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ABSTRACT

This thesis reports the observation of quantum criticality with ultracold 133Cs atoms in

optical lattices. The novel experimental techniques that enable this observation include

the preparation of two-dimensional (2D) atomic quantum gases in 2D optical lattices, pre-

cise tuning of the sample parameters near a quantum critical point, and extraction of local

thermodynamics from in situ density measurements.

We perform in situ microscopy on a 2D quantum gas in optical lattices, and observe

the incompressible Mott insulating domains when the repulsive interaction between atoms

dominates over their mobility. We study slow mass transport and statistical evolution of

atoms in the lattice, as well as scale invariance and universality in weakly-interacting 2D

quantum gases without lattice. These results offer the essential knowledge to prepare and

investigate atomic samples in the quantum critical regime.

We study quantum critical scaling of the equation of state near the vacuum-to-superfluid

quantum phase transition. We quantitatively check the predictions of criticality theory by

locating the critical point, testing the critical scaling laws, and constrain the critical expo-

nents. We then explore thermodynamics in the critical regime and study further dependence

on the interaction strength. The experimental methods developed here provide promising

prospects to study general quantum phase transitions in cold atoms, and to explore the far

less understood quantum critical dynamics.
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CHAPTER 1

INTRODUCTION

1.1 Quantum phase transitions in physics

Phase transitions happen everywhere in physics: from the crystalization of water into ice,

the vanishing of viscosity in cooled liquid helium, the change into a paramagnet when a fer-

romagnetic material is heated, to the symmetry-breaking phase transitions in the hot early

universe. Many phase transitions are driven by the change in random thermal motion of

the atoms or molecules when the temperature is varied. While these different phase transi-

tions have very diverse microscopic features, they often share fundamental characteristics.

For example, the specific heat near the water-to-vapor transition under a critical pressure

follows the same scaling law (in its dependence on temperature) as that of iron near its

demagnetization transition when the temperature is raised [1]. Understanding the universal

physics underlying various phase transitions has been a major achievement of 20th century

physics [2, 3].

Research over the past two decades has revealed a new type of phase transition that

is driven not by thermal motion but by quantum fluctuations based on the Heisenberg un-

certainty principle. As the temperature of a many-body system approaches absolute zero,

thermal fluctuations of observables cease and quantum fluctuations dominate. Competition

between different energies, such as kinetic energy, interactions or thermodynamic poten-

tials, can induce a quantum phase transition between distinct ground states. Quantum phase

transitions have been actively pursued in the study of a broad range of materials such as

heavy-fermion metals [4, 5], the high-transition temperature (high-Tc) superconductors [6],

quantum dots in the Kondo regime [7], high-density QCD matter [8], and black holes [9].

Near a continuous quantum phase transition, a many-body system is quantum critical, ex-

1



hibiting scale invariant and universal collective behavior. In the next section, we discuss

the important concepts and progress in the study of quantum criticality.

1.2 Universal physics near quantum critical points

Even though a quantum phase transition happens at zero temperature, the transition can

influence the finite-temperature properties of a many-body system. For example, Fig. 1.1

illustrates the phase diagram of the superfluid-to-Mott insulator transition which happens

at temperature T = 0 when the control parameter is tuned to g = gc [10]. At low tem-

peratures, the elementary excitations are phonons on the superfluid side (g > gc) and are

particle-hole excitations on the Mott insulator side (g < gc). At the critical value g = gc,

however, there is no well-defined quasi-particle description for the excitations, and no char-

acteristic energy scale except for the temperature T [11].

Near the quantum critical point, the many-body system is expected to show universal

scaling behaviors. As indicated by the vertical arrow in Fig. 1.1, at sufficiently low tem-

peratures, there is only one independent energy scale (chosen as the temperature T ), and

all other thermodynamic observables scale with T , with characteristic scaling exponents

determined by basic properties of the system, such as symmetry and dimensionality [11].

Observing the predicted scaling laws would provide evidence for a quantum critical regime,

and the measured generic scaling function can offer valuable information which is often

hard to calculate.

A quantum critical many-body system can exhibit characteristic scaling behavior not

only in equilibrium thermodynamic observables, but also in various dynamical processes

including the quantum critical transport. Theoretical descriptions of quantum critical dy-

namics are challenging. For example, the transport process at the critical point is de-

scribed neither by a non-linear equation of waves nor by a Boltzmann equation of quasi-
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Figure 1.1: Illustration of the phase diagram of the superfluid-to-Mott insulator quantum
phase transition. The phase diagram is shown as a function of the temperature T and cou-
pling constant g = t/U , where t is the tunneling energy and U is the on-site interaction.
At zero temperature, the phase transition happens at the critical point (T = 0, g = gc); at
finite temperatures, the system shows universal behaviors in the V-shaped quantum critical
regime. The two graphs of atomic distributions in optical lattices illustrate the Mott insu-
lator state (left) and the superfluid state (right). Two methods to probe quantum criticality
include studying the universal scaling behaviors by changing the temperature of the sys-
tem, indicated by the vertical arrow, and studying quantum critical dynamics by ramping g
across the quantum phase transition, indicated by the horizontal arrow.
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particles [11]. Nevertheless, it is expected that the transport coefficients in the critical

regime do not depend on the microscopic details and can be expressed by combinations of

fundamental constants in nature. In Ref. [12], the DC electrical conductivity (in two spa-

tial dimensions), σQ, is predicted to depend only on the carrier change e∗ and the Planck

constant h, with a universal constant (Φσ) of order unity:

σQ =
e∗2

h
Φσ. (1.1)

Furthermore, a universal scaling function for the conductivity at general frequencies, σ( ~ω
kBT

),

can be studied via the gauge-gravity duality [13, 14].

Behavior of quantum critical matter is challenging to calculate or simulate, but can be

probed by experiments. In the quantum critical regime, the equilibrium equation of state

and thermodynamic observables are predicted to scale with temperature with characteristic

exponents based on basic system properties. The corresponding generic scaling functions

are hard to calculate but accessible via quantum Monte Carlo simulations. Beyond the

equilibrium properties of a critical many-body system, the dynamics is much harder to cal-

culate and also very difficult to simulate (because Monte Carlo simulations mainly provide

ground-state properties).

By comparison, experiments can probe both the equilibrium properties and the dynam-

ical processes with similar accuracy and tunability. This thesis focuses primarily on the

critical scaling behavior of the equilibrium equation of state and thermodynamic observ-

ables, and later discusses our plan to probe critical dynamics. In the next section, we

describe our experimental approach: using ultracold atoms in optical lattices to explore

quantum criticality.
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1.3 Ultracold atoms in the quantum critical regime

The realization of Bose-Einstein condensation (BEC) of neutral atoms [15, 16, 17] starts a

new era of ultracold atomic physics, enabling the making, probing, and understanding of

many exciting novel quantum phases. With powerful tools such as optical lattices [18] and

Feshbach resonances [19], ultracold atoms can be controlled and tuned with unprecedented

accuracy in all their external and internal degrees of freedom, offering great opportunities

to study many-body physics questions that are originally raised in diverse disciplines such

as condense-matter physics, nuclear physics, and cosmology.

Our experimental approach is based on bosonic cesium-133 atoms. We produce cesium

BECs, load them into a thin layer of two-dimensional optical lattices, and perform in situ

absorption imaging. Inside the lattice, three processes are relevant: (1) atoms can move

around from one lattice site to another, described by the tunneling t; (2) atoms on the same

site can interact with each other, described by the on-site repulsive interaction parameter

U ; (3) atoms are held in an envelope trapping potential, and each point in the trap can be

assigned a local chemical potential µ. The competition between these energies (t, U , and µ)

can induce the superfluid-to-Mott insulator quantum phase transition near which we study

the critical scaling behavior of atoms.

In situ microscopy of 2D atomic quantum gases

A key experimental development is the in situ microscopy of 2D atomic quantum gases.

Previously, most measurements were based on imaging the atomic clouds after time-of-

flight (TOF) expansions. While TOF measurements are excellent in detecting coherence

properties, the expansions mix up the information from all the local quantum phases that

exist in the trap and prevent spatially resolved knowledge of individual phases. By compar-

ison, probing the atomic density profiles in situ provides an alternative for studying local
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properties of the cloud.

The atomic samples need to be prepared carefully, too. A 2D image of a 3D sample

typically provides integrated column density and averaged information over tens of layers

of atoms. Extracting useful information from measurements of 3D samples often involves

advanced data analysis such as the inverse Abel transformation [20, 21, 22]. Another exper-

imental alternative is to image only a thin layer of atoms out of a 3D sample via microwave

tomography [23]. In our work, we compress a 3D BEC into a single layer of 2D quantum

gas; as a results, the column density recorded by the camera is equal to the 2D atomic

density, which greatly simplifies the imaging procedures and analyses.

1.4 Outline of the thesis

Chapter two describes the crucial steps in building the experimental apparatus. Chapter

three includes a number of our works that either provide essential tools for making and

probing the desired quantum states, or reveal important knowledge on 2D atomic quantum

gases. Chapter four describes our recent work on observation of quantum criticality with

cold atoms in optical lattices, including locating the quantum critical point, testing the

critical scaling law, constraining the critical exponents, and subsequently, exploring the

thermodynamics in the critical regime. Chapter five lists the possible future directions of

the experiment, including plans and preliminary results on quantum critical dynamics, as

well as a generalized scheme for extracting local density-density correlation based on an

arbitrary-shape region in the atomic sample.
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CHAPTER 2

EXPERIMENTAL SETUP

This chapter records the design, buildup, and upgrade of our cesium experiment appara-

tus. I first describe the early experimental setup that enabled us to achieve Bose-Einstein

condensate (BEC) of cesium-133 atoms in November, 2007 and enter the quantum world.

Next, I describe our apparatus upgrades which led to successful in situ imaging of 2D

atomic quantum gases. I then give a brief summary on absorption imaging of atomic gases,

and describe further improvements in the apparatus.

2.1 Apparatus for producing cesium Bose-Einstein condensates

We chose bosonic cesium-133 (133Cs), the only stable isotope of cesium, for our experi-

ment. The atomic interaction between cesium atoms can be tuned via magnetic Feshbach

resonances [19], providing a convenient tool for probing many-body physics. The first step

of all our experiments is to produce a cesium BEC. Here I give an overview of the exper-

iment sequence, and then describe the necessary experimental setup and method for each

step.

2.1.1 Overview of the experiment sequence

The experiment starts by heating up a cesium source ampule to about 60°C to get sufficient

vapor pressure (in region “A” of Fig. 2.1). Cesium atoms go through a “cold nipple”, an

intermediate chamber (region “B”), and the Zeeman slower, and arrive at the main chamber

(region “C”).

In the Zeeman slower, atoms with initial speeds below a certain value (about 200 m/s)

are slowed down by continuously scattering photons from a counter-propagating laser
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Figure 2.1: Overview of the apparatus: (a) the vacuum design diagram: including the
cesium source and oven (“A”), the intermediate region (“B”), and the UHV region (“C”)
(b) a picture of the actual setup, taken in 2007/09. (c) a second picture near the main
chamber. The photos were taken by the author of this thesis.

beam; their longitudinal speeds are reduced to 50 m/s as they go through the Zeeman

slower. Those atoms then enter the main chamber and are captured by the magneto-optical

trap (MOT). In the MOT stage, atoms are cooled and trapped by three pairs of counter-

propagating lasers together with a quadrupole magnetic field gradient. At the end of the

MOT stage, atoms are first compressed by an increased magnetic gradient [24], and then

cooled further by optical molasses (with increased frequency detuning and zero magnetic

field and gradient). With 2 seconds of MOT loading followed by 32 ms of compressed
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MOT and 3 ms of optical molasses cooling, we can have about 5× 107 atoms with a peak

spatial density of 1011 cm−3 and a temperature of 10 µK. These atoms are subsequently

cooled by a sub-Doppler cooling scheme, the Raman-sideband cooling (RSC), and reach

a much colder temperature. We perform multiple Raman-sideband cooling to assist the

loading of atoms into a conservative potential (the optical dipole trap), wait 0.5 second for

self-evaporation, and can have about 107 atoms with 1 µK temperature in the dipole trap.

To further increase the atomic phase space density towards quantum degeneracy, we per-

form forced evaporative cooling by reducing the depth of the dipole trap. We can reduce

the atomic temperatures to below 100 nK, enhance the spatial density, and achieve Bose-

Einstein condensate (BEC). These sequences are summarized in Table 2.1, where nmax is

the peak density and φmax is the peak phase space density.

Table 2.1: Experimental sequences in producing a Bose-Einstein condensate
Experimental stage Temperature / nmax φmax Atom number

atomic speed (cm−3)
after stage

cesium source 330 K 9× 1011 5× 10−16 NA
Zeeman slower 50 m/s NA NA NA
MOT and molasses 10 µK 1011 1× 10−5 5× 107

RSC-assited 1 µK 1012 3× 10−3 107

dipole trap loading
Forced evaporation to BEC ≤ 100 nK 1013 > 1 104 to 105

2.1.2 Vacuum system

In designing our vacuum system, we have two primary goals: to achieve ultrahigh vacuum

(UHV) in the main chamber, and to have good optical accesses. As shown in Fig. 2.1, our

vacuum system has three regions: (A) the low vacuum region containing the cesium source

and oven, (B) the intermediate region, and (C) the UHV region including the main cham-
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Figure 2.2: The cesium oven. The source is on the opposite side and not seen in the picture.
To ensure good electrical insulation, we use heavy insulated heating tapes (made by Omega
Engineering). The photo was taken by the author of this thesis.

ber. The typical pressures in these regions are (A) 10−5 to 10−4 torr (primarily contributed

by the cesium vapor pressure at oven temperature 60 ∼ 70 °C), (B) below 10−9 torr, and

(C) below 10−11 torr.

A. The cesium source and oven

Atoms come from a source tube containing five grams of cesium (SIGMA-ALDRICH,

239240-5G). The source and oven need to be designed with care. Firstly, because cesium

is chemically active and can attack normal glass-to-metal transitions (made of lead alloy),

we chose a custom-made source tube (MDC 463000-1000) consisting of a Pyrex tube and

a stainless steel (SST) adapter which are directly connected together without introducing

a third type of material for the Pyrex-to-SST transition. Secondly, because cesium attacks
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Figure 2.3: Schematic of the cold nipple. The nipple is cooled by a thermoelectric cooler
(backed up by water cooling) to about 0 °C, and connects to a flange with a small central
aperture (2 mm in diameter) on each end.

the Viton or Kalrez seals (O-rings) of some vacuum valves, we used exclusively all-metal

valves (VAT 54024-GE02) in the oven region. Thirdly, to ensure safety in heating up the

oven, we used exclusively heating tapes with heavy electrical insulation instead of those

with normal insulation. In addition, a timer (Intermatic TN311C) was used to automatically

turn on the power supply (Variac) for the source or oven heating every morning and turn it

off every night, saving us 1.5 hours warm-up time every day.

To provide sufficient atomic flux, the source tube is heated to 60 °C, providing a vapor

pressure of about 3 × 10−5 torr. To prevent cesiums from depositing on the inner oven

surface, the oven is heated to slightly higher temperatures (about 70 °C) and the viewport

on the oven has the highest temperature. At the same time, to maintain a much lower pres-

sure in downstream regions (slightly above 80 °C), a “cold nipple” is placed between the

oven and the intermediate chamber, see Fig. 2.1 and 2.2. As shown in Fig. 2.3, the nipple is
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cooled by a thermoelectric cooler (backed up by water cooling) to about 0 °C, and connects

to a flange with a small central aperture (2 mm in diameter) on each end. The apertures

only allows atoms whose velocities point to the chamber to pass. Other atoms will hit the

wall and stick, reducing the background vapor pressure to 9× 10−8 torr.

B. The intermediate chamber

The cold nipple is connected to a gate valve and then to the intermediate chamber (re-

gion B in Fig. 2.1). This chamber is constantly pumped by an ion pump (Gamma Vacuum

40S-CV-2D-SC-N-N, 40 liters/second) and has a pressure below 10−9 torr. A wobble-stick

is fed through the chamber and can be used to block the atom flux when needed.

Zeeman slower

A Zeeman slower tube (7 mm in inner diameter, 40 cm in length) is connected between the

intermediate chamber and the main chamber (under UHV), and has a vacuum conductance

of 0.06 liter/second. For a pressure of 1 × 10−9 torr in the intermediate chamber, the gas

flow (throughput) into the main chamber is 6×10−11 torr·liter/second, and the caused pres-

sure increase is 6 × 10−13 torr (very small and negligible) for a main chamber ion pump

with 100 liters/second pumping rate.

C. UHV in the main chamber

The main chamber (Kimball physics, MCF600-SO200800) is the most important vac-

uum component where the experiments are performed. It is pumped by an ion pump

(Gamma Vacuum, 100L-DI-6D-SC-US110-N) with a large pumping rate (100 liters/second).

