1. Bose-Einstein distribution and Bose-Einstein condensation (BEC)
Consider \(N = \sum_{i=0} N_i \gg 1 \) ideal bosons with mass \(m \) are confined within a volume of \(V \) and \(n_i \) is the population in the \(i \)-th eigenstate. Given a grand canonical ensemble with chemical potential \(\mu \) and temperature \(T \), the probability to find \(\alpha = 0, 1, 2 \ldots \) bosons in the state is \(p_\alpha \propto e^{-\beta(\alpha E_i - \alpha n)} \) where \(\beta = \frac{1}{k_B T} \).

A. Show that the mean population \(\bar{N}_i = < \alpha p_\alpha > \) in the state is exactly given by the Bose-Einstein distribution \(\bar{N}_i = \frac{1}{e^{\beta E_i - \mu} - 1} \).

B. BEC occurs when a sizable fraction of the particles occupies the ground state \(N_0 = O(N) \). In this case the excited state population is given by \(N_{ex} = \sum_{i=1} N_i \). Show that the BEC transition occurs when \(\mu \) increases toward \(E_0 \).

(Comment: Here \(N_0 = O(N) \) means \(\lim_{N \to \infty} \frac{N_0}{N} > 0 \).)

C. As a concrete example, consider a large 3D box with volume \(V \) and \(E_0 \equiv 0 \). We may approximate the sum by an integral \(\sum_{i=1} N_i = \int_0^\infty n(E)\rho(E)\,dE \) and the 3D density of state is \(n(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2} \right)^{3/2} \sqrt{E} \). Show that the equation of state is
\[
 n\lambda_{dB}^3 = n_0\lambda_{dB}^3 + g_3(e^\mu),
\]
Where \(n = \frac{N}{V} \) is the total particle density in the box, \(n_0 = \frac{N_0}{V} = e^\mu \left(1 - e^\mu \right) \) is the condensate density, \(\lambda_{dB} = \hbar(2\pi m k_B T)^{-1/2} \) is the thermal de Broglie wavelength and \(g_n(z) = \frac{1}{\Gamma(n)} \int_0^\infty \frac{x^{n-1}}{z^{-1} e^{n-1}} \,dx \) is the Bose function, and BEC occurs when the phase density \(n_\phi \equiv n\lambda_{dB}^3 \) reaches \(n_\phi = g_3(1) \approx 2.612 \ldots \)

(Comment: Equation of state is the relation between thermodynamical variables, \(\mu \) and \(T \) in this case.)

D. Now consider \(N \gg 1 \) ideal bosons in a 2D box, show that BEC occurs only at \(T=0 \).

E. Now consider \(N \) bosons in a 3D isotropic harmonic potential \(H = \frac{p^2}{2m} + \frac{m \omega^2 r^2}{2} \) with eigenenergy \(E = (n_x + n_y + n_z)\hbar \omega, n_x, n_y, n_z = 0, 1, 2 \ldots \). Determine the BEC critical temperature \(T_c \) and the population in the ground state and first 3 excited states at \(T = T_c \).
2. Mean-field description of a Bose-Einstein condensate

Gross-Pitaevskii equation describes the wavefunction of a Bose condensate:

\[
\left(\frac{p^2}{2m} + V(r) + \frac{4\pi a^2}{m} |\psi(r)|^2 \right) \psi(r) = \mu \psi(r),
\]

where \(V(r) \) is the external potential, \(m \) is the boson mass, \(\mu \) is the chemical potential, \(a \) is the scattering length, and \(p = -i\hbar \nabla \) is the momentum operator. The condensate wavefunction is normalized as \(\int \psi^*(r)\psi(r)d^3r = N \), where \(N \) is the particle number.

Depending on the strength of the external potential \(V(r) \) and the scattering length \(a \), the BEC can be prepared in different regimes:

A. Non-interacting BEC with zero scattering length \(a = 0 \)
In this case, all atoms occupy the ground state of the harmonic potential. How would you write down the wavefunction of the system \(\Psi(r_1, r_2 ... r_N) \)?

B. Regular BEC with positive and sizable scattering length \(a > 0 \)
In this regime interaction \(< \frac{4\pi a^2}{m} \psi^*(r)\psi(r) > \) near the trap center is generally much greater than the kinetic energy \(< \frac{p^2}{2m} > \) and the kinetic energy term can be neglected. Many BECs are in this regime. Show that the particle density is \(n(r) = \frac{\mu - V(r)}{g} \) for position \(r \) satisfies \(V(r) < \mu \) and \(n(r) \to 0 \) for \(V(r) > \mu \). Given the normalization condition, determine the density profile \(n(r) = \psi^*(r)\psi(r) \) and chemical potential \(\mu \) in terms of \(N, a \) and \(\omega \) in a 3D harmonic potential \(V(r) = \frac{1}{2}m\omega r^2 \).

