
 
Physics 143A: Honors Waves, Optics, and Thermo 

Spring Quarter 2024 
Problem Set #4 

Due: 11:59 pm, Tuesday, April 22. Please submit to Canvas.  
 
 

1. (Math) Fourier series expansion and Fourier transform exercise (5 points each) 
You may Fourier expand a periodic function or Fourier transform a generic function as 
 
  Fourier series expansion: 𝑦𝑦(𝑥𝑥) = 𝑦𝑦(𝑥𝑥 + 𝐿𝐿) = 𝑎𝑎0 + ∑ 𝑎𝑎𝑛𝑛 cos 2𝜋𝜋𝜋𝜋𝜋𝜋

𝐿𝐿𝑛𝑛=1 + ∑ 𝑏𝑏𝑛𝑛 sin 2𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿𝑛𝑛=1  

  Fourier transform: 𝑦𝑦(𝑥𝑥) = ∫ 𝑦𝑦(𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 
 
Determine the Fourier series of the following functions 
(a) Fourier expand 𝑦𝑦(𝑥𝑥) = |sin 𝑥𝑥| 
Hint: first determine the period of the function 𝐿𝐿 = 𝜋𝜋 and then determine the basis you need to 
expand it. 
(b) Fourier expand an infinite series of periodic impulses 

𝑦𝑦(𝑥𝑥) = ∑ 𝛿𝛿(𝑥𝑥 − 𝑛𝑛)𝑛𝑛=0,±1,±2… , where 𝛿𝛿(𝑥𝑥) is Dirac’s Delta function.  
(c)  Fourier transform a single impulse 𝑦𝑦(𝑥𝑥) = 𝛿𝛿(𝑥𝑥)  
(d)  Show that given 𝑓𝑓(𝑥𝑥) = ∫ 𝑓𝑓(𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, we have the following normalization condition 

∫ 𝑓𝑓∗(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 2𝜋𝜋∫ 𝑓𝑓∗(𝑘𝑘)𝑓𝑓(𝑘𝑘)𝑑𝑑𝑑𝑑 
Hint: Use the formula ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝜋𝜋(𝑘𝑘) 
(e)  Consider a periodic function  𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝑡𝑡 + 𝑇𝑇), where 𝑇𝑇 is the period. See below 

 
We will expand it in 3 ways and compare the results. 
Expand 𝑓𝑓(𝑡𝑡) with the trigonometric functions of the same period T 

𝑓𝑓(𝑡𝑡) = 𝑎𝑎0 + �(𝑎𝑎𝑛𝑛 cos
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=1

+ 𝑏𝑏𝑛𝑛 sin
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑇𝑇

).  

Determine 𝑎𝑎0,𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛. These coefficients should be real. 
(f) Continue (e), expand 𝑓𝑓(𝑡𝑡) with the exponential series of the same period  

𝑓𝑓(𝑡𝑡) = � 𝑐𝑐𝑛𝑛𝑒𝑒
𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=−∞

.  

Determine 𝑐𝑐𝑛𝑛, which can be complex. 
(g) Continue (f), Fourier transform 𝑓𝑓(𝑡𝑡) over the entire range  

𝑓𝑓(𝑡𝑡) = ∫ 𝑓𝑓(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑. 
Determine 𝑓𝑓(𝜔𝜔), which can be complex, too.  

(h) All these expansions from (e-g) should be equivalent. Show that 𝑐𝑐𝑛𝑛 and 𝑓𝑓(𝜔𝜔) can be 
expressed in terms of 𝑎𝑎0,𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛. 



2. General solution of a driven harmonic oscillator (15 points each) 
The Fourier transform allows us to solve the ODEs with arbitrary driving force.  
(a) A driven oscillator is described by equation of motion: 

 
𝑥𝑥′′(𝑡𝑡) + 𝛾𝛾𝑥𝑥′(𝑡𝑡) + 𝜔𝜔0

2𝑥𝑥(𝑡𝑡) = 𝑓𝑓(t) 
 

Show that the particular solution is  
 

𝑥𝑥(𝑡𝑡) = 1
2𝜋𝜋
∫ ∫ 𝑓𝑓(𝜏𝜏)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡−𝜏𝜏)

𝜔𝜔0
2−𝜔𝜔2+𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

 
(b) As an example, we consider the oscillator driven by the step-function force 𝑓𝑓(𝑡𝑡), described 

in Question 1 (f). Determine the solution of the oscillator motion. 

