Physics 143A: Honors Waves, Optics, and Thermo

Spring Quarter 2024 Problem Set #4

Due: 11:59 pm, Tuesday, April 22. Please submit to Canvas.

1. (Math) Fourier series expansion and Fourier transform exercise (5 points each)

You may Fourier expand a periodic function or Fourier transform a generic function as

Fourier series expansion:
$$y(x) = y(x+L) = a_0 + \sum_{n=1} a_n \cos \frac{2\pi nx}{L} + \sum_{n=1} b_n \sin \frac{2\pi nx}{L}$$

Fourier transform: $y(x) = \int y(k)e^{ikx}dk$

Determine the Fourier series of the following functions

(a) Fourier expand $y(x) = |\sin x|$

Hint: first determine the period of the function $L=\pi$ and then determine the basis you need to expand it.

- (b) Fourier expand an infinite series of periodic impulses $y(x) = \sum_{n=0,\pm 1,\pm 2...} \delta(x-n)$, where $\delta(x)$ is Dirac's Delta function.
- (c) Fourier transform a single impulse $y(x) = \delta(x)$
- (d) Show that given $f(x) = \int f(k)e^{ikx}dk$, we have the following normalization condition $\int\limits_0^\infty f^*(x)f(x)dx=2\pi\int\limits_0^\infty f^*(k)f(k)dk$ Hint: Use the formula $\int\limits_0^\infty e^{ikx}dx=2\pi\delta(k)$

(e) Consider a periodic function f(t) = f(t+T), where T is the period. See below

We will expand it in 3 ways and compare the results.

Expand f(t) with the trigonometric functions of the same period T

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{2\pi nt}{T} + b_n \sin \frac{2\pi nt}{T}).$$

Determine a_0 , a_n and b_n . These coefficients should be real.

(f) Continue (e), expand f(t) with the exponential series of the same period

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{i2\pi nt}{T}}.$$

Determine c_n , which can be complex.

(g) Continue (f), Fourier transform f(t) over the entire range

$$f(t) = \int f(\omega)e^{i\omega t}d\omega.$$

Determine $f(\omega)$, which can be complex, too.

(h) All these expansions from (e-g) should be equivalent. Show that c_n and $f(\omega)$ can be expressed in terms of a_0 , a_n and b_n .

2. General solution of a driven harmonic oscillator (15 points each)

The Fourier transform allows us to solve the ODEs with arbitrary driving force.

(a) A driven oscillator is described by equation of motion:

$$x''(t) + \gamma x'(t) + \omega_0^2 x(t) = f(t)$$

Show that the particular solution is

$$x(t) = \frac{1}{2\pi} \int \int \frac{f(\tau)e^{i\omega(t-\tau)}}{\omega_0^2 - \omega^2 + i\gamma\omega} d\omega d\tau.$$

(b) As an example, we consider the oscillator driven by the step-function force f(t), described in Question 1 (f). Determine the solution of the oscillator motion.

$$\text{Hint: } x(t) = \frac{1}{2\omega_0^2} + \frac{1}{\pi} \sum_{n=1,3,5\dots} \frac{1}{n} Im[\frac{e^{i\omega_n t}}{\omega_0^2 - \omega_n^2 + i\gamma\omega_n}] \text{, where } \omega_n = \frac{2\pi n}{T}.$$

3. Damped wave equation and guitar string (10 points each)

A realistic guitar string moves according to the following wave equation with linear density ρ , damping coefficient b and elastic coefficient κ (kappa):

$$\rho \partial_t^2 \psi(x,t) + b \partial_t \psi(x,t) = \kappa \partial_x^2 \psi(x,t).$$

Two ends of the guitar string are fixed $\psi(0,t) = \psi(L,t) = 0$.

(a) Determine the dispersion $\omega(k)$ of the eigenmodes, where ω is the angular frequency of the wave and k is the wavenumber.

(Hint: Dispersion is the relation between angular frequency ω and wave number k. You may use the ansatz $\psi = Ae^{ikx}e^{i\widetilde{\omega}t}$ and show that the eigenfrequency is $\omega = Re[\widetilde{\omega}] = \sqrt{\frac{\kappa}{\rho}k^2 - \frac{b^2}{4\rho^2}}$. Next show that to satisfy the boundary condition the wavefunction should have the form $\psi = A\sin kx \, e^{i\omega t}$ with the wavenumber $k = k_n = \frac{(n+1)\pi}{L}$ which takes on discrete values n=0,1,2,3....)

(b) Assume the initial position and velocity of the string are given by

$$\psi(x,0) = f(x), \qquad \partial_t \psi(x,0) = g(x)$$

Consider a frictionless string b=0 for simplicity, determine the wavefunction $\psi(x,t)$ for t>0 and verify that the solution is real when both f(x) and g(x) are real.

(c) A string instrument can produce a rich spectrum with fundamental ω_0 and unique overtones $\omega_n, n=1,2...$ Without dissipation b=0 the pitch of the overtone $\omega_n=(n+1)\omega_0$ is an exact multiple of the fundamental.

In the presence of small damping $0 < b \ll \sqrt{\kappa \rho/L^2}$, however, the overtones are detuned from the exact multiple of the fundamental $\omega_n^* = (n+1)\omega_0^* + \delta_n$. Show that the detuning

$$\delta_n \approx (n+1-\frac{1}{n+1})\frac{b^2}{8\rho^2\omega_0}$$

is severe for lower frequencies.

(Hint: in the presence of damping, the fundamental frequency is also shifted.)