In addition, a Titanium sublimation pump (Gamma Vacuum, 360043) is connected to pro-

vide extra pumping power. To reach the typical pressure (below 1×10−11 torr), care needs

to be taken in multiple bakings of the system.
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Pumping down and baking the system

Before assembling the vacuum system, the vacuum components need to be carefully cleaned.

Most stainless steel components (without delicate structures) are cleaned with an ultrasonic

cleaner (filled with water and Alconox detergent), then rinsed with ethanol or acetone, and

finally blew dry by the nitrogen gas or dry air supplied by the lab building. Other parts like

all-metal vacuum valves and ion pump tubes are simply rinsed by ethanol or acetone and

blew dry. Viewports are the most delicate parts in the vacuum system and are cleaned by

lens tissues and isopropyl alcohol in the usual way of cleaning optics.

Here for cleaning the viewports, we need to be very careful never to immerse the assem-

bly in an aqueous environment because there is a risk of setting up galvanic corrosion with

the diffusion bond (suggested by the viewport manufacturer UKAEA Special Techniques),

and never to blow a viewport with a lot of cleaning liquid on it because there is a risk of

violating the maximum heating/cooling rate of the viewport and causing severe leaks in

the glass-to-metal transition. Once the vacuum system is assembled, we leak-check each

component using a leak detector (Adixen ASM142) based on helium.

To further clean the vacuum system, multiple baking steps were carried out to accelerate

the outgassing from the inner surfaces and remove the gases by pumping. Firstly, once the

main chamber and all other UHV components were pre-assembled (without putting on any

viewports and with the magnet removed for the ion pump), they were baked under high

temperatures (about 370 °C maximum) for 8 days (2006/07/23 to 2006/07/31) and pumped

by a turbo pump (Drytel 1025) throughout the process, in order to remove light atoms

such as hydrogen from the inner surfaces. Secondly, the intermediate region (from the

gate valve to the Zeeman slower) was separately baked under relatively low temperatures

(190 °C maximum) for 11 days to remove water. Thirdly, after the whole system was

assembled, we baked it under low temperature (195 °C maximum) for 13 days (2007/03/03
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Figure 2.4: Record of the final low-temperature baking. The average of four sampled
temperatures (two on the main chamber and two near the Zeeman slower) was shown as the
thick red line, with a peak value of 177°C. The absolute maximum temperature was 195°C
reached at one point on the main chamber. The pressure read by the UHV24p gauge (black
solid) decreased by a factor of 100 when the system was fully cooled down, showing the
baking worked well. The other two pressures are the readings of main chamber ion pump
(squares) and the intermediate ion pumps (triangles); both readings are limited by the pump
resolution of 1× 10−10 torr.

to 2007/03/16) to remove water.

Figure 2.4 shows the evolution of pressure readings during the baking. In the final

baking, the pressure readings in the UHV and intermediate regions started with 3 × 10−9

and 1× 10−9 torr at room temperature, reached peak values of 5× 10−7 and 3× 10−7 torr

when the system was heated up, decreased by a factor of 10 after 1.5 days, and decreased

by another factor of 4 after another 11 days before we cooled down the system. When the

system is fully cooled down, we observe a pressure of 4×10−11 torr using a vacuum gauge

(Varian UHV24p). Moreover, this reading was later found to be an overestimation because
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the gauge controller was too warm. After we removed the controller cover to provide more

air cooling, we observed a gauge reading of less than 3×10−12 torr. Considering the fairly

good vacuum conductance between the gauge and the main chamber, we concluded that

the pressure in the chamber was below 1 × 10−11 torr. Thus the baking performance was

very good.

One year after the apparatus started operating, the intermediate region had a low pres-

sure reading of less than 3× 10−10 torr. However, this reading grew slowly over time, and

was 100 times larger at the time of this writing (December 2011) than its early value (in

2007 and 2008). However, we didn’t observe any evidence of degraded vacuum limiting

the experiment (each cycle took 6 to 10 seconds) in the main chamber. We did observe

the apparent pressure reading in the intermediate chamber decreased after we replaced the

high voltage cable between the ion pump and its controller, or simply after we turned off

and restarted the high voltage. Thus the apparent pressure reading increase can be related

to a leakage current between the ion pump electrodes.

After baking the intermediate and UHV regions, we also baked the source tube and

oven region before and after adding cesium. In these bakings, the oven was heated up to

150 °C and was pumped at its roughing port by a turbo pump (Alcatel Drytel 1025); the

cold finger region was heated (instead of being cooled) by reversing the current in the TE

cooler. The gate valve was closed in these bakings to protect the high-vacuum regions.

Enhanced optical access in the main chamber design

We design the main chamber to have a pair of recessed viewports (the top and bottom

viewports). The inner surfaces of both viewports are very close (13.6 mm) to the chamber

center (position of atoms), providing enhanced numerical aperture which is essential for

high-resolution imaging, see Fig. 2.5. (Also see Fig. 2.15 in section 2.3.4 for a schematic

of the vertical imaging setup making use of the enhanced numerical aperture.) Besides,
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Figure 2.5: Enhanced optical access in the main chamber design.

eight additional 1 − 1/3 inch viewports are welded to the eight custom designed ports on

the chamber to further increase the optical access.

2.1.3 Diode lasers

Several laser cooling and trapping stages happen before the forced evaporation: Zeeman

slowing, magneto-optical trapping (MOT), molasses cooling, and the subsequent Raman-

sideband cooling (RSC). Five diode lasers are built for these stages: “reference”, “MOT”,

“Repumper”, “RSC master” and “RSC slave”. The first four are grating-feedback to deliver

laser beams with stable frequencies (Fig. 2.6a) and moderate power. The fifth laser (RSC
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Figure 2.6: Home-built diode lasers. (a) A diode laser with grating feedback. The beam
comes out of the laser diode, gets diffracted by the grating, comes out of the box, and is
reflected into the desired direction by a mirror. (b) A diode laser without grating feedback
(free-running). The output beam from the laser diode directly come comes out of the box.
(c) Optics near the master and slave lasers for Raman-sideband cooling. The photos were
taken by the author of this thesis.

slave, see Fig. 2.6b) doesn’t have a grating and is designed to be injection-locked by the

RSC master to give sufficient output power.

As shown in Fig. 2.7, the reference laser frequency is locked to +320 MHz with respect

to the F = 4 → F ′ = 5 transition based on polarization spectroscopy. The MOT and Re-

pumper laser frequencies are locked close to the F = 4 → F ′ = 5 and F = 3 → F ′ = 4

transitions, respectively, based on the beat-note between each laser and the reference laser.

These two lasers, MOT and Repumper, are needed in the Zeeman slowing, MOT, and mo-

lasses cooling stages. After the molasses stage, we need one more pair of lasers to do the
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Figure 2.7: Illustration of the cesium D2 transition hyperfine structure and the diode laser
frequencies.

Raman-sideband cooling: the RSC master laser is free-running at -20 GHz with respect to

the F = 3 to F ′ = 4 transition (see Fig. 2.7). In Table 2.2 (see Ref. [25] for details), we

summarize the laser frequencies in different experimental stages.

The RSC slave laser is injection-locked by the master. As shown in Fig. 2.6c, after each

laser comes out of the laser box (with a 3 to 1 aspect ratio and a vertical polarization), it

goes through a pair of prisms to make the profile round, and then goes through an optical

isolator. The isolator for RSC slave has a side escape window on the output side; two weak

18



beams comes out of this window. The injection lock is done by first aligning the RSC

master beam (with a few mW power) to counter-propagate with the beam coming out of

the escape window with a larger bending angle, and then fine tuning the alignment until the

slave laser mode totally follow that of the master. We find the slave laser can be injection

locked within a current range of ±3 mA at a center current of about 140 mA.

After the optical isolator, the slave laser goes through an AOM, a mechanical shutter,

and is guided to a second optical table by optical fiber. The injection-locked slave laser has

a very good beam profile, and can have better than 80% coupling efficiency into the fiber,

with a total power of 70 mW. Note that the injection affects the slave laser beam profile, and

we need to re-optimize the fiber coupling efficiency every time the master laser frequency

is changed.

Table 2.2: Diode laser frequencies in different cooling and imaging stages.
Diode laser Experiment stage Reference transition Detuning
“MOT” Zeeman slowing (ZS) F = 4→ F ′ = 5 -93 MHz
“Repumper” ZS F = 3→ F ′ = 4 -91 MHz
“MOT” MOT F = 4→ F ′ = 5 -14 MHz
“Repumper” MOT F = 3→ F ′ = 4 -11 MHz
“MOT” Compressed MOT F = 4→ F ′ = 5 -26 MHz
“MOT” Molasses F = 4→ F ′ = 5 -106 MHz
Optical pumping beam RSC F = 3→ F ′ = 2 +6 MHz
Depumping beam RSC F = 4→ F ′ = 4 +6 MHz
“MOT” Horizontal imaing F = 4→ F ′ = 5 0
“Repumper” Horizontal imaging F = 3→ F ′ = 4 0
“MOT” Vertical imaging F = 4→ F ′ = 5 +26 MHz
“Repumper” Vertical imaging F = 3→ F ′ = 4 +37 MHz
RSC master/slave RSC F = 3→ F ′ = 4 -23 GHz

The tapered amplifier

To obtain more power, we inject a commercial tapered amplifier (Sacher TEC400) with a

seed beam combining parts of the MOT (20 milliWatt) and Repumper lasers (1 milliWatt).

To get a longer lifetime for the amplifier, we operate it at a current (1.5 A) smaller than
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the maximum value (slightly larger than 2 A). Because the output profile of the amplifier

actually has a double-peak structure which is elongated along the two peaks, we use a prism

pair to make the overall profile more round, and optimize the total coupling efficiency of

both peaks into a fiber. The best efficiency is about 40%. Here we tune the pointing of the

seed beam that injects the amplifier, such that the two peaks contain comparable power; this

strategy, instead of distributing most power into one peak, might help extend the lifetime

of the amplifier (which has lasted for 5.5 years without showing signs of degrading) [26].

Note that our imaging beams comes directly from the MOT laser, not the amplifier,

because the amplifier output might have a broad background at all frequencies, which is

bad for imaging.

2.1.4 Magnetic coils

Three sets of coils are built for stable and precise control of magnetic fields and gradi-

ents: (A) the Zeeman slower coils, (B) the main coils, and (C) the X/Y/Z compensating

coils. In this section, we summarize the setup of each set and describe the corresponding

experimental stages.

Zeeman slower coils

In the Zeeman slower, atoms are slowed down by resonantly scattering photons from a

counter-propagating laser beam during their traveling inside the slower tube. We design

the Zeeman slower coil such that the laser frequency seen by atoms is always on resonance

with respect to the |4, 4 >→ |5′, 5′ > transition based on a combination of Zeeman shift,

Doppler shift, and the laser detuning. Here we summarize the main results in the following

paragraph. The design and test of the Zeeman slower coils are described in details in

Ref. [27].

As described in a previous section, the Zeeman slower vacuum tube (7mm in inner
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diameter, 40 cm in length) connects the intermediate chamber and the main chamber (see

Fig. 2.1a, between regions B and C). Five sections of coils, made of square magnet wires

(2 mm in diameter), are wound onto the vacuum tube. A bias coil (a solenoid) is first wound

onto the tube, and four sections of coils are then wound on top of the bias coil (section 1,

2, 3, 4 starting from the farthest to the chamber center), with a tapered profile that has a

minimum between section 2 and 3. Applied currents are 0, 1.2, -1.0, -0.91, and 3.4 A for

sections 1 to 4 and the bias coil, respectively. These coils are air-cooled. We find the MOT

has a 30% better loading rate when the axial field gradient in the Zeeman slower is arranged

to be opposite to the quadrupole gradient at the chamber center (contributed by the main

coil). In this configuration, we achieve a velocity range of 50 to 205 m/s for slowing and

an atomic flux of 8× 108 s−1 in the MOT capture range.

Main coils

The main coils are a pair of coils close to the chamber. The coils are made of 35 (bottom

coil) to 36 (upper coil) turns square magnet wires (1.93 mm in diameter, AWG 13, from

MWS wire industries) and are filled with high-strength epoxy (Stycast 2850 FT Black +

Catalyst 23 LV). Each coil have inner and outer radii of 23.7 mm and 35.8 mm and 12.1 mm

vertical thickness, and the pair is separated by 33.2 mm (measured from inner surfaces).

Each coil is fixed to a polycarbonate mount by the same epoxy; the coil is close to but has

no direct contact with the main chamber. The main coils can produce a magnetic field of

B = Ī/amp× 6.7 gauss in the Helmholtz configuration, and can produce a magnetic field

gradient of B′ = 1.6 gauss/cm ×∆I/amp, where Ī and ∆I are the mean and difference

of the two coil currents.

Before we achieved a cesium BEC, the main coil currents were controlled by unipolar

current sources. The resulting magnetic field gradient could change its polarity, but the

field could not. This limitation didn’t prevent us from achieving BECs, but did cause
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inconvenience for subsequent experiments. We later replaced this first controller by a new,

bi-polar, and faster controller (described in a later section).

Because we typically work with 10 A or smaller currents, the main coils are designed

to be air-cooled. However, in order to prevent overheating the coils, one needs to avoid

running the coils continuously with 10 A currents (roughly corresponding to a magnetic

gradient fully levitating the |F = 3,mF = 3 > atoms in the anti-Helmholtz configuration,

or a magnetic field of 67 gausses in the Helmholtz configuration). To provide both a levi-

tating gradient and an upward magnetic field, the coils are in a superposition of Helmholtz

and anti-Helmholtz configurations, and the upper coil has a larger current. Indeed, in a re-

cent upgrade of the imaging system, we noticed that the polycarbonate mount for the upper

coil were slightly distorted after five years of running experiments. This distortion might

be either due to the normal heating from the upper coil over a long time, or due to some

accidental overheating of the coil. In retrospect, G10 epoxy glass might be a better material

for making the coil mount.

Compensating coils

The compensating coils are three pair of Helmholtz coils near the chamber. The X and Y

coils are rectangular coils (50 turns, 9.5 inches × 4.4 inches for X, and 70 turns, 6.2 inches

× 4.4 inches for Y), and Z coils are round coils (50 turns, 3.1 inches radius, and 3.4

inch apart from center to center) wound on the main chamber top and bottom flanges.

The coils are made of round magnet wire (AWG 22.5, from MWS wire industries), and

can produce uniform magnetic fields at the chamber center: BX = 2.1 gauss × ĪX ,

BY = 1.9 gauss × ĪY , and BZ = 5.9 gauss × ĪZ . Because the typical currents in the

coils are small, the coils are air-cooled.

Other coils
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After achieving cesium BECs, we made another large coil for cancelling the fluctuation of

stray magnetic field that is almost spatially uniform, see section 2.2.5.

2.1.5 Optical dipole trapping

In order to reach quantum degeneracy, atoms need to be evaporatively cooled in a conser-

vative trap after the optical cooling. Because cesium atoms at the lowest-energy ground

state |F = 3,mF = 3 > are not magnetically trappable, we need to trap them in optical

dipole traps based on high-power lasers with large frequency detunings. For a 1064 nm

laser (far from the cesium D2 line, 852 nm, and D1 line, 894 nm), the trapping potential U

depends on the laser intensity I and detuning δ:

U =
∑

i=D1,D2

pi
hγi
8

I/Isat,i

δi/γi
(2.1)

where pD1
= 1/3, pD2

= 2/3, δi and γi are the frequency detunings and transition

linewidths, Isat,i = 2π2

3 hcγi/λ
3
i are the saturation intensities, λi is the wavelength, h is the

Planck constant, and c is the speed of light. Numerically we have |U | = kB × 2.34 pK ×
I

1mW/cm2 , where kB is the Boltzmann constant. In the early design before we achieved

BEC, we simply have two 1064 nm beams (in X and Y directions) crossing at the atoms

and forming a crossed dipole trap. Each beam has a 1/e2 radius of about 300 µm.

In this period, the dipole trapping laser came from a 20-Watt IPG fiber laser (YLR-

20-1064-LP-SF, single frequency, single mode), and we controlled the light intensity by

acousto-optic modulators (AOMs). Here I have several remarks:

• It is important to have a single-frequency high-power laser for setting up the dipole

trap. If a multi-frequency laser is used to set up a crossed dipole trap, the polariza-

tions of the two beams need to be perpendicular to each other in order to minimize

23



atomic loss and depolarization.

• The IPG fiber laser we bought in early 2007 had an average break-down rate of once

per year, which severely slowed down our experiment. Thus we later switched to

another laser with similar maximum power (Innolight Mephisto MOPA 18E, S/N

1866). The new laser has worked reliably for more than two years since November,

2011.

• The AOMs we used in this period (Isomet 1201E-2, for 1064 nm) were rather slow

but did not limit the evaporative cooling to BEC, so we only replaced them with

faster ones much later. Similarly, we didn’t lock the light intensities and relied on the

AOMs’ own stability of diffraction efficiencies.