Hint: 𝑥𝑥(𝑡𝑡) = 1
2𝜔𝜔0

2 + 1
𝜋𝜋
∑ 1

𝑛𝑛
𝐼𝐼𝐼𝐼[ 𝑒𝑒𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡

𝜔𝜔0
2−𝜔𝜔𝑛𝑛

2+𝑖𝑖𝑖𝑖𝜔𝜔𝑛𝑛
]𝑛𝑛=1,3,5… , where 𝜔𝜔𝑛𝑛 = 2𝜋𝜋𝜋𝜋

𝑇𝑇
. 

 
 

3. Damped wave equation and guitar string (10 points each)  
A realistic guitar string moves according to the following wave equation with linear density  𝜌𝜌, 
damping coefficient 𝑏𝑏 and elastic coefficient 𝜅𝜅 (kappa): 

 
𝜌𝜌𝜕𝜕𝑡𝑡2𝜓𝜓(𝑥𝑥, 𝑡𝑡) + 𝑏𝑏𝜕𝜕𝑡𝑡𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝜅𝜅𝜕𝜕𝑥𝑥2𝜓𝜓(𝑥𝑥, 𝑡𝑡). 
 

Two ends of the guitar string are fixed 𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(𝐿𝐿, 𝑡𝑡) = 0. 
  

(a) Determine the dispersion 𝜔𝜔(𝑘𝑘) of the eigenmodes, where 𝜔𝜔 is the angular frequency of the 
wave and 𝑘𝑘 is the wavenumber.  

 
(Hint: Dispersion is the relation between angular frequency 𝜔𝜔 and wave number 𝑘𝑘. You may 
use the ansatz 𝜓𝜓 = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝜔𝜔�𝑡𝑡 and show that the eigenfrequency is 𝜔𝜔 = 𝑅𝑅𝑅𝑅[𝜔𝜔�] =

�𝜅𝜅
𝜌𝜌
𝑘𝑘2 − 𝑏𝑏2

4𝜌𝜌2
. Next show that to satisfy the boundary condition the wavefunction should 

have the form 𝜓𝜓 = 𝐴𝐴 sin 𝑘𝑘𝑘𝑘 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 with the wavenumber 𝑘𝑘 = 𝑘𝑘𝑛𝑛 = (𝑛𝑛+1)π
L

  which takes on 
discrete values n=0,1,2,3….) 
 

(b) Assume the initial position and velocity of the string are given by  
 

𝜓𝜓(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥), 𝜕𝜕𝑡𝑡𝜓𝜓(𝑥𝑥, 0) = 𝑔𝑔(𝑥𝑥) 
 
Consider a frictionless string 𝑏𝑏 = 0 for simplicity, determine the wavefunction 𝜓𝜓(𝑥𝑥, 𝑡𝑡) for 
𝑡𝑡 > 0 and verify that the solution is real when both 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are real. 

(c) A string instrument can produce a rich spectrum with fundamental 𝜔𝜔0 and unique 
overtones 𝜔𝜔𝑛𝑛,𝑛𝑛 = 1, 2 …. Without dissipation 𝑏𝑏 = 0 the pitch of the overtone 𝜔𝜔𝑛𝑛 =
(𝑛𝑛 + 1)𝜔𝜔0 is an exact multiple of the fundamental.  
In the presence of small damping 0 < 𝑏𝑏 ≪ �𝜅𝜅𝜌𝜌/𝐿𝐿2, however, the overtones are detuned 
from the exact multiple of the fundamental 𝜔𝜔𝑛𝑛∗ = (𝑛𝑛 + 1)𝜔𝜔0

∗ + 𝛿𝛿𝑛𝑛. Show that the detuning 
 



𝛿𝛿𝑛𝑛 ≈ (𝑛𝑛 + 1 −
1

𝑛𝑛 + 1
)

𝑏𝑏2

8𝜌𝜌2𝜔𝜔0
  

is severe for lower frequencies. 
(Hint: in the presence of damping, the fundamental frequency is also shifted.)                 


