Grey-molasses optical-tweezer loading:
Controlling collisions for scaling atom-array assembly

M. O. Brown, T. Thiele, C. Kiehl, T.-W. Hsu, and C. A. Regal
JILA, National Institute of Standards and Technology and University of Colorado,
and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

Physical Review X, 9(1), 011057

Presented by Shraddha Anand for Physics 452
Introduction

- Optical tweezer technology can be used to isolate and control individual atoms/molecules => engineer quantum systems from bottom-up
- Applications in QInfo, simulations, metrology
- Essential to scale up => need high loading rates

Light-assisted collisions for sub-Poissonian loading

Red-detuned Polarization Gradient Cooling

Doppler shift used for optical molasses

Additional damping due to magnetic field

This paper

- Λ-enhanced grey molasses loading on the D1 line of Rb87
- Cooling laser is blue-detuned of a type-II ($F_0 \leq F$) transition and in a Λ configuration with a coherent repump laser
RPGC vs. ΛGM

RPGC: 64(1)% at [-14 MHz, 1.1(1) mK]

ΛGM: 89(1)% at [45 MHz, 0.55(5) mK]
Monte-Carlo of Collision Dynamics

Assumptions:

1. ΛGM loads at least a few atoms per traps.
2. Re-thermalizes remaining atoms after collision.
3. Sample: Poisson with $\bar{N}_{atom} = 5$, temperature T
4. Two atoms collide at spacing < 100 nm.
5. Collision ejects 0 or 1 or 2 atoms determined by pre-collision energy and energy gain $\hbar [\Delta_{AGM} - \delta_{trap}]$

6. RPGC imaging consistent with loading. Until $N \leq 1$:
 a. $N_{atom} = N_{atom} - 2$, probability = 0.65
 b. $N_{atom} = N_{atom} - 1$, probability = 0.35
Three physical regimes

- **$E \ll 2U$**
 - No atom loss
 - 65%
- **$E \sim 2U$**
 - Single-atom and 2-body losses
 - 75%
- **$E \gg 2U$**
 - 2-body loss
 - 50%
- **Maximal**
 - **$E < 2U$**
 - Only single-atom loss

10×10 array: ~80%
Impact on array assembly

Rearrangement algorithm:
1. Image atom locations
2. Find 6x6 sub-array
3. Remove excess atoms
4. Contract array in one move

Low efficiency: 0.1%
Atom loss at 17% when rf off.
Summary

- Loading in shallow tweezers can be enhanced by controlling the process of photoassociation to molecular states.
- $1 \text{ mK}, 100 \text{ traps, 50 atoms} \Rightarrow 0.27 \text{ mK, 370 traps, 300 atoms } \Rightarrow \times 6$ increase
- Can reduce number of rearrangement moves
 - 300 atoms at $P = 50\% \Rightarrow 900$ moves, but at $P = 80\% \Rightarrow 320$ moves

requires 320 moves. As a result, the probability to retain all 300 atoms in the rearrangement protocol increases roughly from 0.1\% to 10\% when going from $P = 50\%$ to $P = 80\%$, assuming a 420 second atom lifetime [35], 1 ms per move, and a 99.3\% move fidelity [10].