2 kHz. In the lower two images the duration is close to one quarter of the
trap period, and the outgoing jets have been roughly focused into rings. (right column)
Azimuthal averages for each condition shown at the left. Especially in the latter two times,
there are clearly two rings of atoms, with the second ring having traveled approximately a
factor of

√
2 farther from the original condensate center.

and low frequency allows the system to build up a large density of excited modes which

all have significant overlap with each other inside the original condensate. Under those

conditions, a significant number of secondary collisions can occur.

During our early investigations, two noteworthy examples of secondary collisions ap-

peared. It is worth emphasizing that both examples occurred in a harmonic trap, unlike all

of the other fireworks experiments reported in this chapter. While the harmonic trap does

not contribute much to the rate of secondary collisions, it does help to focus the outgoing

atoms so that small populations in secondary jets become dense spots or rings which are
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more easily detected.

Our first observation of secondary collisions occurred in the elliptical harmonic trap

formed by XDT, YDT and ZDT. We modulated the scattering length at low frequency

f = 1 kHz and moderate amplitude aac = 40 a0. A timeseries of example images after

different durations of modulation is shown in Fig. 7.18. Note that the colorscale is saturated

for the condensate itself and the primary jets, making them a bit hard to identify. However,

this choice also reveals the secondary spots which are visible in the images at 35 and 40 ms,

which correspond to roughly one quarter period of the long axis trap.

Interestingly, these secondary spots are ejected approximately twice as far as the primary

jets, which suggests that they have roughly four times as much energy as atoms in the primary

jets. Such energetic atoms are almost certainly the result of collisions between pairs of atoms

in the primary jets, in which one atom is returned to the condensate mode at k = 0 and

the other atom is excited to a mode with momentum 2kf . In this way, after undergoing

two collisions, a single atom ends up with all of the energy 2hf available in those collisions

(compared to the hf/2 carried by each atom after a single, primary collision).

Our second observation of secondary collision products occurred in the round harmonic

trap formed by XDT, YDT and the vertical lattice. We modulated the scattering length at

moderate frequency f = 2 kHz but very high amplitude aac = 125 a0. A timeseries shows the

average of 46 images at each of three different times, as well as the corresponding azimuthally

averaged radial density, in Fig. 7.19. In this case, when the jets are approximately focused

radially, a clear secondary ring can be seen.

Surprisingly, the secondary ring is not at twice the radius of the primary ring in this case,

but is only a factor of roughly
√

2 farther away from the remnant condensate. In this case,

it is natural to suspect that these atoms result from secondary collisions between atoms in

counter-propagating, primary modes. The input and output modes of such collisions still

have a net momentum of zero, meaning that any such collision between primary modes can
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Figure 7.20: Remnant condensates after jet emission. Each panel shows the average of seven
images taken after modulating the scattering length at f = 5 kHz and aac = 125 a0 for
the durations shown at the left side of each row. The columns correspond to initially (A)
elliptical, (B) square, and (C) triangular condensates.

populate this secondary ring; each outgoing atom has momentum
√

2kf and energy hf .

A detailed investigation of these observations and other fascinating properties of sec-

ondary collision processes is currently ongoing in the lab.

7.2.3 Remnant Condensates

Another very interesting feature of the fireworks that merits a detailed exploration is the

structure of the remnant condensate which is left behind after the jets are ejected. Even in

our very early experiments (Fig. 5.1, for example) it is clear that the remnant condensate

has a very interesting structure, with large fluctuations in density that fluctuate from shot to

shot. It seems likely that the structure of the remnant reflects the pattern of the jets, and one

could test for correlations between the remnant density fluctuation and the azimuthal density

profile of the jets. Unfortunately, for the experiments discussed in Ch. 5, we used a lower
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imaging beam intensity to improve the signal to noise ratio in the regions with fireworks.

This choice made the beam intensity too weak to faithfully image the high density remnant.

