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In this report, I will present my results in replicating the paper [1], which applied weak supervision
methods (CWoLA, transfer learning, meta-transfer learning) to identify signal from background jet

images.

In general, similar to the paper, I found that transfer learning results in a significant

enhancement in signal detection abilities. However, meta-transfer learning with and without hard
tasks didn’t result in an improvement. Finally, I will discuss the prospects of incorporating more
jet information, such as Les Houches angularity and jet mass, into the neural network model.

I. INTRODUCTION

Colliders, such as the Large Hadron Collider (LHC)
at CERN, are an important tool to understand particle
physics. In colliders, particles are accelerated and collide
with each other at high energies, producing byproducts
during the process. At these energies, we can learn use-
ful information about the composition and interactions
of fundamental particles. One notable discovery that col-
liders facilitate is the Higgs boson particle in 2012 [2],
which contributes to our framework of the Higgs field
that explains the generation of mass in some particles. A
current theoretical problem that colliders are exploring
is whether new particles beyond the Standard Model ex-
ist, since the limitations of the Standard Model and the
astronomical evidence for dark matter suggest that new
particles might be present in nature.

To search for new particles, we need to identify the
differences between a snapshot of a collision that hints
at a new particle (signal event) and a background event,
which is known as the classification problem. An effec-
tive strategy is to employ a deep learning model that can
learn how to classify the events through simulations and
apply the knowledge to a real search. Since such parti-
cles haven’t been discovered yet, we need the model to
be able to learn the difference between the signal and
background across multiple new physics scenarios, and
the model must work on mixed background and signal
events to resemble actual data collected from the LHC.

My work used weak supervision methods (CWola,
transfer learning, meta-transfer learning), which work
with mixed samples to tackle the classification problem.
I focus on jet images, which are layouts of energy depo-
sitions from collimated beams of hadrons resulting from
pp collisions. In the Exploration section, I will also
use two other measurable properties of jets: Les Houches
angularity and mass as an attempt to improve the per-
formance of the neural network.
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II. DATA EXTRACTION

Preprocessing the data followed the paper [1], which
includes two major steps:

1. Generating events: For background events, pp —
jj channel was considered. @ MadGraph 2.7.0
pipeline, which also includes Pythia hadronization
and Delphes detector simulation, was used. For
signal events, two scenarios were considered: direct
decay (DD) and indirect decay (ID). For each sce-
nario, 7 benchmarks were used, corresponding to a
different value of the parameter Ap that governs
the dark interaction processes.

2. Image processing and imposing cuts: The 7 and
¢ coordinate values, along with transverse momen-
tum P, were used to construct jet images. The
images were centered based on the jets’ coordinate
values recorded in the event output file, rotated,
and flipped. This process ensures that the neural
network does not pick up spatial features. I sepa-
rated the signal region (SR) events from the side-
band region (SB) events for training using the dijet
invariant mass M;;. Signal region was defined as
the region where 4700 < M;; < 5500 GeV, and the
sideband region was where 4400 < M;; < 4700
GeV and 5500 < M;; < 5800 GeV. With this
cut, the SR and SB region contained approximately
equal number of background events, but the signal
region contains more signal events. This fact is cru-
cial to the success of the deep learning training. For
each event, three different resolution (25x25, 50x50,
and 75x75) images were generated.

III. DEEP LEARNING
A. Architecture

The neural network’s architecture used throughout
CWolLa, transfer learning and meta-transfer learning, is
depicted in Fig. 1. Exact details of the layers can be
found in paper [1]. Training was performed on Keras
with Tensorflow backend.
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FIG. 1. The neural network architecture used for CWoLa,
transfer learning and meta-transfer learning.

B. CWoLa

In CWoLa, the neural network is trained on events
from the signal and sideband region rather than on pure
signal and background. The mixing of signal and back-
ground events resembles the actual data that the neu-
ral network would observe in colliders if signal events
are present. It can be proved that the resulting neural
network is, in theory, optimized to distinguish between
signal and sideband events [3].

To train a classifier, 25k background events in the SR
region were used in each epoch. The amount of back-
ground events in the SB region was scaled based on the
ratio of events between the regions in the initial back-
ground histogram. The same procedure was used to de-
termine the number of signal events in the SB region
with respect to those in the SR region. The number of
signal events in the SR region varied, representing dif-
ferent significance values, which was calculated by the
formula used in [1]:

o= \/2 ((NS + N,) log (J]\Vfb + 1) - NS> (1)

where Ny and N, are the number of signal and back-
ground events in the signal region, respectively.