2.1.6 Computer control

In the cesium experiment, we have two computers (PC): “Dimer” and “Quatromer”. Dimer

has four PCI-boards from National Instrument to generate analog and digital (“TTL”) out-

put voltages: (1) a 32-channel, 20 MHz digital I/O board (PCI-6534) with 5V TTL signals;

(2) two 8-channel (1 MS/s per channel), 12-bit analog I/O boards (PCI-6713), whose volt-

age resolution is (10 V− (−10) V )/212 = 4.8828 mV. (Both boards are triggered by chan-

nel 1 of the digital board); (3) one 32-channel (45 kS/s per channel), 13-bit analog output

board (PCI-6723), whose resolution is 2.4414 mV. (This board is triggered by channel 2 of

the digital board.

We use Dimer to control the experimental sequence and use Quatromer to connect to

the CCD camera and collect images. Dimer runs a experimental control program (home-

written in Labview) which use digital channels to trigger the instruments (CCD cameras,

arbitrary function generators, shutters, and so on) and use analog channels to provide quan-

titative control voltages between -10 V and 10 V. The program first collects all the update
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edges and calculates a matrix (with respect to time and channel number) for the updates of

all channels, and then executes the update matrix. Due to the slow speed of calculations

in Labview, it takes about 4 seconds to calculate the update matrix, which is comparable

to our typical experimental time. Because our experimental cycle is fairly short, we are

not limited by this 4 s calculation time; at the same time, it is possible to rewrite the ma-

jor matrix calculations in much more efficient programming languages such as C, IDL, or

Matlab.

Due to the limited PCI data transfer rate, our update size cannot exceed the on-board

FIFO memories, or the experiment might encounter interruptions. This constraint doesn’t

limit our experiment sequence where there are relatively few ramping processes. At the

same time, newer boards based on PCI express, PXI bus have faster data transfer rate

and can alleviate this limitation. Field-programmable gate array (FPGA) provides another

promising choice in the computer control of experimental sequences.

We use Quatromer to connect to the CCD camera using a home-written Labview pro-

gram. At the end of each experimental cycle, Dimer sends a signal to Quatromer; once

receiving the signal, Quatromer will collect the image from CCD camera, save the data if

asked to, and perform realtime image analyses, and in the end send back a signal to Dimer

for it to start a new cycle. The complex realtime image analyses are performed not using

Labview but using the more efficient IDL via an IDL-to-Labview tunnel. It is also possible,

in fact worthwhile to write the entire camera control program in non-Labview languages

such as Matlab, because Labview is not designed for command-line programming (which

is very important for writing complex analysis programs).
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Figure 2.8: Viewports with different glass-to-metal transition (“the seal”) status. (a) Left: a
severely leaking top viewport; right: a new viewport (by Special Techniques) after coating.
The seal of the new viewport is silver and shiny, while the seal of the leaking viewport is
black, has multiple defects, and is not shiny at all. (b) The viewport in the oven region. The
seal on the atmosphere side is in good shape, but the seal on the vacuum side is granular
and has many defects, which might be caused by the attack of cesium (with 10−4 ∼ 10−5

high vapor pressure) in the oven. The photos were taken by the author of this thesis.

2.1.7 Lessons I learned in building the cesium BEC apparatus

While many tasks needed to be accomplished in building a BEC apparatus, some tasks did

require much more care than others, and our progress was limited by the few mistakes we

made. In retrospect, the most important task in the pre-condensate stage is to achieve UHV

in the main chamber and maintain it. In 2006/08, we made severe mistakes in cleaning the

viewports, violating the maximum cooling rate by more than 100 times1. This single event

caused a huge vacuum failure in 2006/10 and stopped our experiment for four months.

From this, we learned the lesson that the viewports are the most fragile parts of the vacuum

1. When we cleaned the viewports, we put a lot of acetone onto the viewport (including the glass-to-metal
transition, and then used an air-gun to blow the acetone away. The original purpose was to remove all the
acetone without leaving any residue, but this blowing cooled down the glass-to-metal transition way faster
than the allowed rate, which is likely the primary reason that many viewports leaked later.)
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system, and it is very essential to collect standard cleaning and baking procedures from

multiple direct manufacturers of the viewports. We also learned that even if we get the

standard procedures, it is necessary to first try them on a sample piece before applying

them to all viewports. After the vacuum failure, we followed both lessons and succeeded

in achieving ultra-high vacuum in the main chamber in 2007/03, and achieved BEC half a

year later. Fig. 2.8a shows a comparison between a severely leaking viewport and a newly

coated viewport; the major difference is in the glass-to-metal transition regions.

In addition, we have one viewport in the oven region. This viewport was originally

put in to ease the alignment of the Zeeman slower beam. However, later we found the

alignment was fairly straightforward, but the viewport started to show degraded glass-to-

metal transition in the vacuum side (see Fig. 2.8b). This is likely due to the repeated attack

from the cesium in the oven. In retrospect, we should have put in a blank flange at this

position instead of a viewport.

2.2 In situ imaging of 2D atomic gases in 2D optical lattices

After achieving a cesium BEC and investigating a fast evaporation based on tilting the

dipole trap [28], our physics goal turns to studying cold atoms in 2D optical lattices based

on in situ imaging. Towards this goal, we changed the apparatus in various aspects: (1)

set up a pancake-like dipole trap, (2) set up 2D optical lattices, (3) build a fast, bipolar

current controller for tuning the magnetic field, (4) build a stray-field canceler to stabilize

the magnetic field to milligauss precision, and a number of other improvements.

2.2.1 Setting up a pancake-like dipole trap

We produce a pancake-like dipole trap (“the light sheet”) with tighter confinement in the

vertical directions by shooting an additional elliptical laser beam through the crossed dipole
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trap. The light sheet was at first produced by a high-power CO2 laser beam (10.6 µm) and

corresponded to a compressed BEC with 5 to 1 aspect ratio (horizontal to vertical). Later

the CO2 beam was replaced by a 1064 nm beam from the same source as that of the X and

Y dipole beams, because the intensity of a CO2 laser is much harder to lock than that of a

1064 nm laser.

In the present setup, the light sheet beam comes out of an optical fiber with a 4.0 mm

focal length collimator, passes through a cylindrical lens (25 mm) that focuses the beam

vertically, and then goes through a telescope (100 mm to 125 mm) before it reaches the

atoms. This results in a horizontal 1/e2 radius of 270 µm and a vertical radius of 45 µm.

Using less than 1 Watt of power out of the fiber, the light sheet can provide a vertical

trapping frequency of about 100 Hz when the gravity is cancelled by a magnetic levitating

force. This frequency becomes about 60 Hz (still more than 50% of the maximum trapping

frequency) at the end of evaporative cooling where the magnetic gradient is turned off and

the trap depth greatly decreases due to gravity.

2.2.2 Setting up 2D optical lattices

We produce a 2D optical lattice by retro-reflecting the two horizontal dipole beams in the

X and Y directions. As shown in Fig. 2.9, each incident dipole beam goes through the

atoms, passes through a pair of AOMs, get reflected by a final mirror, and comes back

through the AOM pair again before it re-enters the chamber. Here the two AOMs are

driven by radio frequency waves from the same source, leading to zero total frequency

shift and twice the total diffraction angle. This enables us to produce a lattice potential

with continuously controllable strength. We can get about 50% max total diffraction effi-

ciency when the light double-passes two AOMs (sufficient to produce most lattice depths

needed experimentally), and can dynamically control the retro-reflected light intensity over

28



Figure 2.9: The dipole trapping and optical lattice beams setup. Here we provide the
schematics for two dipole trapping beams in the X and Y directions. Each dipole trapping
beam is retroreflected to form an optical lattice.

more than five orders of magnitude. As the diffraction efficiency is optimized, the retro-

reflected beam automatically overlaps with the incident beam, avoiding the usual challenge

of overlapping the dipole beam with a completely separate lattice beam. Slowly turning up

the retro-reflected power thus converts a dipole trap into an optical lattice with only slightly

increased envelope trapping frequency.

In designing the optical lattice setup, we have considered and disregarded two possible

configurations:

• Use a single AOM for each retro-reflection path. Here in order to let the beam ex-
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perience opposite frequency shifts when it passes the AOM for the first and second

time, the AOM must be imaged by a lens onto the final retro-reflecting mirror (via

2f -to-2f imaging, where the AOM and retro-mirror are both twice the focal length

from the lens). In this configuration, however, it is difficult to separate the diffracted,

retro-reflected beam from the incident zeroth-order beam. Thus the design fails.

• Use two AOMs for each retro-reflection path, and place the two AOMs to be per-

pendicular to each other, such that the diffractions happen in horizontal and verti-

cal directions, respectively. This design is excellent in separating all the diffraction

orders, but causes unnecessary inconvenience in dumping the unwanted diffraction

orders. Therefore, we choose the present design described above: in a single pass

of the two AOMs, the incident beam is bent twice horizontally in the same angular

direction, and is frequency-shifted upward once and downward once such that the

total frequency change is zero.

To provide further stability in alignments of the retro beams, lenses are included to

image the atoms onto the retro-mirror, such that even if the incident beam has some fluctu-

ations in its pointing direction, the retro-reflected beam will still pass through the atoms. A

picture of the actual Y-lattice beam setup is provided in Fig. 2.10.

2.2.3 Building a fast, bipolar current source for the main coils.

We built bipolar current sources for both upper and lower main coils. As shown in Fig. 2.11,

the current in each coil, Icoil, can be bipolar because it is provided not by one unipolar

source, but by the difference between two independent unipolar sources I1 and I2: Icoil =

I1 − I2. Here both I1 and I2 has a finite bias current (about 10 amp) to ensure the tuning

range of Icoil.

Each unipolar current source consists of a small-signal FET QA and a high-power FET

30



Figure 2.10: We show the actual optics for the Y-lattice beam path after the main chamber,
with the beam path and key components highlighted. The photo was taken by the author of
this thesis.

QB . The two FETs have similar shapes of I-V characteristic (with different proportionality

constants), and share the same control voltage. Thus the total current output Ii = Ii,A+Ii,B

can be controlled by the relatively low current Ii,A with good linearity.

While the current in the coil can switch off fast (switch-off slew rate limited by the

breakdown voltage of the high-power FET), it switches on with a much slower rate (limited

by the available supply voltage). To boost the switch-on slew rate, one introduces two

changes. Firstly, always ask I1 and I2 to have the same bias current Ib, such that their

changes are symmetric (if one increases, the other must decrease): I1 = Ib + Icoil/2 and

I2 = Ib − Icoil/2. Thus either I1 or I2 will be decreasing and have a fast switching

rate. Secondly, add two transformers (whose cores are shown in orange in Fig. 2.11) into

the circuit, such that the faster switching side (say, it is the I2 side) will generate a large
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Figure 2.11: Illustration of the fast bipolar current source. The two “Vs”s represent two
high-current (8 V, 50 A) power supplies, the two V’s are the ±24 V linear power supplies,
the black cylinder is one of the main coils, the blue cylinders (T1, T1’, T2, and T2’) with
different lengths are transformer coils, and the orange doughnut-shaped objects are the
toroidal cores (made of ferrite) for the transformers.

transient voltage in coil T2, which in turn will transmit the large voltage to T ′2 such that the

current in T ′2 can change fast. At the same time, note that T ′1 is in series with T ′2 and will

now have a similar fast current switch, which again transmits the large transient voltage

to T1 and enables I1 to switch fast. In the end, the main coil current Icoil = I1 − I2

can switch fast. The above qualitative picture is confirmed by actual measurement. With

the transformer method, a typical improvement of 25 in the switch-on slew rate can be

achieved [29].

2.2.4 Building bipolar current sources for the compensating coils

Until the middle of 2008, we used an old current source for compensating coils. This

source had limited current range, a complicated crossover behavior when the current passes

zero, and a rather slow speed. We built new bipolar current sources based on high-power

operational amplifiers (op amp, APEX PA12). As shown in Fig. 2.12, the coil current Icoil
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Figure 2.12: Illustration of a bipolar current source for compensating coils. Icoil ≈ I =
(V+ − V−)/R1. The circuit uses feed-forward (via V−) to the Howland current source to
finish most of the desired current change with a fairly high bandwidth based on the high-
power op amp, and uses feedback from a sensing resistor to maintain accuracy.

is provided via the current I through a 2 ohm resistor in a Howland-type current source:

Icoil ≈ I = (V+−V−)/R1. The circuit uses feed-forward (via V−) to the Howland current

source to finish most of the desired current change with a fairly high bandwidth based on

the high-power op amp, and uses feedback from a sensing resistor to maintain accuracy.

The advantage is an inherent bi-polar current source without crossover problems.

33



2.2.5 Building a stray magnetic field canceller to eliminate the almost

spatially uniform magnetic field fluctuations

To study some of the narrow Feshbach resonances of cesium, we need to stabilize the

magnetic field to milligauss (mG) precision. Because our lab is close to the two building

elevators, we check and find a 14 mG fluctuation as the two elevators go up and down

based on measurements using a Fluxgate magnetometer (Applied physics systems, model

534, with 4.00V/gauss). To cancel this fluctuation via feedback, we need to make sure the

error signal (based on the fluxgate reading) is insensitive to our own tuning of the magnetic

field and gradient via the main and compensating coils. Firstly, we carefully chose the

position and orientation of the fluxgate, such that it sits where the main coil field line is

horizontal and its reading for vertical field (Bz) is insensitive to the magnetic field due

to the main coil (variation within 1 mG when the main coil field changes by more than

60 gauss). Secondly, we check the dependence of the fluxgate Bz reading on all other PC

control voltages, find two of them (the main coil magnetic gradient and the compensation

field in Y direction), and add them (with proper linear weight) to the fluxgate Bz reading

to obtain the real error signal. We also attenuate the intrinsic high-frequency oscillation (at

about 7 kHz) using a low-pass filter before summing up the voltages. Thirdly, we build a

large square coil above the chamber (10 turns, 41 cm above the atoms, 145 cm×118 cm,

providing 0.056 gauss/amp). Lastly, we feedback to the coil current according to the error

signal, and eliminate the almost uniform stray field fluctuation to better than 1 mG.

2.2.6 Finding the missing pieces

In 2008/09 to 2009/01, we already loaded a BEC into 2D optical lattices, but didn’t see

a clear signature of Mott insulating domains, likely because the vertical confinement is

still too weak. Qualitatively, with a vertical trap frequency of 60 Hz, one site in a 2D op-
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tical lattice acts like a 1D tube; atoms on the same site can largely avoid each other by

being at different positions along the tube, thus reducing the effective on-site repulsive in-

teraction and preventing the superfluid-to-Mott insulator transition. We decided to further

compress the BEC by loading it into a single site of a vertical lattice. Besides, in order

to minimize the atomic loss, we chose to perform imaging at high magnetic field (about

18 gauss). These two experimental procedures provided the last two pieces that fit the big

picture, and enabled us to perform a number of experiments based on in situ absorption

imaging [30, 31, 32].

Further compress the atoms vertically

We further compress the atoms by introducing a one-dimensional lattice in the vertical di-

rection and compressing the pancake-like BEC (formed in the light sheet) into one single

site of the vertical lattice. As shown in Fig. 2.13, the vertical lattice is formed by intersect-

ing two beams (±8 degrees with respect to the horizontal plane) at the atoms, and has a

spacing of 3.8 µm.

The vertical lattice beams come from a separate laser (Innolight Mephisto NPRO,

model number M2000NE, S/N 1796) with 2 Watt output at 1064 nm. We couple the beam

into an optical fiber and can have 1.1 Watt out of the fiber. The beam goes through a col-

limator (an aspheric lens with 4mm focal length), and is then split into two beams (upper

and lower) by a YVO4 Wollaston polarizer (Day Optics PWS8010, with 10mm aperture).

The two beams go through a telescope (100 mm to 125 mm, the same one for the vertical

light sheet) and cross at the atoms. The polarization of the lower beam is rotated to be

vertical, the same as that of the upper beam, such that the two beams interfere at the atoms.

This produces a vertical confinement frequency of 850 Hz, which already corresponds to a

trap aspect ratio of 85 to 1 and enables the 2D experiments. Later, to compress the cloud

even more, we shape the vertical lattice beam to have a smaller vertical size at the atoms
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Figure 2.13: Illustration of the optical trap setup.

by including two cylindrical lenses (a 100 mm lens before the Wollaston polarizer and an

80 mm lens closely after the Wollaston polarizer).

Image at high magnetic field

When we switched the magnetic field value to near zero, where the scattering length a is

large and negative (a < −2000a0), the atomic loss rate is substantial for the typical atomic

density inside optical lattices. To minimize this effect, we chose to perform in situ imaging

near a magnetic field of 17.6 gauss where the scattering length is small and positive, and

the loss is small and negligible.
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2.3 Absorption imaging of atomic gases

2.3.1 Absorption imaging of dilute 3D atomic gases

In the simplest picture, absorption imaging is performed by shining a weak on-resonance

imaging laser beam (with wavelength λ, along the z direction) through the atomic cloud,

and measuring the beam intensity attenuation due to atom-photon scattering. The integrated

atomic column density ncl =
∫
n3Ddz can be related to the intensity attenuation:

ncl(x, y) =
1

σ0
ln
I0(x, y)

I(x, y)
, (2.2)

where x and y are the coordinates in the plane perpendicular to the imaging beam, I0 and

I are the imaging beam intensities without and with the atoms, and σ0 = 3λ2/2π is the

resonance cross-section for the atom-photon interaction.