Therefore, further experiments into this very interesting area are required. Moreover, the

theory described in Sec. 5.2 is inadequate for describing the remnant, since it neglects the

population of condensate modes by making the Bogoliubov approximation. Even worse, that

treatment neglects the propagation of outgoing wavepackets due to the kinetic energy term,

which is likely to have a huge impact on the remnant structure.

As a starting point, we have made some interesting observations regarding the average

structure of remnants imaged with sufficient imaging beam intensity. We measured the

remnant density profiles of condensates with initial elliptical, triangular, and square shapes

undergoing scattering length modulation at frequency f = 5 kHz and large amplitude aac =

125 a0. The average remnant density profiles are shown in Fig. 7.20. At the earliest time

shown, 7.5 ms, the jets are mostly still inside the condensate. After 12.5 ms most of the atoms

in jets are visible just outside the condensate, and after 17.5 ms the jets have propagated

away and the density profile primarily reflects the structure of the remnant.

For all three shapes, the remnant condensate has a low-density “hole” near its center.

In the square and triangular samples, it appears that the highest density of atoms remains

at the vertics, while the edges have moderate density. It is possible that these features

result from the interplay between the propagation of outgoing jets and their continuing

amplification. That is, the greatest depletion of condensate atoms should occur where there

is the greatest density of outgoing atoms being amplified. Since all of the outgoing modes

pass through the center, the density of the condensate in the center would be depleted the

most. One might expect this behavior to be modified for modulation amplitudes closer to

threshold, where the dependence of the threshold amplitude on the propagation direction

should have a significant influence on the dynamics. Our understanding of the remnant

structure would benefit greatly from a more complete model which does not rely on the
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Figure 7.21: Jet emission at low modulation frequencies in a 2D, 4 ER lattice with amplitude
aac = 50 a0. (A) The band structure for atoms in a 1D lattice of depth 4 ER. Keep in mind
that the atoms are in a 2D lattice, and therefore have this band structure along both the
x- and y-axes. (B) Each panel shows an average of 3 images corresponding to the wiggling
frequency indicated at the top of the column and the duration at the left of the row.

Bogoliubov approximation and includes the motion of the outgoing atoms.

7.2.4 Fireworks in an Optical Lattice

Ordinarily, we perform fireworks experiments in homogeneous samples, which are in free

space except for the boundary from the DMD. In this situation, the excitation spectrum

of the gas in 2D (neglecting the average scattering length adc) is the familiar E(kx, ky) =

~2(k2
x+k2

y)/2m for free particles, such that the density of states is independent of the energy.

The constant density of states results in the relatively simple form of the scaling of the jet

emission with modulation frequency, discussed in Ch. 5.
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Figure 7.22: Jet emission at low modulation frequencies in a 2D, 4 ER lattice with amplitude
aac = 50 a0. Each panel shows an average of 3 images corresponding to the wiggling
frequency indicated at the top of the column and the duration at the left of the row.

The situation is dramatically modified in the presence of an optical lattice. For simplicity,

first consider the case of a 1D system in an optical lattice. The excitation spectrum takes

the form of a band structure, as shown in Fig. 7.21A. It is natural to make two predictions.

First, if the energy per outgoing atom hf/2 approaches the edge of a band, the collision

rate should be enhanced due to the greater density of outgoing resonant states. Second, if

the energy per atom hf/2 lies in the gap where there are no possible outgoing modes, the

collision rate should be close to zero. For this section we work in lattice(s) with depth 4 ER.

In 1D the ground band width is E1(kL)−E1(0) = 0.46kHz and the first excited band starts

at E2(0)− E1(0) = 3.07 kHz, as shown in Fig. 7.21A.