After training, the neural network was evaluated on
20k pure signal and background samples from the SR

region. To calculate the significance after training, the
receiver operating characteristic curve (ROC) was used
to extract signal efficiency €5 value corresponding to dif-
ferent background efficiency ¢, values. The significance
was then recalculated as:

SNS
o= \/2 ((ESNS + epNy) log <€ + 1) - sSNS> (2)
EbNb

C. Transfer learning

Transfer learning involves training on relevant tasks
and transferring the knowledge to a target task. By
making the neural network learn how to extract im-
portant features from the jet images from similar sig-
nal/background recognition tasks, the resulting network
only needs to be fine-tuned from a smaller set of target
data. In practice, my neural network was first trained
on 115k background and 115k pure signal events from
other benchmarks except for the target one. In the fine-
tuning process, the neural network learned from mixed
signal and background events similar to CWoLa. The
only difference is that the convolutional layers, which had
been trained before during pretraining, kept their weights
throughout finetuning, and only the dense layers’ weights
were reinitialized and trained.

The results are presented in Fig. 2. A neural network
provides a better result when the significance after neural
network cut is greater than before, which means that the
curve rises above the black dotted line. In the CWoLa
case, the neural network improvement happens when the
significance is above around 3¢. Transfer learning is able
to both provide better significance after neural network
cut and a smaller threshold where the neural network
produces an improvement in every resolution and every
background efficiency.

D. Meta-transfer learning

Meta-transfer learning is a possible method to improve
the results of transfer learning. Meta-transfer learning
works by letting the neural network learn, in addition to
how to extract important features, the relative impor-
tance of each feature in the jet images. This is achieved
by adding scaling and shifting weights to the convolu-
tional layers, and training these weights on additional
batches of data from other benchmarks in the meta-
learning phase. After training, the neural network can
be evaluated to identify when to stop training and which
benchmarks have the lowest accuracies.

An optional phase called hard tasks training can be
performed using those benchmarks. This additional
training helps the neural network “learn through hard-
ships”, meaning that the neural network will be able
to recognize slight feature differences between the hard
benchmarks and the background. Meta-transfer learning
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FIG. 2. CWoLa and transfer learning results for the ID10 and
DD10 scenario, 25x25 resolution. Here ID refers to indirect
decay, DD refers to direct decay, and 10 refers to the case
where Ap = 10 GeV.

and hard tasks inclusion is inspired by [4], and the im-
plementation of meta-transfer learning followed [1] . For
hard tasks implementation, I chose 6 benchmarks with
the lowest accuracies, and trained the model for one fur-
ther epoch for each of the benchmarks.

The results are presented in Fig. 3. I found that meta-
transfer learning didn’t result in a notable improvement
over transfer learning. This is because transfer learning
already achieved nearly the mathematical limit of neural
network performance. The inclusion of hard tasks also
didn’t help with the performance. However, it is worth
noting that in some cases, with a good choice of kernel,
meta-transfer learning can perform significantly better,
such as in the original paper [1].

IV. EXPLORATION

One of the problems with the CWoLa method is the
dependence of certain variables on the dijet invariant
mass. This can cause the neural network to learn the
difference between the signal and sideband regions rather
than learning the true difference between signal and back-
ground. Therefore, a suitable variable needs to be as
loosely correlated to the dijet invariant mass as possible,
while maintaining a difference between background and
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FIG. 3. Meta-transfer learning and hard tasks results for the
ID10 and DD10 scenario, 25x25 resolution.

signal distribution. I found out that in the simulated
signal and background data, the two jets’ masses and
Les Houches angularities (a measurement of the jet’s an-
gular distribution) were variables that satisfy the above
conditions. The jet mass’ and Les Houches angularity’s
independence from dijet invariant mass is demonstrated
in Fig. 4 and Fig. 5, where the histogram distribution is
similar between background in the SR and SB region but
is different between background and signal in the SR re-
gion. These variables are also previously used by [5] and
[6] to distinguish between different jet structures using
CWoLA.

To incorporate these new variables as inputs into the
neural network, a plausible implementation is to create a
parallel multi perceptron neural network that takes the
additional variables as input and provides a number as
output. This number can be multiplied with the number
originally produced by the processing of jet images to
provide a prediction. I have explored ways to combine the
two features directly into the jet images’ neural network,
but these tend to result in the neural network learning
to distinguish between SR and SB regions rather than
between signal and background.

The results are presented in Fig. 5. For CWoLA, the
additional parameters assisted the neural network in the
low significance regime, which might be attributed to the
fact that the neural network requires a decent amount of
signal in the mixed data to pick up the image features.
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FIG. 4. Normalized distribution of first jet’s Les Houches
angularity

However, in the high significance regime, the neural net-
work performed worse with the introduction of additional
parameters. Compared to the exponential behavior seen
before in the graph with only jet images, the mixed data
neural network exhibited a linear trend, which suggested
that Les Houches angularity and jet mass played the pri-
mary role in informing the neural network’s classification.
Transfer learning with additional variables also produced
inferior results compared to only jet images. This behav-
ior is highly puzzling, and future work will tackle this

problem.
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FIG. 5. Normalized distribution of first jet’s mass
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