Physics 143A: Honors Waves, Optics, and Thermo
Spring Quarter 2024
Problem Set #3
Due: 11:59 pm, Wednesday, April 10. Please submit to Canvas.

1. **(Math) Fourier expansion and Fourier transform exercise (6 points each)**
 You may Fourier expand a periodic function or Fourier transform a general function as

 Fourier series expansion: $y(x) = f(x + L) \equiv a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi nx}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{2\pi nx}{L}$

 Fourier transform: $y(x) = \int y(k)e^{ikx}dk$

 Determine the Fourier series of the following functions
 (a) Fourier expand $y(x) = |\sin x|$
 Hint: first determine the period of the function and then the basis you need to expand it.
 (b) Fourier expand an infinite series of periodic impulses $y(x) = \sum_{n \in \mathbb{Z}} \delta(x - n)$, where $\mathbb{Z} = \{0, \pm1, \pm2 ... \}$ includes all integers and $\delta(x)$ is Dirac’s Delta function.
 (c) Fourier transform a single impulse $y(x) = \delta(x)$
 (d) Fourier transform a series of random impulses $y(x) = \sum_{n} \delta(x - x_n)$.
 (e) Show that given $f(x) = \int f(k)e^{ikx}dk$, we have the following normalization condition $\int f^*(x)f(x)dx = 2\pi \int f^*(k)f(k)dk$
 Hint: Use the formula $\int e^{ikx}dx = 2\pi \delta(k)$

2. **Fourier series and transforms of a square wave (7 points each)**
 Consider a periodic function $f(t) = f(t + T)$, where T is the period. See below

 ![Square wave diagram](image_url)

 We will expand it in 3 ways and compare the results.
 (a) Expand $f(t)$ with the trigonometric functions with the same period

 $$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{2\pi nt}{T} + b_n \sin \frac{2\pi nt}{T}).$$

 Determine a_0, a_n and b_n.
 (b) Expand $f(t)$ with the exponential series with the same period
\[f(t) = \sum_{n=-\infty}^{\infty} c_n e^{-\frac{it}{T}}. \]

Determine \(c_n \).

(c) Fourier transform \(f(t) \) over the entire range
\[\tilde{f}(t) = \int f(t)e^{i\omega t}d\omega. \]

Determine \(\tilde{f}(\omega) \).

(d) All these expansions are equivalent. Show that \(c_n \) and \(\tilde{f}(\omega) \) can be expressed in terms of \(a_0, a_n \) and \(b_n \).

3. General solution of a driven harmonic oscillator (9 points each)

(a) A driven oscillator is described by equation of motion:
\[x''(t) + \gamma x'(t) + \omega_0^2 x(t) = f(t) \]

Show that the particular solution is
\[x(t) = \frac{1}{\frac{2\pi}{\omega_0} + \frac{1}{\pi} \sum_{n=1,3,5...} \frac{1}{n} \text{Im} \left(\frac{e^{i\omega_n t}}{\omega_0^2 - \omega_n^2 + i\gamma \omega_n} \right), \text{where } \omega_n = \frac{2\pi n}{T}. \]

(b) As an example, we consider the external force \(f(t) \) as described in question 2. Determine the explicit form of the solution of the oscillator.

Hint: \(x(t) = \frac{1}{2\omega_0} + \frac{1}{\pi} \sum_{n=1,3,5...} \frac{1}{n} \text{Im} \left(\frac{e^{i\omega_n t}}{\omega_0^2 - \omega_n^2 + i\gamma \omega_n} \right), \text{where } \omega_n = \frac{2\pi n}{T}. \)

4. Damped wave equation and guitar string (8 points each)

A guitar string moves according to the following damped wave equation
\[\rho \partial_t^2 \psi(x, t) + b \partial_x \psi(x, t) = E \partial_x^2 \psi(x, t) \]

with the fixed boundary conditions
\[\psi(0, t) = \psi(L, t) = 0 \]

(a) Determine the dispersion \(\omega(k) \) of the eigenmodes, where \(\omega \) is the angular frequency of the wave and \(k \) is the wavenumber.

(Hint: Dispersion is the relation between angular frequency and wave number. You may use the ansatz \(\psi = Ae^{ikx}e^{i\omega t} \) and show that the eigenfrequency is \(\omega = Re[\omega] = \sqrt{\frac{E}{\rho} k^2 - \frac{b^2}{4\rho^2}}. \)

Next show that to satisfy the boundary condition the wavefunction should have the form \(\psi = A \sin kx e^{i\omega t} \) and the wavenumber \(k = k_n = \frac{(n+1)\pi}{L} \) can only take discrete values with \(n=0,1,2,3... \).

(b) Assume the initial position and velocity of the string are given by
\[\psi(x,0) = f(x), \quad \partial_t \psi(x,0) = g(x) \]

Consider a frictionless string \(b = 0 \) for simplicity, determine the wavefunction \(\psi(x, t) \) for \(t > 0 \) and verify that the solution is always real.

(c) A string instrument can produce a rich spectrum with fundamental \(\omega_0 \) and unique overtones \(\omega_n, n = 1, 2 \ldots \). Without dissipation \(b = 0 \) the pitch of the overtone is \(\omega_n = (n + 1)\omega_0 \). Show that in the presence of small damping \(0 < b \ll E\rho/\ell^2 \), the overtones are detuned from the fundamental as \(\omega_n = (n + 1)\omega_0 + \delta_n \). For small damping, show that

\[\delta_n \approx (n + 1 - \frac{1}{n + 1}) \frac{b^2}{8\rho^2\omega_0} \]

Such effect is more severe for in the range of low frequency.

(Hint: in the presence of damping, the fundamental frequency is also shifted.)