If the imaging beam intensity is not so weak, the cross-section will become σ = σ0/(1+

I/Isat), where Isat = πhcΓ/3λ3 is the saturation intensity, h is the Planck constant, c is

the speed of light, Γ is the natural linewidth of the imaging transition. Because the imaging

intensity gradually decreases as the light goes through the cloud, the cross-section σ will

change accordingly and the simplest formula is now accurate only for an infinitely thin

slice of cloud. We can solve an ordinary differential equation, and derive the following

modified formula:

ncl(x, y)σ∗0 =
I0(x, y)− I(x, y)

I∗sat
+ ln

I0(x, y)

I(x, y)
, (2.3)

where σ∗0 and I∗sat are effective parameters that can be different from σ0 and Isat due to an

imperfect imaging beam polarization (deviation from σ+), a finite period before the atoms

enter the cycling transition |4, 4 >→ |5′, 5′ > (especially when the imaging pulse is short),
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and a possible line width broadening. Thus σ∗0 and I∗sat need to be independently calibrated.

In the horizontal imaging path, we generally turn off the trap and let the atoms expand

for a finite period into a dilute cloud before taking the image. The imaging beam intensity

is weak and we apply Eq. 2.2 only with σ0 replaced by an independently calibrated σ∗0 due

to possible imperfect imaging beam polarization and other practical factors.

2.3.2 Absorption imaging of optically dense 2D atomic gases

For a 2D sample with very small thickness (comparable to or smaller than the imaging

beam wavelength) in the imaging beam direction (z), the calculations for a 3D sample

won’t apply because all the atoms can experience the same imaging beam intensity. The

situation is further complicated because atoms can have some collective scattering behavior

when they are close to each other; the collective behavior is different from the single atom

process we previously discussed. Fortunately, the picture is greatly simplified if the imag-

ing intensity is much larger than the saturation intensity and each atoms scatters photons

with maximum possible rate. In this limit of I � Isat, the possible collective effect can

be suppressed [33, 34]. Provided the imaging pulse length is much longer than the excited

state lifetime, one can adopt a statistical model for atom-photon scattering [34, 27], and

arrive at the same formula, Eq. 2.3, where σ∗0 and I∗sat need to be independently calibrated.

2.3.3 Calibration of absorption imaging for 2D atomic gases

Calibrate the saturation intensity

According to Eq. 2.3, if we perform imaging with different beam intensities on clouds

prepared under identical conditions, the sum of ln(I0/I) and (I0 − I)/Isat∗ should be the

same (nσ∗0 , here we write the 2D atomic density n instead of the integrated column density

ncl). Thus we can leave I∗sat as a free parameter and try overlapping the nσ∗0 profiles taken
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with different imaging intensities. We find that we can indeed overlap the different profiles,

and thus obtain I∗sat as the fit parameter which gives the optimized overlapping.

Calibrate the resonant cross-section σ∗0

In the low-density tail of the atomic cloud, the local fluctuation of atom number Ni in

a small patch (with Area Ai) should obey the Poisson distribution, δN2
i = Ni, which in

principle can be used for density calibration. In the real experiment, however, the natural

patch size
√
Ai (taken as the pixel size of CCD camera) is often much smaller than the

imaging resolution R. Consequently, the apparent number fluctuation within a single pixel

is reduced. To overcome this limitation, we evaluate the average value and shot-to-shot

variance of the local nσ∗0 in binned pixels with different sizes (from 1× 1 to 10× 10), and

find the corresponding slopes in the δ(nσ∗0)2 versus nσ∗0 plot in the low density tails. The

slope saturates as the bin becomes larger and larger, and the saturated value can be used to

derive the cross-section σ∗0 .

Calibrate the imaging magnification

For our horizontal imaging with a large field of view, we can watch the free fall of atoms

and derive the magnification Mhor based on the measured acceleration (in pixel/second2)

and the known value for the local gravitational acceleration g. One can then produce an

identical reference object, compare its images using the horizontal imaging and the vertical

imaging, and use Mhor to derive the vertical imaging magnification Mvert based on the

known pixel sizes in both CCD cameras.

Another more direct way to calibrate the vertical imaging magnification is to use the

“standard length” provided by the recoil peak spacing in the time-of-flight images taken af-

ter (1) applying a short 2D lattice potential pulse to a degenerate cloud and (2) immediately

shutting down all the trapping potentials to let the cloud expand for a finite period. Note
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Figure 2.14: Illustration of BEC atoms diffracted by a 2D optical lattice. We apply a short
pulse of 2D optical lattice potential to a BEC, turn off the trap to let the atoms expand for a
finite time-of-flight time, and then take the image. The recoil peak spacing can be used to
calibrate the imaging magnification.

that the atoms should be levitated while they expand. The finite magnetic field and gradient

can introduce a small anti-trapping force which needs to be considered in the calculation.

A sample image is shown in Fig. 2.14.

2.3.4 Experimental setup of the horizontal and vertical imaging paths

Our primary detection method is absorption imaging, either with the trap turned off a cer-

tain period before the imaging (“time-of-flight”) or with all the traps kept on during the

imaging (“in situ”). We have two imaging paths: in the horizontal imaging path (in the

Y direction), we have a near-unity magnification and a large field of view, and can conve-

niently watch and debug the experiment; in the vertical imaging path (in the Z direction),

we have a large magnification and perform high-resolution in situ imaging using a mi-

croscope objective, as illustrated in Fig. 2.15. The important instruments and optics are
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Figure 2.15: Schematic of the vertical imaging setup. The imaging beam (green arrow)
comes from below, goes through the atoms (at the crossing point of the two dashed lines)
and a number of optics (the top viewport, a λ/4 waveplate, and a polarizer plate), then goes
through the microscope objective and the tube lens, and finally reaches the CCD camera.
The two dashed lines illustrate the numerical aperture allowed by the designs of chamber
and coil mounts.)

summarized in Table 2.3.

2.4 Further upgrades in the apparatus

2.4.1 Improving the pointing stability of the dipole trapping beams

Although the temperature and humidity in the lab is fairly stable, they did sometimes fluc-

tuate dramatically (for example, under extreme weather). When we first set up the dipole

trapping beams, everything from the high power laser to the final optics sat on the same
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Table 2.3: The horizontal and vertical imaging setups
Item Horizontal imaging Vertical imaging
CCD camera Andor DU-434-BV Andor DU434-BR-DD
Magnification 1.22 19.5
Lens near atoms GPX50-125-DB5 microscope objective

(125 mm) (OKHNL10, 34 mm WD)
Lens near camera GPX50-150-BB2 InfiniTube tube lens (×10)

(150 mm) and magnifier (×2)

table, and the alignment only involved free-space propagations. Some optics (such as the

AOMs) were sensitive to the room temperature / humidity, and could cause a substantial

displacement of the cross dipole trap position. The beam profile also changed from time

to time, leading to changes of the dipole trap size and shape. To minimize these undesired

changes, we decided to separate the high power laser source and the main experimental

breadboard, and to use optical fibers to connect the two.

Optical fibers have several advantages. Firstly, the spatial mode out of a polarization

maintaining fiber is very clean and stable. Secondly, the beam pointing is also stable against

the temperature / humidity fluctuations. Thirdly, we can put all the controlling optics (like

AOMs) before the fiber and convert all their fluctuations into a single quantity, the fiber

output power fluctuation, and stabilize it by intensity lock.

As promising as the fiber scheme is, it also has practical concerns. First of all, we

observe fringes in the atomic pattern inside the dipole trap formed by beams out of fiber.

In order to minimize or eliminate these fringes, we need to minimize the number of 1 inch

lenses in the path before the main chamber. For X and Y dipole beams, this number is zero

and one (a indispensable imaging lens in the Y path), respectively. In this way, we achieve

a dipole trapping potential with negligible fringes.

We also find that to couple more than a few Watts into the fiber, the fiber needs to be

short. For example, the coupling efficiency of a 25 meter fiber starts to drop at 1.5 Watt
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input power. For our dipole trapping beams, we use short fibers (2 to 3 meters long) which

can take 5 Watt input with up to 83% coupling efficiency.

2.4.2 Improving the intensity stability of the dipole trapping and optical

lattice beams

After achieving a cesium BEC, we would like to produce it with stable atom number. Since

our evaporation uses the trap-tilting scheme [28], the stability of final trap depth (crucial

for the final atom number) is determined by the intensity stability of the dipole trapping

beams. Similarly, optical lattice experiments also require a precise and stable control of

the lattice depth (via the retro-reflected intensity). Thus we decided to lock the intensities

for all the dipole trapping and optical lattice beams at 1064 nm for two purposes: (1) to

achieve a reproducible control, (2) to suppress the noise.

Because we control the beam intensity by controlling the AOM diffraction efficiency,

the suppression of low-frequency intensity noise (which atoms are most sensitive to) will

be ultimately limited by the bandwidth of the AOMs (“the actuator”). Thus we upgrade

the AOMs for higher bandwidth, replacing all the slow Isomet AOMs (at 1064 nm) with

the much faster Crystal Technology AOMs (97-02848-01) which can switch on and off the

diffracted beam power within 4 µs.

The dipole trapping beams are locked based on pick-up signals from fast linear photo-

diodes (with about 2 MHz bandwidth). The intensity noise with the lock is the same for

different intensities, and corresponds to less than 0.1% of the full intensity.

The lattice beams are locked based on pick-up signals from logarithmic photodiodes

which provide a large dynamic range (larger than 105). The bandwidth of a logarithmic

photodiode is mainly determined by the performance of the logarithmic converter in the
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amplifying circuit (for which we choose Digikey AD8304). The dynamic range not only

depends on the performance of the logarithmic converter, but also depends on two prop-

erties of the photodiode: (1) the responsivity at a particular wavelength and (2) the dark

current that limits the lowest detectable light level. We use an InGaAs photodiode (G8376)

in the X-lattice path and a silicon photodiode (S5971) in the Y-lattice path. The bandwidth

of the photodiode decreases as the input light intensity decreases. For moderate light levels,

the retro-beam intensity has a common percentage stability.

While we lock the intensity to suppress the low-frequency noise, we compromise the

switching speed of the beam. When the intensity is in-lock, the typical rise / fall time is on

the order of 25 µs.

2.4.3 Upgrading the imaging for a higher resolution

High imaging resolution is important for probing a number of topics in many-body physics,

such as the local fluctuations and correlations. In order to improve our imaging resolution,

recently (2011/12) we changed the vertical imaging setup by replacing the commercial

microscope objective and tube lens with a custom-made microscope assembly. The design

of the new objective has two improvements: firstly, it takes into account aberrations caused

by the finite thicknesses of optics between atoms and objective; secondly, the numerical

aperture (N.A.) increases from 0.28 to 0.5, reducing the diffraction limited radius from

1.8 µm to 1.0 µm. Tests using a resolution target (with the 1951 USAF test pattern) estimate

a resolution of 1.3 µm. Tests based on the atoms is in progress and should have results soon.
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CHAPTER 3

MAKING, PROBING, AND UNDERSTANDING

TWO-DIMENSIONAL ATOMIC QUANTUM GASES

In this chapter, we present a series of experiments on making, probing, and understanding

two-dimensional (2D) atomic quantum gases. These experiments provide the essential

tools and knowledge for preparing and studying atomic samples in the quantum critical

regime.

3.1 Accelerating evaporative cooling of atoms into Bose-Einstein

condensation in optical traps

In this section, we discuss a simple scheme to achieve fast, accelerating (runaway) evapora-

tive cooling of optically trapped atoms by tilting the optical potential with a magnetic field

gradient. Runaway evaporation is possible in this method due to the weak dependence of

vibration frequencies on trap depth, which preserves atomic density during the evaporation

process. Using this scheme, we show that Bose-Einstein condensation with ∼ 105 cesium

atoms can be realized in 2 ∼ 4 s of forced evaporation. The performance is in sharp con-

trast to > 20 s of evaporation time if we adopt conventional cooling method by reducing

the dipole beam intensity. The evaporation speed and energetics of this new scheme are

consistent with the three-dimensional evaporation picture, despite the fact that atoms can

only leave the trap in the direction of tilt.

This section is based on our published work (by C.-L. Hung, X. Zhang, N. Gemelke,

and C. Chin) in Phys. Rev. A, 78, 011604(R) (2008). Copyright (2008) by the American

Physical Society.
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3.1.1 Introduction

The possibility to manipulate Bose-Einstein condensates (BECs) and degenerate Fermi

gases of cold atoms in optical traps opens up a wide variety of exciting research; prominent

examples include spinor condensates [35], Feshbach resonance in cold collisions [36], and

BECs of molecules [37, 38]. In many early experiments, condensates were first created

in a magnetic trap and subsequently transferred to an optical dipole trap. These exper-

iments could be greatly simplified after direct evaporation to BEC in optical traps was

demonstrated [39]. In this section, we describe a further improvement on dipole-trap based

evaporation, which allows for runaway cooling without significant increase in trap com-

plexity.

Evaporative cooling proceeds by lowering the depth of a confining potential, which

allows atoms with high kinetic energy to escape and the remaining particles to acquire a

lower temperature and higher phase space density through rethermalization. Starting from

a sample of precooled atoms in a dipole trap, one can perform forced evaporative cooling

on optically trapped atoms by constantly reducing the trap depth until quantum degeneracy

is reached. This method has been successful in creating rubidium BEC in a dipole trap [39],

and has become a critical component in recent experiments on quantum gases of Cs [40], Li

[41], K [42] and Yb [43]. In all these experiments, forced evaporative cooling in the dipole

trap is realized by reducing the intensity of the trapping beam, and consequently also the

restoring forces. In later discussion, we will refer to this approach as the trap-weakening

scheme.

Evaporative cooling in optical traps remains one of the most time-consuming and tech-

nically challenging steps in condensate production. Fundamentally, this is due to the fact

that cooling by weakening the trapping potential inevitably reduces the collision rate. Here

runaway (accelerating) evaporation is essentially impossible even with perfect evaporation
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Figure 3.1: Trap-tilt based evaporation and experimental apparatus. (a) Trap depth U de-
creases when an external potential gradient is applied to the optically trapped atoms. (b)
Apparatus for evaporation of cesium atoms (black dot) in a crossed-beam dipole trap. A
strong, slowly-varying magnetic field gradientB′(t) over-levitates the atoms with magnetic
moment µ against gravitational pull mg and evaporates them upward.

efficiency and purely elastic collisions 1. Within experimentally accessible times, the trap-

weakening method puts a severe limit on the maximum gain in phase space density one

can reach. Several auxiliary schemes have been successfully implemented in order to in-

crease the evaporation speed, including the dimple trap [40] and a zoom lens system [45].

These methods often increase the complexity of the apparatus or require delicate optical

alignment or manipulation.

In this section, we report a simple evaporative cooling scheme which can be immedi-

ately implemented in many existing experiments. Instead of reducing the intensity of the

trapping beam, we reduce the trap depth by applying an external force on the optically

trapped atoms, see Fig. 3.1a. This trap-tilting method entails only a weak reduction in

confinement strength over a large range of potential depth and can significantly speed up

the cooling process. Using this method, we demonstrate runaway evaporative cooling in

a large volume dipole trap and reach Bose-Einstein condensation of cesium significantly

faster than previous results [46]. Finally, we comment on the conditions for runaway evap-

1. The only possible runaway evaporation in a weakening trap is on resonant Fermi gas, see Ref. [44]
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oration in a tilted trap and investigate the dimensionality of atomic energy selection in the

evaporation.

3.1.2 Experimental setup and procedures

For this study, cesium atoms are first slowed by a Zeeman slower, collected in a magneto-

optical trap (MOT) for 2 s, molasses precooled, and finally cooled and spin polarized by de-

generate Raman-sideband cooling (dRSC) [47] to the lowest hyperfine ground state |3, 3〉.

A crossed dipole trap and magnetic field gradient are employed to levitate and collect the

cooled atoms. The dipole trap is formed by intersecting two laser beams on the horizontal

(x−y) plane; both beams are extracted from a single-mode, single frequency Yb fiber laser

operating at the wavelength of 1064 nm, frequency offset by 80 MHz, focused to a 1/e2

beam diameter of 540 µm (620 µm) and power of 1.9 W (1.6 W) in the y−(x−) direc-

tion. In the absence of trap tilt, the trapping frequencies near the bottom of the potential

well are (ω0
x, ω

0
y , ω

0
z) = 2π × (17, 34, 38) Hz. During the dipole trap loading process, we

switch on a uniform magnetic field of 58 G in the (vertical) z-direction to improve the

atom number following the loading process and apply a levitating magnetic field gradi-

ent of B′c = mg/µ=31.3 G/cm, where mg is the gravitational force, µ = 0.75µB is the

magnetic moment of the atoms in |3, 3〉, and µB is the Bohr magneton. After 1 s of ther-

malization and self-evaporation in the dipole trap, we ramp the magnetic field to 20.8 G,

where three-body loss is minimized [48], and the field gradient to 37.8 G/cm in 1.85 s and

begin our study on forced evaporation. At this point, which we define as time t = 0, there

are N0 = 1.9 × 106 atoms in the trap with a temperature of T0 = 470 nK, peak atomic

density of n = 3.8 × 1012 cm−3, and peak collision rate of Γ0 =133 /s. The background

collision rate is below 1/60 s.

