- Home
- Publications
- News
- Ultracold gallery
- Group Videos
- Research
- People/Contact
- Courses/Outreach
- Physics Courses
- Spring 2022 P334
- Autumn 2021 P238
- Summer 2021 P334
- Spring 2021 P143
- Spring 2021 P334
- Spring 2020 P143
- Spring 2020 P334
- Spring 2019 P226
- Autumn 2018 P238
- Spring 2018 P226
- Autumn 2017 P452
- Spring 2017 P226
- Fall 2016 P154
- Spring 2016 P334
- Spring 2016 P226
- Spring 2015 P334
- Spring 2014 (ETH Zürich)
- Autumn 2013
- Winter 2013
- Autumn 2012
- Winter 2012
- Spring 2011
- Winter 2010
- Spring 2009
- Autumn 2008
- Spring 2008
- Autumn 2007
- Winter 2007
- Autumn 2006
- Spring 2006
- SMART program
- Physics Courses
- Open Positions
- Collaborative project
- Internal
Transition from an atomic to a molecular Bose–Einstein condensate
Our paper, "Transition from an atomic to a molecular Bose–Einstein condensate" is published in Nature.
We create Bose-Einstein condensates (BECs) of spinning short-range molecules in a flat-bottomed two-dimensional trap by pairing atoms in an atomic BEC through a g-wave Feshbach resonance. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be +220(± 30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitary limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas.
This work is featured on UChicago News .