C. Attractive (unstable) BEC with negative scattering length \(a < 0 \)
Here BEC can be unstable against collapse. Assume the wavefunction is given by the Gaussian ansatz

\[
\psi(r) = Ae^{-r^2/4R^2},
\]

where \(R \) characterizes the rms size of the BEC. Calculate the expectation values of the kinetic, potential and interactions energies. Show that there is a critical scattering length \(a_c < 0 \) below which the BEC would collapse.

D. Low dimensional condensates
One way to experimentally study BECs in 1D or 2D is to confine bosons in a highly isotropic trap \(V(r) = \frac{1}{2}m(\omega_x x^2 + \omega_y y^2 + \omega_z z^2) \). One expects the BEC is two-dimensional when \(\omega_z \gg \omega_x \approx \omega_y \) and one-dimensional when \(\omega_z \ll \omega_x \approx \omega_y \). Here we consider the extreme regime, called quasi-2D BEC, realized when \(\omega_z \gg \frac{\mu}{\hbar} \gg \omega_x \approx \omega_y \equiv \omega_r \). Determine the atomic wavefunction \(\psi(r, z) \) in this limit and express the chemical potential \(\mu \) in terms of \(N, a, \omega_r \) and \(\omega_z \).
3. **Bogoliubov transformation**

The purpose of this question is to get an intuitive picture of the Bogoliubov transformation. Consider the Hamiltonian of two interacting fields \(\psi_a \) and \(\psi_b \).

\[
\hat{H} = \alpha (\hat{a}^+ \hat{a} + \hat{b}^+ \hat{b}) + \beta (\hat{a}^+ \hat{b}^+ + \hat{b} \hat{a}) ,
\]

where \(\hat{a} \) and \(\hat{b} \) are the Bosonic annihilation operators of the fields and thus they satisfy the commutation relationship: \([\hat{a}, \hat{a}^+] = [\hat{b}, \hat{b}^+] = 1 \) and \([a, b^+] = [b, a^+] = [a, b] = [a^+, b^+] = 0 \).

A. Write the Hamiltonian \(H \) in the matrix form in the Fock state basis \(|n_a, n_b\rangle\) of the fields. Here \(n_a, n_b = 0,1,2 \ldots \) and the particle numbers in the field. For simplicity, you may consider only the subspace with \(n_a = n_b \). Show that \(\alpha \) and \(\beta \) appear in the diagonal and off-diagonal terms.

B. Bogoliubov transformation is a unitary transformation that diagonalizes the Hamiltonian. It is based on the ansatz

\[
\begin{align*}
a^+ &= uc^+ + vd \\ b^+ &= ud^+ + vc
\end{align*}
\]

where \(c \) and \(d \) are annihilation operators of the new bosonic fields \(\psi_c \) and \(\psi_d \), which are super-positions of \(\psi_a \) and \(\psi_b \). We demand \([c, c^+] = [d, d^+] = 1 \) and thus the new particles are bosons as well. We can assume \(u \) and \(v \) are real and show that \(u^2 - v^2 = 1 \).

Show that with the proper choice of \(u \) and \(v \), the Hamiltonian can be diagonalized as

\[
H = \varepsilon (c^+ c + d^+ d) + \varepsilon - \alpha ,
\]

where \(\varepsilon = \sqrt{\alpha^2 - \beta^2} \).

C. The energy functional of the BEC is written in the form

\[
H = \frac{gn}{2} N + \frac{1}{2} \sum_{\vec{k} \neq 0} \left(\frac{\hbar^2 k^2}{2m} + gn_0 (a_{\vec{k}}^+ a_{\vec{k}} + a_{-\vec{k}}^+ a_{-\vec{k}}) + gn_0 (a_{\vec{k}}^+ a_{-\vec{k}}^+ + a_{-\vec{k}} a_{\vec{k}}) \right)
\]

Use the result of B and construct the quasi-particle operators \(b_{\vec{k}}, b_{-\vec{k}} \) from \(a_{\vec{k}}, a_{-\vec{k}}, a_{\vec{k}}^+, a_{-\vec{k}}^+ \) that diagonalize the Hamiltonian.