We perform forced evaporative cooling by linearly increasing the magnetic field gradi-
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ent B′ from 37.8 to 41.4 G/cm in 2.2 s and then to 43.5 G/cm in another 3 s, which reduces

the calculated trap depth from 3.0 µK to 1.0 µK and then to 170 nK. The magnetic field and

dipole trap intensity are kept constant throughout the process. To evaluate the cooling per-

formance, we interrupt the evaporation at various times to measure the particle number N ,

temperature T and trap frequencies ωx,y,z . Particle number and temperature are extracted

from absorption images taken at low magnetic fields, following a 70 ms time-of-flight ex-

pansion at B = 17 G to minimize the collisions and B′ = B′c to levitate the atoms. Trap

frequencies are measured from small amplitude oscillations of the atomic momentum by

abruptly displacing the trap center. Peak phase space density is calculated from φ = nλ3
dB ,

where n = Nωxωyωz(mλdB/h)3, λdB = h(2πmkBT )−1/2 is the thermal de Broglie

wavelength, kB is the Boltzmann constant and h is the Planck constant. Collision rates are

calculated as Γ = n〈σv〉, where the elastic collision cross section is σ = 8πa2, scattering

length at 20.8 G is a = 200 a0 [49], and 〈v〉 = (16kBT/πm)1/2.

After 4 s forced evaporative cooling, we observe Bose-Einstein condensation from the

appearance of bimodality and anisotropic expansion in time-of-flight images. At this point,

the temperature is 64 nK and total particle number is 5× 105. An almost pure condensate

with 105 atoms was obtained after another 2.5 s. In this evaporation process, the mean

truncation parameter is calculated to be η̄ = 〈U/kBT 〉 = 6.5(3), and the evaporation effi-

ciency is γ̄ev = − log(φ/φ0)/ log(N/N0) = 3.4. We observe an increasing collision rate

and accelerating evaporation, indicating achievement of runaway evaporation; see Fig. 3.2.

An alternative evaporation path is developed to minimize the time to reach BEC. After

a shorter magnetic field ramping process of 1 s, we ramp the field gradient from 38.9 G/cm

at t = 0 to 41.3 G/cm in 0.5 s and then to 43.5 G/cm in another 1.5 s. Here we reach

BEC in as short a period as 1.8 s of forced evaporation. Another 1 s evaporation allows

us to obtain 4×104 atoms in an almost pure condensate, see Fig. 3.2(d). Despite the rapid

increase of phase space density, the collision rate actually decreases by 25% at the end of

49



-1 0 1 2 3 4
105

106

0

100

200

300

10-2

10-1

100

(c)

 

A
to

m
 n

um
be

r 

Evaporation time (s)

(b)

 

C
ol

lis
io

n 
ra

te
 (

s-1
)

BEC

nλ
3 dB

(a)

Figure 3.2: Performance of trap-tilting based forced evaporation: (a) phase space density,
(b) collision rate, (c) particle number and (d) density profile. Two evaporation paths: 4 s
(solid dots) and 1.8 s (open circles) are shown. The dashed line in (a) shows simple ex-
ponential increase. In (d), time-of-flight absorbtion images and single-line optical density
profiles are taken from the 1.8 s evaporation path. The expansion time is 70 ms, and the
field of view is 1.2 mm × 1.2 mm.
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evaporation. The truncation parameter and evaporation efficiency are η̄ = 4.6 and γ̄ev =

1.9, respectively.

Throughout both evaporation processes, the peak density is moderate, n < 1.5 ×

1013cm−3. The collision loss rate, dominated by three-body recombination process [48], is

below 1/40 s at 20.8 G. Trap loss from collisions is negligible in the following discussion.

3.1.3 Advantage of the trap tilting scheme

To understand the advantage of the trap-tilting scheme, we analyze how the trap frequency

is modified in a model Gaussian potential during the evaporative cooling process. We

combine the magnetic gradient potential and the gravitational potential as −γmgz, where

γ = B′/B′c − 1. The total potential V (x, y, z) can be modeled as

V = −Uo
2

[e−2(x2+z2)/w2
+ e−2(y2+z2)/w2

]− γmgz, (3.1)

where the first two terms come from the two horizontal trapping beams, and the last term

is the tilt potential. Here, we assume the two beams have the same beam waist w and peak

light shift U0/2 for convenience.

We introduce the tilt parameter ζ =
√
eγmgw/2U0 to parameterize the trap depth U

and trap frequencies ωx,y,z . Using Eq. 3.1, the trap depth and frequencies are evaluated as a

function of ζ , as shown in Fig. 3.3(a). All quantities are normalized to those of an untilted

potential, where the trap depth is U0, and the trap frequencies ω0
z =

√
2ω0

x =
√

2ω0
y =√

4U0/mw2. NOte that the trap is unstable when ζ ≥ 1. In the range of 10−3 < U/U0 <

1, the geometric mean of the trap frequencies ω̄ = (ωxωyωz)
1/3 varies with the trap depth
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Figure 3.3: Depth and oscillation frequency of a tilted trap. (a) shows the calculated nor-
malized trap depth and frequencies ωz and ωx = ωy as a function of the tilt ζ , based on
Eq. (1). In (b), mean trap frequencies are plotted against the trap depth for a tilted trap
(solid dots) and for a weakened trap (dotted line). The solid line shows a power-law fit to
the mean frequency, see Eq. (2).

approximately as, see Fig. 3.3(b),

ω̄

ω̄0
≈ 1.05

(
U

U0

)0.075(1)

, (3.2)

where ω̄0 is the mean frequency of an untilted trap.

The key to fast, runaway evaporation in the tilted trap lies in the gentle, almost negli-

gible weakening of the trap confinement when the trap depth decreases. As the trap depth

reduces by a factor of 100, the trap frequency only decreases by 45% in the z−direction and

14% in the other two directions, in contrast to the trap-weakening method, which reduces

trap frequencies by a factor of 10 under the same condition. In general, a weakening trap

with ω̄ ∝ Uν and ν = 0.5 shows a much stronger dependence on the trap depth than the

tilting trap with ν = 0.075.

The collision rate in a harmonic trap depends on the particle number, trap frequencies

and temperature. Assuming the truncation parameter η = U/kBT is kept constant during
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the cooling process, we have

Γ ∝ Nω̄3T−1

∝ U1/αU3νU−1 ≡ Uβ , (3.3)

where β = 1/α + 3ν − 1, and α > 0 parameterizes the cooling efficiency by removing

atoms [50]. Following the calculation in Ref. [51], with the trap frequency versus trap

depth dependence, ω̄ ∝ Uν , we derive

α =
N

T

dT

dN
=
η + κ− 3

3− 3ν
, (3.4)

and κ > 0 depends on the dimension of evaporatoin as discussed below.

The condition for runaway evaporation is then given by β < 0. For the trap weakening

scheme with ν = 1/2, β is positive for all η. Runaway evaporation is thus impossible. For

the tilting scheme with ν = 0.075, the exponent β is negative when α > 1.08 (η > 5.4,

shown in later discussion), suggesting runaway evaporation with increasing collision rate

is possible.

3.1.4 Performance of evaporation using the trap tilting scheme

Time evolution of the phase space density φ(t) can now be derived based on standard evap-

oration theory (Ref. [50]. Assuming energetic atoms can leave the sample in all directions,

we have

φ(t) = φ(0)(1 + λαβΓ0t)
2/β−1, (3.5)

and for η > 6, κ3D ≈ (η − 5)/(η − 4) [51, 52]. Here Γ0 is the initial collision rate and

λ3D ≈ (η − 4)e−η/sqrt2 [51, 52] is the fraction of collisions producing an evaporated
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initial collision rate of Γ0=133 /s, η = η̄ = 6.2 ∼ 6.8 and no collision loss. Shaded area
covers the 1D evaporation region with 0 ≤ ν ≤ 1 and all possible η.

atom. Here we see that a negative β < 0 leads to a faster-than-exponential growth of the

phase space density, which eventually diverges at time t = (−λαβΓ0)−1. We compare

the models and our experiment result in Fig. 3.4. To reach the same final phase space

density, the trap-tilting scheme would require a much shorter evaporation time than the

weakening scheme. For comparison, a potential with fixed trap frequency (ν = 0), e.g.,

radio-frequency based evaporation in magnetic traps, permits an even stronger runaway

effect, see Fig. 3.4.

3.1.5 Dimensionality of evaporation using the trap tilting scheme

Remarkably, the performance of our evaporation is consistent with the 3D evaporation

model. The consistency of our evaporation speed with the 3D model is somewhat surpris-

ing. In a strongly tilted trap where hot atoms can only escape the trap in the tilted direction

(see Fig. 3.5), it is generally expected that the evaporation will exhibit performance consis-

tent with one dimensional evaporation. In momentum space, atoms allowed to evaporate
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(a) (b)

Figure 3.5: Snapshot of in situ atomic distribution during (a) slow and (b) fast evaporation
processes. Hot atoms leave the trap in the upward direction due to a strong vertical magnetic
force.

along the direction of tilt, with p2
z ∼ 2mU , spans a small transverse area 2πmkBT , due to

thermal motion in the transverse direction. Compared this area to that of a full evaporating

sphere 8πmU , one estimates a reduction in the evaporation rate by a factor of 4η [53, 50]

and thus λ1D ≈ λ3D/4η. Performance of 1D evaporation for all possible η is shown in

the shaded area in Fig. 3.4. Our experiment result exhibits evaporation speeds much faster

than the any 1D prediction.

We suspect 3D-like evaporation in a tilted trap results from the inseparability of the

potential and the existence of a saddle point located at the rim of the potential barrier,

which can lead to stochastic single particle motion [53]. When atoms with sufficiently

high energy are created by collisions, stochastic motion can allow them to efficiently find

escape trajectories. If the energetic atoms have a high probability to escape, regardless

of their initial direction of motion, evaporation is effectively three dimensional [53]. In

realistic models, stochastization may also be induced by the intensity irregularities of the

trapping laser beams.

To further investigate the “dimension of evaporation” in a tilted trap, we come back to
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η + κ, which parameterizes the energy removed by evaporating a single atom, or

η + κ = −(kBT )−1dE/dN. (3.6)

For 3D evaporation, we expect κ3D ≈ (η − 5)/(η − 4), which is κ3D = 0.6(1) for our

parameter η̄ = 6.5(3); for 1D evaporation, energy selectivity applies to the axial, but not the

transverse motion, which has a mean energy of 2 kBT per particle (shown to be 7/4 kBT

with careful calculation in Ref. [54]). Hence, we expect a higher energy removed per

particle with κ1D = κ3D + 2 = 2.6(1) for our parameter [54]. Experimentally, we can test

these predictions by evaluating the cooling efficiency α, which has a simple dependence on

κ as shown in Eq. 3.4. We show in Fig. 3.6 that our 4 s evaporation data is excellently fit to

the power-law function with ᾱ = 1.46(2). Using Eq. 3.4, we derive κ = 0.6(3), which is

consistent with the 3D value and confirms the 3D nature of the trap-tilt based evaporation.
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3.1.6 Applying the trap-tilting scheme in later experiments

In all later experiments, the evaporation based on trap-tilting scheme produced almost pure

BECs with sufficient atom numbers (2 ∼ 3 × 104 is enough for 2D gas experiments)

and enabled fast experiment cycles. Since the scheme works for both upward trap-tilting

and downward trap tilting, we chose to evaporate downward by gradually ramping off the

magnetic gradient (which levitates cesium atoms in the |3, 3 > state) such that at the end

of evaporation, we achieve an almost pure condensate in a uniform magnetic field.

3.2 In situ observation of incompressible Mott-insulating domains in

ultracold Bose gases with optical lattices

The observation of the Superfluid (SF) to Mott-insulator (MI) phase transition of ultra-

cold atoms in optical lattices [55] was an enabling discovery in experimental many-body

physics, providing the first tangible example of a quantum phase transition (one that oc-

curs even at zero temperature) in an ultracold atomic gas. For a trapped gas, the spatially

varying local chemical potential introduces multiple quantum phases into a single sam-

ple, complicating the interpretation of bulk measurements [55, 56, 57, 58, 59]. Here, we

report spatially resolved, in situ imaging of a two-dimensional ultracold atomic gas as it

crosses the SF to MI transition, providing unprecedented and direct access to individual

characteristics of the insulating, superfluid and normal phases. We present results for the

local compressibility in all phases, showing a strong suppression in the insulator domain,

and observe suppressed density fluctuations for the MI in accordance with the fluctuation-

dissipation theorem. Furthermore, we obtain a direct measure of the finite temperature of

the system. Taken together, these methods make possible a highly complete characteri-

zation of multiple phases in a strongly correlated Bose gas, and of the interplay between

quantum and thermal fluctuations in the quantum critical regime.
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This section is based on our published work (by N. Gemelke, X. Zhang, C.-L. Hung, and

C. Chin) in Nature 460, 995 (2009).

3.2.1 Introduction

Since its theoretical inception [60, 61, 62], two of the most celebrated properties of the

bosonic Mott insulator have been its incompressibility and suppression of local density

fluctuations [63], induced by the enhanced importance of inter-particle repulsion for parti-

cles subject to a strong lattice potential. The result for a trapped atom gas is the remarkable

“wedding-cake” density profile, where successive MI domains are manifest as plateaus of

constant density. Related phenomena have been studied through the coherence [55, 56],

transport [55, 57], noise correlations [58], and number variance [55, 59], but direct ob-

servation of the incompressibility has proven difficult due to the inhomogeneous nature of

all experiments to date, and to the technical difficulty of making spatially resolved mea-

surements. Innovative experimental efforts incorporating tomographic imaging and other

advanced techniques have yielded evidence [23, 64] that shell structure exists in the Mott

insulator regime, though none has directly observed the incompressibility of the insulating

density plateaus by imaging a complete and single physical system in situ.

We report studies based on direct in-situ imaging of an atomic MI. By loading a degen-

erate Bose gas of cesium-133 atoms into a thin layer of a two-dimensional optical lattice

potential, and adiabatically increasing the optical lattice depth, we observe the emergence

of an extremely flat density near the center of the cloud, which corresponds to a MI phase

with accurately one atom-per-site. From density profiles, we extract important thermody-

namic and statistical information, confirming the incompressibility and reduction of density

fluctuations in the MI as described by the fluctuation-dissipation theorem.
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3.2.2 Experimental setup and procedures

The single layer, two-dimensional (2D) optical lattice is formed by two pairs of counter-

propagating laser beams derived from a Yb fiber laser at wavelength λ = 1064 nm. The

pairs are oriented orthogonally on the horizontal (x−y) plane, forming a square lattice with

site spacing d = λ/2 = 0.532 µm. A weak harmonic potential of VH = m(ω2
xx

2+ω2
yy

2)/2

localizes the sample, where m is the cesium mass, and the geometric mean of the trap

frequencies is ωr =
√
ωxωy = 2π×9.5Hz (a weak dependence on lattice depth is described

in Section 3.2.5). Vertical confinement is provided by an additional vertical optical lattice

with a site spacing 4 µm, formed by two beams intersecting at an angle of 15◦, confining

atoms in a gaussian wavepacket of width (oscillator length) az = 0.30 µm. The sample

is loaded into a single site of the vertical lattice, kept deep to prevent vertical tunneling.

Tunneling in the horizontal 2D lattice is controlled by varying the lattice depth V [55].

Details on preparation of the atomic sample can be found in section 3.2.5 and Ref. [28].

We obtain a top view of the sample using absorption imaging, directly revealing the

atomic surface density n(x, y) on the horizontal plane. The imaging resolution is 3 ∼ 4µm,

and magnification such that one imaging pixel corresponds to an area of (2µm)2 on the

object plane. Unit filling in a 2D optical lattice has a conveniently measurable optical

absorption on resonance.

The superflulid-to-Mott insulator (SF-MI) transition of ultracold atoms in an optical

lattice is described by the Bose-Hubbard model, characterized by on-site interaction U and

the tunneling t [62]. In 2D optical lattices, superfluid is converted into a MI when U/t

exceeds 16 [56, 65] near the density of one atom per site. Here, the SF-MI phase transition

can be induced by either increasing the lattice potential depth V (typically measured in

units of recoil energy ER = h 1.3kHz, where h is Planck’s constant) [55, 56, 64] or the

atomic interaction strength (characterized by scattering length a) via a magnetically-tuned
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Feshbach resonance [19], together providing complete, independent control of U and t.

