
 
Physics 143A: Honors Waves, Optics, and Heat 

Spring Quarter 2025 
Problem Set #2 

Due: 11:59 pm, Tuesday, April 8. Please submit to Canvas.  
 
 

1. Simple harmonic oscillators in mechanics and electronics (10 points each)  
Common oscillators in mechanics and 
electrodynamics are spring-mass system and RLC 
circuit, see figure on the right.  
 
(Left) Consider a mass m is connected to a spring 
which exerts a force on the mass 𝑓𝑓 = −𝑘𝑘𝑘𝑘(𝑡𝑡),  
where 𝑘𝑘 is the force constant. In addition, a 
damping force 𝑓𝑓 = −𝑐𝑐𝑐𝑐(𝑡𝑡) on the mass 
dissipates the energy and an external force 𝐹𝐹(𝑡𝑡) can be applied to the mass. 
 
(a) Show that the equation of motion on the mass is  

𝑚𝑚𝑥𝑥′′(𝑡𝑡) + 𝑐𝑐𝑥𝑥′(𝑡𝑡) + 𝑘𝑘𝑘𝑘(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) 

(b) Show that the intrinsic frequency of the oscillator is 𝜔𝜔0 = �𝑘𝑘
𝑚𝑚

, and for the oscillator to show 

an underdamped oscillation, the damping coefficient should be 𝑐𝑐 < 2√𝑘𝑘𝑘𝑘  
(Assume F(t)=0). 

(Right) Voltages across a capacitor, resistor and inductor are 𝑉𝑉𝑐𝑐 = 𝑞𝑞
𝑐𝑐
, 𝑉𝑉𝑅𝑅 = 𝐼𝐼𝐼𝐼, and 𝑉𝑉𝐿𝐿 = 𝐿𝐿 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 , 

where 𝑞𝑞 is the charge across the capacitor, 𝐼𝐼 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is the current flowing through the circuit, 
and the voltage drop over the wire loop is zero 𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑅𝑅 + 𝑉𝑉𝐿𝐿=0.  

(c) Derive the differential equation of the charge 𝑞𝑞(𝑡𝑡) and the current 𝐼𝐼(𝑡𝑡) and show that they 
follow the equation of a damped harmonic oscillator, and the intrinsic frequency is 𝜔𝜔0 = 1

√𝐿𝐿𝐿𝐿
. 

(d) Assume 𝑅𝑅 = 0, 𝑞𝑞(0) = 𝑞𝑞0 and 𝐼𝐼(0) = 0, determine 𝑞𝑞(𝑡𝑡) and 𝐼𝐼(𝑡𝑡) of the circuit.  

 
 

2. Quality factor of an oscillator 
Crystal oscillators and atomic blocks are excellent time keepers and they operates under the 
principle of a driven harmonic oscillator with a low damping 𝛾𝛾 ≪ 𝜔𝜔0. 
 
A driven RLC circuit equation is powered by a time-dependent voltage 𝑉𝑉(𝑡𝑡) = 𝑉𝑉 sin𝜔𝜔𝜔𝜔, the 
equation is given by  
 

𝐿𝐿𝐿𝐿′′(𝑡𝑡) + 𝑅𝑅𝑅𝑅′(𝑡𝑡) +
1
𝐶𝐶
𝑞𝑞(𝑡𝑡) = 𝑉𝑉(𝑡𝑡) 



 
(a)  Derive the particular solution starting with the ansatz of 𝑞𝑞(𝑡𝑡) = 𝑄𝑄𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. 
(b) The current through the circuit can be written as 𝐼𝐼(𝑡𝑡) = 𝐼𝐼(𝜔𝜔) sin (𝜔𝜔𝜔𝜔 + 𝜙𝜙). Use any 

software to plot 𝐼𝐼(𝜔𝜔). Show that the profile 𝐼𝐼(𝜔𝜔) ≈ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿(𝜔𝜔) is described by the Lorentz 
distribution 𝐿𝐿(𝜔𝜔) = 1

1+(𝜔𝜔−𝜔𝜔0)2

Γ2

, when  𝑅𝑅/𝐿𝐿 ≪ 𝜔𝜔0 and 𝜔𝜔 ≈ 𝜔𝜔0. Determine the width of the 

Lorentz distribution Γ , the maximum current 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, and the ratio of the resonance 
frequency and the width 𝑄𝑄 = 𝜔𝜔0

Γ
, also called the Quality factor.  

(Hint: for a bell-shaped distribution, width is typically defined as the range where the signal  
is above 50% of the maximum.) 

(c) Plot the phase shift 𝜙𝜙(𝜔𝜔) for 𝑅𝑅/𝐿𝐿 = 𝜔𝜔0/10 and comment on the value of the phase shift 
when the driving force is far below resonance 𝜔𝜔 ≪ 𝜔𝜔0, near the resonance 𝜔𝜔 = 𝜔𝜔0 and well 
far above the resonance 𝜔𝜔 ≫ 𝜔𝜔0. 

 
3. Math Determine the eigenvalues and eigenvectors of the following matrices (5 points each) 

(a) �𝐴𝐴 −𝐵𝐵
𝐵𝐵 𝐴𝐴 � 

(b) �
−1 1 −1
1 0 1
−1 1 −1

� 

(c) A particle of mass 1 is moving in on the plane with potential energy 𝑉𝑉(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 𝑦𝑦2 −
𝑥𝑥𝑥𝑥 − 6𝑥𝑥. Determine the equilibrium position (𝑥𝑥0,𝑦𝑦0), where the potential energy is at the 
minimum, and the two eigen-frequencies of the particle moving near the potential 
minimum. 
(Hint: Taylor expand the potential near the minima. You may introduce a new coordinate 
𝑢𝑢 = 𝑥𝑥 − 𝑥𝑥0, 𝑣𝑣 = 𝑦𝑦 − 𝑦𝑦0 and show that the equation of motion  𝑚𝑚𝑟𝑟′′ = −∇𝑉𝑉(𝑟𝑟) is given by 
 

𝑢𝑢′′ = −2𝑢𝑢 + 𝑣𝑣 
𝑣𝑣′′ = −2𝑣𝑣 + 𝑢𝑢. 

 
You can then derive the eigenfrequencies.) 

(d) Use the result in (c) and determine the eigen-frequencies of the particles moving near the 
minimum of the potential 𝑉𝑉(𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑥𝑥2+𝑦𝑦2−𝑥𝑥𝑥𝑥. 