Similar predictions apply in a 2D square optical lattice, with the addition of additional
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effects which cause spontaneous directionality of the outgoing jets. In the 2D lattice, the

excitation spectrum takes the form of a band structure along both axes. I will denote the

(separable) band energies as Eij(kx, ky) for the i’th band in the x direction and the j’th

band in the y direction (with index i = 1 corresponding to the ground band). First, when the

energy per atom hf/2 < E11(kL, 0) is sufficiently low (near the bottom of the lowest band),

there should be outgoing modes in every direction which are resonant with the modulation.

Since these modes have slightly different total momenta, they may have slightly different

thresholds and thus the emission could have a small anisotropy, but the effect should be

relatively small. However, once the modulation frequency exceeds the energy at the band

edge for excitations along just one axis, hf/2 > E11(kL, 0), there are no longer outgoing

modes available in every direction. The only available resonant modes are off the axes. In

particular, as the energy per atom approaches the gap hf/2 ≈ E11(kL, kL), the only states

available propagate diagonally.

We observe this spontaneous directionality experimentally, see Fig. 7.21B. Note that the

need to have the XDT and YDT dipole traps on in order to create the optical lattice leads to

a somewhat anisotropic trap which is wider along the x-axis, causing a spurious preference

for x-axis emission even without the presence of any lattice. Even so, we can see the stark

contrast between the typical jet patterns emitted at f = 1 kHz, where outgoing modes are

available in all directions, and f = 1.75 kHz where the only available states are along the

diagonal and thus there is a much higher density of atoms emitted diagonally.

If we further increase the modulation frequency such that hf/2 lies in the gap, we see

far less emission as shown for f = 4 kHz in the first column of Fig. 7.22. Even so, there

is clearly some emission. Two types of processes might allow collisions to occur even when

hf/2 lies in a gap. First, by stating that hf/2 lies in the gap we are assuming that both

atoms should be emitted into the same band, and thus have the same energy. In the lattice,

it is possible to have processes which conserve quasimomentum but not total momentum,
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such that one atom could go to the excited band and the other to the ground band, but still

with opposite quasimomenta. In this case processes which conserve energy and momentum

are still possible at f = 4 kHz. Second, but probably less important, is the role of the third

axis. As always, the vertical axis is tightly confined to suppress jet emission away from the

horizontal plane. However, it still has p2/2m dispersion which can in principle provide some

states to fill in the gap, especially in the absence of strong horizontal emission.

Further increasing the modulation frequency, we eventually see the return of strong emis-

sion, which is primarily directed along the horizontal and vertical axes, as shown in the right

two columns of Fig. 7.22. We expect the observed on-axis jets, since the only states available

when hf/2 ≈ E12(0, kL) are in the ground band with small quasimomentum along one axis

and in the excited band with large quasimomentum along the other axis. Off-axis states are

not available, or at least have a much lower density of states. Note that the strong emission

at f = 5.5 kHz is appearing at a slightly lower frequency than our treatment would predict;

it is possible that the lattice depth was slightly lower than we thought, or that some other

unexpected effect is playing a role here. Note also that the some of the anisotropy in the

distance that the jets travel from the gas likely results from the anisotropy of the harmonic

trap.

7.2.5 Fireworks in the presence of collective excitations

Last but not least, we have seen intriguing examples of jets which do not propagate radially

even from a circular condensate. Specifically, under certain conditions we observe a small

fraction of trials (∼ 5%) in which the jets are “twisted” counterclockwise or clockwise, see the

examples in Fig. 7.23. We ordinarily observe jets which appear to propagate purely radially,

and here we present images with a significant twist, but we do not seem to observe trials with

intermediate twisting. Based on these preliminary observations, we attribute the twisting of

the jets to the presence of a single vortex present in the condensate before modulation [8]. In
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Figure 7.23: Example images of condensates with twisted jets, which appear randomly in
some datasets. The jets can twist either counterclockwise (A) or clockwise (B). These images
were obtained with f = 3 kHz and aac = 65 a0.

the future it would be very interesting to study the jet patterns from condensates prepared

deterministically to have a known collective excitation, such as a vortex or a soliton.
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