3.2.3 Observation of incompressible Mott-insulating domains

Atomic density profiles in the lattice are shown in Fig. 3.7. For weak lattice depths (su-

perfluid regime), the density profiles are bell-shape, with negative curvature at the center

(Fig. 3.7a), indicating a finite, positive compressibility dictated by the interaction coupling

constant (discussed below.) In sufficiently deep lattices, we observe a flattened density at

the center of the sample (Fig. 3.7b,c), indicating development of a Mott insulating phase

with one particle per lattice site. This density plateau, an important feature of the MI phase,

arises from incompressibility.

A primary check on the MI is to compare the measured density in the plateau to that

corresponding to one atom-per-site, given by MI physics as a “standard candle” of atomic

density. Using the known scattering cross-section, correcting for saturation effects (see

Section 3.2.5), we determine the plateau density to be n = 3.5(3)/µm2, in agreement with

the expected value 1/d2 = 3.53/µm2.

To distinguish a MI from superfluid or normal gas, we histogram the occurrence of

pixels h(n) in the images corresponding to a density n with a bin size of ∆n � n. The

MI plateau, containing a large number of pixels with similar atomic density, appears as a

peak at n = 1/d2 (Fig. 3.8a). In general, the occurrence of a particular density n can be

regarded as the rate at which local chemical potential changes with density, multiplied by

the number of pixelsw(µ)∆µ corresponding to a chemical potential between µ and µ+∆µ.

The occurrence at density n is then

h(n) = ∆nw(µ)∆µ/∆n ≈ ∆nw(µ)κ−1, (3.7)

where κ = ∂n/∂µ is the local compressibility [66]. In a harmonic trap, w(µ) = 2π/md2ω2
r
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Figure 3.7: False color absorption images and line cuts along major axis of density profiles
for N = 7500 ultracold cesium atoms at scattering length a = 310 aB in a 2D optical
lattice. (a) Superfluid regime (shallow lattice V = 2.4ER), (b) Phase transition regime
(medium lattice depth V = 9.4ER), and (c) Mott insulator regime (deep lattice V =
22ER). Images are averaged over three experiment repetitions. Colorbar shows linear
variation with density from zero to peak value of 5.4µm−2. Line cuts are taken along the
major axis, and compared to radial average of density (solid line) over the entire image as
described in text. The blue horizontal line indicates the density of one atom per site.
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Figure 3.8: Histograms of density profiles in the MI regime (a, V = 38ER, a = 460aB)
and the superfluid regime (b, V = 0.5ER, a = 460aB .) The histograms are based on an
average of three density images. The bin size is ∆n = 0.03.

is constant, and the histogram is a particularly useful tool to distinguish different phases.

For a pure BEC in the Thomas-Fermi limit, the compressibility is constant to the maximally-

allowed density npk, and results in a constant h(n) for n ≤ npk (see Fig. 3.8b for 0.5/d2 <

n < 1.5/d2). For the MI, the density is insensitive to chemical potential in a narrow range

near n = 1/d2, indicating a vanishing compressibility, and thus a sharp histogram peak at

n = 1/d2. The peak’s presence in Fig. 3.8a is thus directly related to the incompressibility

in the Mott phase. Finally, the compressibility of a normal (ideal) gas is proportional to its

density, thus h(n) ∝ 1/n, leading to the strong upturn at low densities in Fig. 3.8a,b for

both regimes.

Much more information can be obtained from the density profiles, as recently suggested

in Ref. [20]. For example, the compressibility in a two-dimensional cylindrically symmet-

ric trap can be written

κ = ∂n/∂µ = −n′(r)/(rmω2
r ), (3.8)

where we have assumed the local density approximation, and that the chemical potential

depends on the trapping potential µ = µ0−VH(r). For a BEC in the Thomas-Fermi regime,
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the compressibility is positive and constant, κBEC = 1/g, where g =
√

8πa~2/maz is the

(2D) interaction parameter[67]. We can thereby relate the measured compressibility to that

of a BEC as
κ

κBEC
= −(

2

π
)7/2n

′(r)
rd−4

a

az
(
ER
~ωr

)2. (3.9)

We evaluate κ from azimuthally averaged density profiles (Fig. 3.9a). Eccentricity of

the trap is corrected by rescaling the principal axes as determined from the density profile,

and verified to be consistent with direct measurement of trap frequencies. Due to the sin-

gular nature of n′(r)/r near the center, we evaluate κ there by fitting n(r) to a quadratic,

n(r) = n(0) − αr2. The curvature then gives the compressibility as κ(0) = 2α/mω2
r ,

for which we obtain κ/κBEC = 0.34(10) in a weak lattice and κ/κBEC = 0.013(6) in a

strong lattice (See Fig. 3.9). In the weak lattice (SF regime), the finite and constant com-

pressibility at the center agrees with expectation for the superfluid phase, though lower than

expected, which we attribute to finite temperature and calibration of trap parameters. The

finite temperature is also clear in the exponential tail of the density profile and the com-

pressibility [68], from which we derive the temperature 10(2) nK in the superfluid regime

(V = 0.3Er) and 15(3) nK in the MI regime (V = 22Er).

In a deep lattice (MI regime), we observe a strong reduction of the compressibility in

the trap center, below that in the superfluid phase for the weak lattice, strongly supporting

the emergence of a MI phase at the center of the sample. Away from center, κ suddenly

increases at r = 20d, then decreases for r > 40d. The exponential decay is again consis-

tent with a normal gas. Between MI and normal gas (20d < r < 40d), a more detailed

measurement and model of compressibility would be necessary to identify the local phase.
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Figure 3.9: Extraction of compressibility from density profiles. (a) Radially averaged pro-
files (3 images) in the superfluid (black squares: V = 0.3ER, N = 7200) and MI (red
circles: V = 22ER, N = 6700), with a = 310aB . A quadratic fit to the sample’s center
extracts the curvature near r = 0. (b) Normalized compressibilities derived from (a) using
Eq. (1) in the superfluid (black squares) and MI (red circles) regimes. The horizontal lines
indicate compressibility near r = 0, estimated from the quadratic fits in (a). Rising com-
pressibility at r = 30d marks the MI boundary. (c) The dependence of compressibility on
atomic density. Linear dependence at low densities (normal gas) is best fit by solid lines.
Error bars indicate standard error in the mean.
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3.2.4 Qualitative comparison with the fluctuation-dissipation theorem

Within the local density approximation, one may consider any small area of the sample as

a thermodynamic subsystem in a grand-canonical ensemble, assumed to be in equilibrium

with the remainder of the gas. One can then invoke the fluctuation-dissipation theorem

(FDT) (see e.g. Refs. [66, 69]) to ascertain that incompressibility necessarily implies a low

local particle number fluctuation; this relationship takes the form

δn2 ≈ κ kBT (3.10)

Resolved in-situ imaging provides an enticing opportunity to measure fluctuations of the

local density [70, 63], and thus check the validity of the FDT. We measured fluctuations

by recording multiple absorption images, calculating the variance of density measured in

each pixel (each collects signals from a patch of (2µm/d)2 ≈ 14 lattice sites). Fig. 3.10

shows the recorded fluctuations, where pixels are binned according to their mean atomic

density. Fluctuations consist of detection (photo-electron shot) noise and thermal and quan-

tum atomic density fluctuations. Detection shot noise can be well-calibrated and modeled

by analyzing portions of the images with low density; extension to higher optical depth

(density) shows the weak dependence illustrated in Fig. 3.10.

Above the detection noise, density fluctuations (see Fig. 3.10) show a strong qualitative

agreement with the compressibility presented in Fig. 3.9 as expected from the FDT. For

example, the Mott-phase shows a strong suppression of fluctuations at the density of one

atom-per-site. The superfluid regime lacks this feature, instead showing a pronounced

flattening as the sample transitions from normal gas to superfluid, as expected from the

constant compressibility in the superfluid phase (Figure 3c). Finally, at low density, the

normal gas shows a temperature-independent fluctuation of δn = γ
√
n, which can be

anticipated from Figure 3c, and agrees with the FDT. The coefficient γ is roughly consistent
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Figure 3.10: The fluctuation of local density extracted from a set of twelve absorption
images in the weak (a) and deep (b) lattice regimes. The insulator and superfluid show a
pronounced difference at one atom-per-site, where the insulator’s fluctuation is suppressed
by incompressibility. In the superfluid, constant compressibility initiates a flattening. At
low densities, in both regimes, the fluctuation shows a characteristic

√
n dependence, where

the gas is presumed to be normal; the dashed line shows best fit
√
n dependence. The total

number of atoms was N = 8300 (SF) and N = 9600 (MI) with a = 310aB for both sets.
Error bars indicate standard error in the mean.
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with the FDT, and measured imaging resolution (see Section 3.2.5).

3.2.5 Detailed procedures and analyses

Cesium Bose condensates are produced by forced evaporative cooling in a crossed beam

dipole trap. The condensate is compressed vertically by loading into a single layer of an op-

tical lattice with the scattering length tuned near zero. After this, the lattice is adiabatically

instated by controlled retroreflection of dipole trapping beams, and the scattering length

brought to its final value. Imaging is performed absorptively along the vertical, calibrated

for saturation effects by varying the intensity of the imaging light. Fluctuations of density

are calculated for each pixel in a series of images taken at identical experimental parame-

ters, and plotted against the mean density at that pixel. The parameter γ is estimated from a

model of the expected averaging of thermal fluctuations over an imaging resolution limited

spot.

Preparation of BEC in a thin 2D optical lattice

The 133Cs BEC is formed in a crossed-beam dipole trap by an efficient evaporative

cooling method [28]. The dipole trap consists of three beams on the horizontal plane:

two orthogonal beams at the wavelength of 1064 nm (Yb fiber laser, YLR-20-1064-LP-

SF, IPG), focused to 1/e2 radii of 350 µm, and one CO2 laser beam at the wavelength

of 10.6 µm (Gem-Select 100, Coherent), focused to a vertical 1/e2 radius of 70 µm and

horizontal of 2 mm . The CO2 beam intersects the Yb laser beams at an angle of 45◦

and provides an enhanced vertical confinement to support the atoms against gravity. With

N = 104 atoms in a pure condensate, the Thomas-Fermi radii of the condensate are

(rx, ry, rz) = (23, 14, 3.6)µm.

After a pure BEC is obtained, the sample is compressed vertically by introducing a

67



vertical lattice, formed by two laser beams (Mephisto, Innolight) inclined at +7.5◦ and -7.5◦

relative to the horizontal plane. The vertical lattice has a spacing of 4 µm and, together with

the crossed dipole trap, forms an array of 2D oblate “pancake” potentials, with harmonic

confinement frequencies of 850Hz at its maximum depth.

In order to load the condensate into a single pancake trap, we first ramp the magnetic

field to 17.2 G in 400 ms, reducing the s-wave scattering length to a <10 aB , and then

turn on the vertical lattice in 100 ms. Atomic population in other lattice sites, if any, can

be identified by observing an interference pattern in time-of-flight images taken from the

side. For this work, we observe a sufficiently weak interference pattern contrast to conclude

> 98% of the atoms are in a single pancake trap. After the vertical lattice is fully turned on,

the CO2 laser intensity is ramped to zero in 100 ms while the scattering length is ramped

to its final value by tuning the external magnetic field.

The 2D lattice potential in the horizontal (x- and y-) directions is formed by introduc-

ing retro-reflections of the 1064 nm dipole trap beams. A continuous evolution from a

pure dipole trap (with zero retro-reflection) to a 2D optical lattice (with significant retro-

reflection) is achieved by passing each dipole trap beam (after it passes through the atomic

cloud once) through two acousto-optic modulators (AOMs) controlled by the same radio-

frequency (rf) source, then off a retroreflection mirror. The AOMs induce an overall zero

frequency shift, but permit a dynamic control of the retroreflection intensity over six or-

ders of magnitude. To load the lattice to a depth of 38Er, the retro-reflection intensities

are slowly ramped over 200ms with an exponential waveform of 36ms time constant. For

smaller final lattice depths, the ramp waveform is fixed but duration shortened. Onsite in-

teraction energy U and tunneling rate t are evaluated from the measurements of the lattice

vibration frequencies and band structure calculation. Envelope trapping frequencies were

separately measured by exciting center of mass oscillations, and found to be consistent with

orientation and ellipticity of in-situ images of atomic density. A weak variation of the mean
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envelope frequency with lattice depth was measured and accounted for by the expression

ωr =
√
ωxωy = 2π × 9.5(1 + V/82ER)Hz.

Calibration of atomic surface density

By varying the intensity of the imaging beam, we measure the optical depth on reso-

nance in the density plateau using OD = ln(M0/M), where M is the number of photons

collected by a CCD pixel in the presence of the atoms and M0 is that without the atoms.

The optical depth in the plateau is extracted from a fit to the peak in the histogram. We then

fit the variation of peak optical depth assuming OD = nσ/(1 + M0/Msat) to determine

the depth in the zero intensity limit M0 → 0, and thus the surface density of the sample.

Here, σ=0.347 µm2 is the known cesium atom-photon cross-section while the fit parameter

Msat represents the photon number on a CCD pixel at the atomic saturation intensity.

Fluctuation of atomic density

The fluctuations in the absorption images are estimated by taking the average of 11 im-

ages under the same experimental procedure, and calculating the mean and variance of opti-

cal depth measured at each CCD pixel. Fluctuations are presumed to arise from optical shot

noise, thermal atomic fluctuation, and long lengthscale variations arising from total atom

number fluctuation. The optical shot noise is calibrated by examining regions with neg-

ligible atomic density, and extended to higher optical depth using δODos ∝
√

1 + eOD.

For the thermal cloud, with density n < 0.3 atoms/site, the fluctuation-dissipation the-

orem predicts δNa =
√
Na, with Na the number of atoms measured in a given region.

This result should be valid for a region significantly larger than the correlation length,

which we expect for the normal gas to be on order of the deBroglie thermal wavelength,

expected to be < 1.5µm for our sample. Though each imaging pixel corresponds to an

area in the object plane consisting of ∼14 sites, imperfect imaging resolution is expected
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to effectively average away a certain fraction of the total fluctuation. This effect can be

calculated, assuming statistical independence for each site, by summing the weight wi,j

of a resolution-limited spot falling within a given pixel j for each lattice site i, giving a

variance reduced by
∑
iw

2
i,j . The result for our parameters is a reduction to δn = γ

√
n,

with γ ∼ 0.11(1). This should be compared with the fraction of the total fluctuation shown

in Fig. 3.10 corresponding to thermal fluctuations in the superfluid regime. To make this

comparison, we reject global fluctuations associated with variation of the total atom number

by subtracting the variance we calculate after first applying a resolution-spoiling gaussian

blur to the images from the variance without modification. We find, for the remaining high

spatial-frequency fluctuations, a best fit to γ of 0.15(2), using a gaussian blur 1/e2 radius of

rb = 14µm to remove global variations (the result varies within stated error for blur radii

7µm< rb < 28µm). The remaining discrepancy is likely due to calibration of imaging

resolution, and possibly the effect of a nonnegligible correlation length.

3.2.6 Conclusion

Clearly, in situ imaging of the Mott insulator is a powerful new tool to investigate new

quantum phases of cold atoms in optical lattices. From the density profiles, not only can

one observe the density plateau, incompressibility and reduction of fluctuations in the Mott

insulating phase, but also demonstrate a qualitative validation of the fluctuation-dissipation

theorem. Relatively modest extension of this work holds new promise for studying the role

of quantum fluctuations, correlation and thermodynamics near a quantum phase transition.

Since this work, in situ imaging has become our primary tool to study 2D atomic quantum

gases without or with optical lattices [31, 32, 71].
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3.3 Slow mass transport and statistical evolution of an atomic gas

across the superfluid-Mott insulator transition

We study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice

across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase

transition with a lattice ramping routine expected to be locally adiabatic, we observe a

global mass redistribution which requires a very long time to equilibrate, more than 100

times longer than the microscopic time scales for on-site interaction and tunneling. When

the sample enters the Mott insulator regime, mass transport significantly slows down. By

employing fast recombination loss pulses to analyze the occupancy distribution, we observe

similarly slow-evolving dynamics, and a lower effective temperature at the center of the

sample.

This section is based on our published work (by C.-L. Hung, X. Zhang, N. Gemelke, and

C. Chin.) in Phys. Rev. Lett. 104, 160403 (2010). Copyright (2010) by the American

Physical Society.

3.3.1 Introduction

The thorough understanding of atomic interactions in optical lattices provides a testing

ground to investigate hypothetical models widely discussed in condensed matter and many-

body physics [18, 72]. Because of the simplicity and tunability of the underlying Hamil-

tonian, research on optical lattices generates new fronts to perform precise, quantitative

comparison between theoretical calculations and measurements. This new class of “pre-

cision many-body physics” has generated tremendous interest in recent years to locate the

superfluid (SF) to Mott insulator (MI) phase boundaries [55, 56, 73], described by the

Bose-Hubbard model [61, 62], and to characterize Mott and band insulators in Fermi gases

[74, 75], described by the Fermi-Hubbard model [76]. Many new, exotic quantum phases
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in optical lattices have also been proposed [72], even in the absence of counterparts in

condensed matter physics.

As promising as the precise characterization of quantum phases is, fundamental as-

sumptions such as the thermal dynamic equilibrium of the sample should be investigated.

Since the preparation of quantum gases generally involves ramping up the lattice potential,

dynamics are an inseparable part of all optical lattice experiments. Very slow equilibration

processes have been reported in one-dimensional optical lattices [77] and have been sug-

gested by the observation of long-lived repulsively bound pairs [78] and doublons [79] in

three-dimensional lattices. Prospects of non-equilibrium dynamics in optical lattices have

also attracted much interest recently. Mass and entropy transport in the optical lattices can

provide a wealth of information to characterize the underlying quantum phases [80, 81].

Dynamic passage across a phase transition can lead to the proliferation of topological de-

fects in the optical lattices [82].

In the following sections, we study global dynamics of ultracold atomic gases in a

monolayer of two-dimensional (2D) optical lattice. After ramping up the lattice potential,

we observe both mass transport and statistical distribution of atomic occupancy in the lat-

tice. Mass transport is directly seen from in situ density profiles, while occupancy statistics

is probed by inducing loss in sites of three or more atoms using a fast three-body recombi-

nation loss pulse (see Fig. 3.11). Both processes show intriguing behavior at times much

longer than microscopic time scales for atomic interaction and tunneling.

3.3.2 Experimental setup and procedures

We begin the experiment with a 133Cs quantum gas in a 2D optical trap. Details on the

preparation of the quantum gas and optical lattice loading procedure can be found in

Ref. [28] and Ref. [30], respectively. In brief, a nearly pure Bose condensate is loaded
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Figure 3.11: Averaged absorption images and density cross sections of N = 2 × 104

cesium atoms in a monolayer of 2D optical lattice. After ramping the lattice in 150 ms
to a lattice depth Vf = 13 ER, (a) shows the sample immediately after the ramp. In (b),
an additional fast recombination pulse removes atoms in sites of occupancy three or more.
(c) shows the average density cross sections of (a) (circles) and (b) (triangles). (d) shows
the average density cross sections of the samples with additional 800 ms hold time after
the ramp, without (circles) and with the recombination loss pulse (triangles). Image size is
(106 µm)2 = (200 sites)2 and seven images are used in each averaged result.
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into a 2D optical dipole trap, formed by two orthogonally crossed beams on the x−y plane

and a one-dimensional vertical optical lattice of 4 µm spacing which confines the whole

sample in a single “pancake”-like lattice site [30]. Using microwave tomography, we find

∼ 95% of the atoms are loaded into a single pancake trap. The remaining ∼ 5% in the

neighboring sites do not contribute to the main results reported in this letter. The trap vi-

bration frequencies are (ωx, ωy, ωz) = 2π×(11, 13, 1970) Hz, and the cloud temperature is

T = 11 nK. The ratios ~ωi/kBT = (0.05, 0.06, 9) indicate the sample is two-dimensional.

After 2D trap loading, we adjust the atomic scattering length a by ramping the magnetic

field to a designated value, typically, B = 20.7 G where a = 200 aB and aB is the Bohr

radius. At this field, the three-body recombination loss rate is at the Efimov minimum [48].

We introduce a 2D optical lattice by slowly turning on retro-reflections of the crossed

dipole beams which add a square lattice potential with lattice spacing d = 532 nm and a

weak contribution to the envelope confinement characterized by a mean radial frequency
√
ωxωy = 2π(1 + V/82ER) × 12 Hz, where ER = kB × 64 nK is the recoil energy and

V is the lattice depth. Care is taken to equalize lattice depths in the x and y directions by

balancing the lattice vibration frequencies to within 5%. Based on the vibration frequency

measurements, we calculate tunneling t and on-site interaction U numerically from the

band structure in a homogeneous 2D lattice.

We ramp on the lattice depth following V (τ) = Vf (1 + γ)/[1 + γe4(τ−τc)2/τ2
c ] [83],

preceded by a 30 ms linear ramp from 0 to 0.4 ER to ensure a smooth turning on of the

lattice potential at low depth. The final depth Vf is reached at time τ = τc and γ is chosen

such that V (0) = 0.4 ER. After the ramp, the sample is held in the lattice for a hold time

τhold. The adiabaticity parameter of the ramp is given by

α = ~|ṫ|/t2; (3.11)
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slow ramps with α < 1 suggest that local equilibrium of the system is preserved [84, 83].

We obtain the in situ density profile of the sample by absorption imaging normal to the

x − y plane. After a hold time τhold, we first switch the magnetic field to B = 17.7 G

(a = 40aB) and then turn off the 2D lattice 100 µs before the imaging, reducing the on-

site peak density by a factor of 30, in order to mitigate any density dependent loss during

the imaging process.2 The atomic density is measured with a spatial resolution of 1.3 µm

using a long working distance (34 mm) commercial microscope objective. The strength

and duration of the imaging pulse are chosen to keep the travel distance of the atoms due to

the radiation pressure from the imaging beam small compared to the depth of focus, while

maintaining a good signal-to-noise ratio.

3.3.3 Slow mass transport

Our first step to study the global dynamics is to watch how the density profile equilibrates

after a lattice ramp. Here we employ a ramp which is locally adiabatic, but is fast enough

to induce detectable mass flow. An example is shown in Fig. 3.12 (a), where after a τc =

20 ms ramp to Vf = 10 ER (U/t = 11, α < 0.6) the sample of N = 2 × 104 atoms

at scattering length a = 200 aB gently expands and the peak density slowly decreases.

This deformation is consistent with the increase of repulsive atomic interaction in stronger

lattice confinement.

To quantify the rate of mass redistribution, we define the root-mean-square deviation of

a density profile at hold time τ from equilibrium as

∆(τ) =

{∑
i

[n̄i(τ)− n̄eq,i]2
}1/2

, (3.12)

2. This procedure suppresses systematic distortions of the density measurement. In previous works [30],
our imaging was performed at low magnetic fields, where recombination and radiative losses preferentially
reduce the density at the center and can enhance the plateau feature in deep lattices.
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Figure 3.12: Evolution of the density profile after a short lattice ramp. Following a τc =
20 ms ramp to Vf = 10 ER (U/t = 11, α < 0.6), (a) shows the radial density profiles
measured after hold times of 0 ms (squares), 200 ms (circles) and 500 ms (triangles). Inset
shows the time evolution of ∆, normalized to the initial value ∆0 = ∆(0) (circles) and the
single exponential fit. (b) shows the profiles measured at Vf = 12 ER (U/t = 20, α < 1).
The fitted decay times at different depths of Vf are shown in (c), where the dashed line
marks the critical lattice depth, see text.
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where the sum goes over lattice sites enclosing the sample. n̄i(τ) is the mean occupancy

of site i at hold time τ , obtained by averaging over an annular area centered on the cloud,

containing site i, and with width 1.3 µm [30]. n̄eq,i is the mean occupancy of site i at

equilibrium, which we obtain from samples that cease to evolve after long hold time of

τhold = 500 ∼ 800 ms.

At lattice depths Vf < 10 ER, the sample shows a weak breathing mode oscillation

in the first 50 ms of hold time. After 50 ms, ∆(τ) can be fit by single exponential decays

with time constants > 100 ms. When the lattice depth reaches 11 ER or higher, the mass

flow slows down significantly, see Fig. 3.12 (b) and (c), suggesting that the mass transport

is suppressed in this regime. The crossover behavior near Vf = 11 ER, where U/t ≈ 15,

is consistent with a recent observation of the suppression of superfluidity at U/t = 16 in

a 2D optical lattice [56], and quantum Monte Carlo calculations, predicting that the SF-

MI transition at the tip of the n = 1 Mott lobe occurs at U/t ≈ 16.74 in 2D [85]. For

Vf > 13 ER, even slower dynamics require much longer hold time and the slow loss

from three-body recombination limits our ability to determine the mass redistribution time

scale.3

The slow dynamics throughout the SF-MI regime indicate that the global thermalization

is much slower than the microscopic time scales. Indeed, in the range of Vf = 6 ∼ 13 ER,

tunneling to neighboring sites occurs in τt = ~/zt = 0.6 ∼ 3 ms, where z = 4 is the

coordination number of the 2D square lattice.

3.3.4 Evolution of occupancy statistics

In the second experiment, we investigate the evolution of occupancy statistics. For this, we

develop a scheme to determine the fraction of sites with three or more atoms by inducing

3. At Vf = 13 ER and scattering length a = 200 a0, three body loss rate for 3 atoms per site is∼ 0.4 s−1
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a fast three-body recombination loss, and comparing the density profiles with and without

the loss. For cesium atoms, extremely fast three-body loss can be induced by jumping the

magnetic field near an Efimov resonance [48], where the loss happens much faster than

atoms tunnel.

We induce the recombination loss at Vf = 13 ER by jumping the magnetic field to

B = 2 G for a duration of 1 ms before imaging at 17.7 G. The 1/e time of the field

switching is below 100 µs. During the switching, the magnetic field from the eddy currents

is measured by microwave spectroscopy and compensated by a controlled overshoot of

currents in the magnetic coils. At 2 G, the three-body loss rate is as high as (20 µs)−1 for 3

atoms in one site, much faster than the tunneling rate 1/τt = (3 ms)−1, and the 1 ms pulse

is sufficient to remove all the atoms that could participate in the loss process.

We analyze the dynamics of on-site statistics by first ramping the lattice in τc =300 ms

to Vf =13 ER (U/t = 41, α < 0.1) at scattering length a =310 aB and then holding

the sample for up to 800 ms. Here, the lattice ramp is slow enough to ensure negligible

subsequent mass flow. Density profiles at different hold times, with and without the loss

pulse, are shown in Fig. 3.13 (a-c). A larger fractional loss occurs at the central part of the

sample where the density is higher, as expected; there is no apparent loss in the wing. We

observe a smaller fractional loss after a longer hold time, which suggests that fewer sites

are found with three or more atoms.

The evolution of the statistics is best shown in Fig. 3.13 (d), where the atom loss, ∆n̄,

is induced by the recombination pulse after different hold times. A dramatic difference

is seen near the center with mean occupancy near n̄ = 2. Here the loss fraction reaches

∆n̄/n̄ = 50% immediately after the ramp, and it slowly declines to merely 15% after a

hold time of τhold =800 ms.

To quantitatively model the loss, we assume, starting with n atoms in one site, (n mod-

ulo 3) atoms remain after the pulse. To test this model, we prepare an ideal 2D gas by
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Figure 3.13: Evolution of the on-site statistics in a Mott insulator. (N = 1.6 × 104, τc =
300 ms, Vf = 13 ER). Upper figures show the density profiles of the samples held in the
final depth Vf = 13 ER for τhold = (a) 0 ms, (b) 200 ms, (c) 600 ms and then imaged
with (triangles) and without (circles) the recombination pulse. Shaded areas mark the loss
fractions. (d) shows the loss ∆n̄ versus mean occupancy n̄ measured after different hold
times (filled symbols): 0 ms (squares), 200 ms (circles), 400 ms (upward triangles), 600 ms
(downward triangles) and 800 ms (diamonds). Gray lines are the loss derived from an
insulator model, see text, assuming kBT/U=1 (higher curve), 0.5, 0.3, 0.2 and 0 (lower
curve). The black line, derived from the Poisson distribution, is in good agreement with an
ideal gas measurement (open circles). The inset shows an extended view.
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tuning the magnetic field to B = 17.1 G, where a ≈ 0 aB . We then quickly ramp on the

lattice to 30 ER in 10 ms to freeze the on-site occupancy and perform the loss measure-

ment. For non-interacting particles, we expect the occupancy obeys a Poisson distribution.

The calculated atom loss, see black solid lines in Fig. 3.13 (d) and the inset, is in good

agreement with our measurement.

Recombination losses measured with interacting samples and slow lattice ramps, on the

other hand, deviate from the Poisson model toward lower values for all mean occupancies

(see Fig. 3.13 (d)). This is a general characteristic of the strongly interacting gas.

To gain further insight into the occupancy statistics in an insulator, we compare our

measurement with an analytic model based on a grand canonical ensemble [86, 68]. In

deep lattices with t � U, kBT , the probability for occupancy n can be written as Pn =

Q−1e−β(Hn−µn), where Hn ≈ (U/2)n(n − 1), β = 1/kBT , µ is the local chemical

potential and Q =
∑
n e
−β(Hn−µn) is the grand partition function. The mean occupancy

is then n̄ =
∑
nPn and the loss is modeled as

∆n̄ = n̄−
∑

Pn(n mod 3). (3.13)

Calculations for kBT/U = 1, 0.5, 0.3, 0.2 and 0 are plotted in Fig. 3.13(d). For n̄ < 2.5, all

curves show smaller loss than does the Poisson model. An insulator at lower temperature

experiences fewer losses because thermal fluctuation is reduced. At zero temperature, loss

only occurs at n̄ > 2, where the occupancy n ≥ 3 is unavoidable.

Surprisingly, our loss measurements do not follow the model with a uniform tempera-

ture for up to 800 ms hold time. Using U = kB × 26 nK and describing the deviation from

a constant temperature contour by an effective local temperature Teff(r), we find the center

of the cloud has a lower Teff ∼ 6 nK, while for the wing Teff ∼ 20 nK even after 800 ms

of hold time. This persistent temperature variation across the sample suggests that the heat
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flow is insufficient to establish a global thermal equilibrium even after 800 ms hold time.

This may be aggravated by a large heat capacity of the atoms in the wing.

Both the slow mass and heat flows observed in this work raise the issue of describing

quantum gases in optical lattices using a thermodynamic model. We suspect that the slow

dynamics is partially due to our large sample size of (100 sites)2 and the dimensionality

of our system, and partially associated with the critical behavior of the system. Across the

SF-MI transition, the sample enters the quantum critical regime, where long equilibration

times are expected [82, 87]. Other interesting mechanisms include the long lifetime of

the excited doublon [79], which could slow down statistical redistribution of occupancies

while supporting mass transport. Moreover, the slow recombination loss preferentially

removes atoms at the center of the sample, creating∼ 20% observed reduction in the mean

occupancy during 800 ms of hold time, which could lead to a radial temperature gradient

assuming sufficient local rethermalization.

3.3.5 Conclusion

In summary, we show that the in situ density profiles of atoms in a 2D optical lattice pro-

vide a viable tool for investigating dynamic processes induced by chemical potential and

temperature imbalance. In both cases, we find equilibration times much longer than the mi-

croscopic tunneling time scale. Further investigation into these processes and the relevance

of our observation to the quantum dynamics in the critical regime will be reported in the

future.
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3.4 Observation of scale invariance and universality in

two-dimensional Bose gases

The collective behavior of a many-body system near a continuous phase transition is in-

sensitive to the details of its microscopic physics[3]. Characteristic features near the phase

transition are that the thermodynamic observables follow generalized scaling laws[3]. The

Berezinskii-Kosterlitz-Thouless (BKT) phase transition[88, 89] in two-dimensional (2D)

Bose gases presents a particularly interesting case because the marginal dimensionality

and intrinsic scaling symmetry[90] result in a broad fluctuation regime which manifests

itself in an extended range of universal scaling behavior. Studies on BKT transition in cold

atoms have stimulated great interest in recent years[91, 92, 93, 94, 95, 96], clear demon-

stration of a critical behavior near the phase transition, however, has remained an elusive

goal. Here we report the observation of a scale-invariant, universal behavior of 2D gases

through in-situ density and density fluctuation measurements at different temperatures and

interaction strengths. The extracted thermodynamic functions confirm a wide universal re-

gion near the BKT phase transition, provide a sensitive test to the universality prediction by

classical-field theory [97, 98] and quantum Monte Carlo (MC) calculations[99], and point

toward growing density-density correlations in the fluctuation region. Our assay raises new

perspectives to explore further universal phenomena in the realm of classical and quantum

critical physics.

This section is based on our published work (by C.-L. Hung, X. Zhang, N. Gemelke, and

C. Chin) in Nature 470, 239 (2011).

3.4.1 Introduction

In 2D Bose gases, critical behavior develops in the BKT transition regime, where an

ordered phase with finite-ranged coherence competes with thermal fluctuations and in-
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Figure 3.14: Illustration of scale invariance and universality in 2D quantum gases. (a)
Scale invariance links any thermodynamic observable at different µ and T via a simple
power-law scaling. In a 2D Bose gas with coupling constant g � 1, atomic density n
measured at different temperatures (red lines) can be scaled through constant µ/T and n/T
contours (dashed lines). Near the BKT phase transition boundary (green plane), systems
with different g = g1, g2... (blue planes) scale universally. (b) In situ density measurements
of trapped 2D gases provide crucial information to test the hypotheses of scale invariance
and universality. Sample images at different scattering lengths a are obtained from single
shot.

duces a continuous phase transition from normal gas to superfluid with quasi-long range

order[89]. In this fluctuation region, a universal and scale-invariant description for the

system is expected through the power-law scaling of thermodynamic quantities with re-

spect to the coupling strength and a characteristic length scale[98, 100], e.g., thermal de

Broglie wavelength (Fig. 3.14a). For weakly interacting gases at finite temperatures, in

particular, the scale invariance prevails over the normal, fluctuation, and superfluid regions

because of the density-independent coupling constant[67] and the symmetry of underlying

Hamiltonian[90].

In this section, we experimentally verify the scale invariance and universality of inter-

acting 2D Bose gases, and identify BKT critical points. We test scale invariance of in situ
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density and density fluctuations of 133Cs 2D gases at various temperatures. We study the

universality near the BKT transition by tuning the atomic scattering length using a mag-

netic Feshbach resonance[19] and observing a universal scaling behavior of the equation of

state and the quasi-condensate density. Finally, by comparing the local density fluctuations

and the compressibility derived from the density profiles, we provide strong evidence of a

growing density-density correlation in the fluctuation regime.

3.4.2 Experimental setup and procedures

We begin the experiment by loading a nearly pure 133Cs Bose condensate of N = 2× 104

atoms into a single pancake-like optical potential with strong confinement in the vertical

(z-) direction and weak radial confinement in the horizontal (r-) direction[30, 31]. The

trapping potential, V (r, z) = mω2
rr

2/2 + mω2
zz

2/2, has mean harmonic trapping fre-

quencies ωr = 2π × 10 Hz and ωz = 2π × 1900 Hz. Here, r denotes the radial dis-

tance to the trap center and m is the cesium atomic mass. In this trap, we reach tempera-

tures as low as T = 15 nK and moderate peak chemical potential µ0 < kBT . The ratio

~ωz/µ0 > ~ωz/kBT ∼ 6 indicates that the sample is deeply in the 2D regime with < 1%

population in the vertical excited states. Here, ~ = h/2π, h is the Planck constant, and kB is

the Boltzmann constant. The 2D coupling constant is evaluated according to g =
√

8πa/lz

[67], where a is the atomic scattering length and lz = 200 nm is the vertical harmonic os-

cillator length. We control the scattering length a in the range of 2 ∼ 10 nm� lz , resulting

in weak coupling strengths g = 0.05 ∼ 0.26. Here, the density-dependent correction to

g[67, 101] is expected to be small and negligible (< 2%).

We obtain in situ density distributions of 2D gases by performing absorption imaging

perpendicular to the horizontal plane with a commercial microscope objective and a CCD

camera[31] (see Fig. 3.14b for sample images). About 50 images are collected for each
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experiment condition, and the average density n and the density variance δn2 are evalu-

ated pixel-wise (see Section 3.4.6). We obtain the radial density n(r) and variance δn2(r)

profiles (Fig. 3.15 insets) by accounting for the cloud anisotropy and performing azimuthal

averaging[30].

We obtain the equation of state n(µ, T ) from the averaged density profile by assign-

ing a local chemical potential µ(r) = µ0 − V (r, 0) to each point according to local den-

sity approximation. Both T and µ0 can be determined from the low density wing where

the sample is assumed normal and the density profile can be fit to a mean-field formula

n(µ, T ) = −λ−2
dB ln[1 − exp(µ/kBT − gnλ2

dB/π)][95], where λdB = h/
√

2πmkBT is

the thermal de Broglie wavelength.

3.4.3 Scale invariance in 2D Bose gases

We confirm the scale invariance of a 2D gas by first introducing the dimensionless, scaled

form of density ñ = nλ2
dB (phase space density), fluctuation δñ2 = δn2λ4

dB , and chemical

potential µ̃ = µ/kBT , and showing that the equation of state and the fluctuation satisfy the

following forms:

ñ = F (µ̃) (3.14)

δñ2 = G(µ̃), (3.15)

where F and G are generic functions. This suggests both energy and length scales are

set solely by the thermal energy and the de Broglie wavelength, respectively. An example

at g = 0.26 (a = 10 nm) is shown in Fig. 3.15. Here we show that while the original

density and fluctuation profiles are temperature dependent (see Fig. 3.15 insets), all pro-

files collapse to a single curve in the scaled units. At negative chemical potential µ̃ < 0,

the system is normal and can be described by a mean-field model (dashed lines). In the
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Figure 3.15: Scale invariance of density and its fluctuation. (a) Scaled density (phase
space density) ñ = nλ2

dB as a function of the scaled chemical potential µ̃ = µ/kBT
measured at five different temperatures: T = 21 nK (black circles), 37 nK (red squares),
42 nK (green triangles), 49 nK (blue diamonds), and 60 nK (magenta stars), and coupling
strength g = 0.26. Mean-field expectations for normal gas (dashed line) and superfluid
(solid line) are shown for comparison. Inset shows the radial density profiles before scaling.
(b) Scaled fluctuation δñ2 = δn2λ4

dB at different temperatures. Dashed line is the mean-
field calculation based on the fluctuation-dissipation theorem20. Solid line is an empirical
fit to the crossover feature from which the critical chemical potential µ̃c is determined. Inset
shows the radial fluctuation profiles before scaling. The shaded area marks the fluctuation
region 0 < µ̃ < µ̃c. Error bars show standard deviation of the measurement.
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range of 0 < µ̃ < 0.3, the system enters the fluctuation regime and deviation from the

mean-field calculation becomes evident. Crossing from normal gas to this regime, how-

ever, we do not observe sharp transition feature in the equation of state. At even higher

µ̃ > 0.3, the system becomes a superfluid and the density closely follows a mean-field

prediction[98] ñ = 2πµ̃/g + ln(2ñg/π − 2µ̃). We notice that the mean-field theory in the

superfluid limit also cannot accurately describe the system in the fluctuation regime. Tran-

sition into the BKT superfluid phase is most easily seen in the scaled fluctuation δñ2, which

crosses over to a nearly constant value due to the suppression of fluctuation in the super-

fluid regime[102]. In the density profile ñ, a corresponding transition feature can be found

when one computes the derivative ∂ñ/∂µ̃, i.e., the scaled compressibility κ̃, as suggested

by the fluctuation-dissipation theorem discussed in later paragraphs and Fig. 3.17. Finally,

our measurement suggests that the validity of scale invariance extends to all thermal, fluc-

tuation and superfluid regimes, a special feature for weakly-interacting 2D gases[90] which

guided the analysis of a recent experiment[33].

Determination of the BKT critical points We associate the crossover feature in the den-

sity fluctuations δñ2 and the scaled compressibility κ̃ with the BKT transition[102, 103].

To estimate the location of the transition point, we apply an empirical fit to this feature

and determine the critical chemical potential µ̃c and the critical phase space density ñc (see

Section 3.4.6). Results at different g in the range of 0.05 to 0.26 are shown in Fig. 3.16c-d

and compared to the theoretical prediction of ñc = ln(ξ/g) and µ̃c = (g/π) ln(ξµ/g)[104],

where ξ = 380 and ξµ = 13.2 are determined from a classical-field MC calculation[97].

Our results show good agreement with the theory, apart from a potential systematic error

from the choice of the fit function, which can account for a down shift of 10% in the fit

values of µ̃c and ñc.
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3.4.4 Universality in 2D Bose gases

Further comparison between profiles at different interaction strengths allows us to test the

universality of 2D Bose gases. Sufficiently close to the BKT critical point with |µ̃−µ̃c| < g,

one expects the phase space density shows a universal behavior[98],

ñ− ñc = H(
µ̃− µ̃c
g

), (3.16)

where H is a generic function. Here, density and chemical potential are offset from the

critical values ñc and µ̃c, which remove the non-universal dependence on the microscopic

details of the interaction[100, 98].

To test the universality hypothesis, we rescale µ̃ to µ̃/g and look for critical values ñc

and µ̃c such that the equations of state at all values of g display a universal curve in the

phase transition regime (see Section 3.4.6). Indeed, we find that all rescaled profiles can

collapse to a single curve in the fluctuation region −1 < (µ̃ − µ̃c)/g < 0 and remain

overlapped in an extended range of |µ̃ − µ̃c|/g ≤ 2 (see Fig. 3.16a), which contrasts the

very different equations of state ñ(µ̃) at various g shown in the inset of Fig. 3.16a. Our

result closely follows the classical-field prediction[98] and quantum MC calculations[99]

assuming strictly 2D mean-field contribution, and the fitting parameters: critical density

ñc and chemical potential µ̃c show proper dependence on g and are in fair agreement with

the theory prediction[97] (see Fig. 3.16c-d). We emphasize that critical values determined

from the density fluctuations (see Fig. 3.16c-d) match well with those determined from the

universal behavior, indicating that universality is a powerful tool to determine the critical

point from a continuous and smooth density profile. Similar agreement with the theory on

the critical densities has also been reported based on different experiment techniques[92,

94, 96].

Further universal features near the phase transition can be revealed in the growth of the
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Figure 3.16: Universal behavior near the BKT critical point. (a) Rescaled density profiles
ñ − ñc measured at various coupling strengths, g = 0.05 (green triangles), 0.13 (blue dia-
monds), 0.19 (red circles), and 0.26 (magenta squares). Inset shows the original equations
of state ñ(µ̃). (b) scaled quasi-condensate density ñq =

√
ñ2 − δñ2 at different interac-

tion strengths. In both plots, MC calculations from Ref. [98] (open circles) and Ref. [99]
((a)open squares for g = 0.07 and open triangles for g = 0.14; (b) open squares) are plot-
ted for comparison. The shaded area marks the superfluid regime and the solid line in (b)
shows the superfluid phase space density calculation12. (c-d) critical values µ̃c and ñc de-
termined from the following methods: universal scaling as shown in (a) (see Section 3.4.6,
red squares), density fluctuation crossover (see text, black circles), and MC calculation
from Ref. [97] (solid line). Experiment values coincide at g = 0.05 identically, as a result
of our analysis (see Section 3.4.6). Error bars show the standard deviation of the measure-
ment.
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quasi-condensate (QC) density nq =
√
n2 − δn2 across the phase transition[97, 98, 105].

QC is a measure of the non-thermal population in a degenerate Bose gas. A finite QC

density does not necessarily imply superfluidity, but can be responsible for a non-Gaussian

distribution observed in the momentum space[94]. QC is predicted to be universal near the

critical point following[98]

ñq = Q(
µ̃− µ̃c
g

), (3.17)

where Q is a generic function and ñq = nqλ
2
dB .

We employ both of our density and fluctuation measurements to evaluate ñq at various

g. Adopting µ̃c determined from the universal behavior of the density profile, we immedi-

ately find that all measurements collapse to a single curve in the range of |µ̃ − µ̃c|/g ≤ 2

with apparent growth of QC density entering the fluctuation region (Fig. 3.16b). The

generic function Q we determined is in good agreement with the classical-field[98] and

quantum MC[99] calculations with no fitting parameters. Both our density and fluctu-

ation measurements show universal behaviors throughout the fluctuation region where a

mean-field description fails and confirm universality in a 2D Bose gas near the BKT phase

transition[98, 99].

3.4.5 Evidence of growing density-density correlations in the critical

fluctuation region

The generic functions we described in the previous paragraphs offer new avenues to in-

vestigate the critical behavior of the 2D gas. Following the framework of scale invariance,

we compare the dimensionless compressibility κ̃ = ∂ñ/∂µ̃ = F ′(µ̃) and the fluctuation

δñ2 = G(µ̃) extracted from the measurements at g = 0.05 and 0.26 (see Fig. 3.17). In

the normal gas regime at low phase space density (G(µ̃), F ′(µ̃) < 3), a simple equality
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Figure 3.17: Fluctuation versus compressibility. Scaled compressibility κ̃ = F ′(µ̃) and
scaled density fluctuation δñ2 = G(µ̃) are derived from measurements at two interaction
strengths, g = 0.05 (squares) and g = 0.26 (circles), each containing two different tem-
peratures between 20 and 40 nK (solid and open symbols, respectively). Diagonal line
shows the expectation of G = F ′ in the normal gas region. Solid line shows suppressed
fluctuation G = F ′/(1 + z) with z = 2.

G = F ′ is observed. This result is consistent with the fluctuation-dissipation theorem

(FDT) for a classical grand canonical ensemble[106], which gives kBT
∂N
∂µ = δN2, where

N is the particle number in a detection cell. In the fluctuation and the superfluid regimes

at higher phase space density, our measurement shows that density fluctuations drop below

the compressibility G < F ′.

Natural explanations for the observed deviation include non-vanishing dynamic density

susceptibility at low temperature[107] and the emergence of correlations in the fluctuation

region[108]. While the former scenario is outside the scope of this article, we show that the
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correlation alone can explain our observation. Including correlation, the compressibility

conforms to[109, 108]

κ̃(r) = λ−2
dB

∫
〈δñ(r)δñ(r + r′)〉d2r′ (3.18)

= δñ2(r)(1 + z), (3.19)

where 〈...〉 denotes ensemble average and z =
1+n(r)

∫
[g(2)(r,r+r′)−1]d2r′

1+n(r)
∫
v[g(2)(r,r+r′)−1]d2r′

−1 is the relative

strength of correlation to local fluctuation δñ2 [108]. Here g(2) is the normalized second-

order correlation function[110] and v denotes the effective area of the resolution limited

spot. When the sample is uncorrelated, we have z = 0; non-zero z suggests finite correla-

tions in the sample. In the fluctuation region shown in Fig. 3.17, observing a lower fluctu-

ation than would be indicated by the compressibility, with z approaching 2, suggests that

the correlation length approaches or even exceeds our imaging cell dimension
√
v ∼ 2 µm.

This observation is in agreement with the expected growth of correlation when the system

enters the fluctuation region. Similar length scales were also observed in the first-order

coherence near the BKT phase transition using an interferometric method[94] and near the

superfluid phase transition in three dimensions[111].

3.4.6 Detailed procedures and analyses

Preparation and detection of cesium 2D Bose gases are similar to those described in Ref. [31]

. We adjust the temperature of the sample by applying magnetic field pulses near a Fes-

hbach resonance to excite the atoms. We then tune the scattering length to a designated

value, followed by 800 ms wait time to ensure full thermalization of the sample.

Absorption imaging is performed in situ using a strong resonant laser beam, saturating

the sample to reduce the optical thickness. Atom-photon resonant cross-section and atomic
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density are independently calibrated. Averaged atom number Ni and number fluctuation

δN2
i at i-th CCD pixel are evaluated pixel-wise based on images taken under identical ex-

periment conditions. The photon shot-noise, weakly depending on the sample’s optical

thickness, is calibrated and removed from the measured number variance. We correct the

effect of finite imaging resolution on the remaining number variance using calibration from

dilute thermal gas measurements. The density fluctuation δn2
i is obtained from the recov-

ered atom number variance using δn2
iλ

2
dB = δN2

i /A, which replaces the dependence on

the CCD pixel area A by a proper area scale λ2
dB .

Calibration of the atomic surface density and the atom number fluctuation. The

atomic surface density n of the 2D gas is evaluated with similar schemes discussed in

Ref. [112] , where the resonant cross-section σ0 is independently calibrated using a thin 3D

Bose condensate with similar optical thickness and the known atom number-to-Thomas-

Fermi radius conversion. The resulting value can be compared to that determined from the

atom shot-noise amplitude in dilute 2D thermal gases, where the noise is evaluated using

binned CCD pixels to remove finite resolution effects. For dilute thermal gases, we expect

δN2 = N , where N is the mean atom number; we compare the fluctuation amplitude to

the mean and extract the value of σ0. Two results agree to within 10% and the residual

non-linearity in the density calibration is negligible.

We evaluate the atom number variance δN2 pixel-wise based on images taken under

identical experiment conditions. The photon shot-noise contribution δN2
p , which weakly

depends on the sample’s optical thickness nσ0, is calibrated and removed from the atom

number fluctuation using δN2
p = (δN2

0/2)[1 +
(1+γe−nσ0)2

(1+γ)2 enσ0 ], where δN2
0 is the photon

shot-noise without atoms and γ is the ratio of the imaging beam intensity to the saturation

intensity. Both δN2
0 and γ are experimentally calibrated. We then correct for the effect

of finite resolution on the number fluctuation[30] by comparing the atom number variance

in a dilute thermal cloud to its mean atom number, using δN2 = N , and applying this
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calibration to all fluctuations measured at lower temperatures and higher densities.

Density-density correlation in the fluctuation measurement. In the fluctuation mea-

surement, we determine δn2 from the pixel-wise atom number variance using the formula

δn2λ2
dB = δN2/A, which replaces the dependence on the pixel area A by a natural area

scale λ2
dB . This definition, however, does not fully eliminate the dependence on the imag-

ing resolution spot size v ∼ (2 µm)2. In particular, when the density-density correlation

length ξ approaches or exceeds the resolution, the measured fluctuation can depend on the

fixed length scale
√
v, which can complicate the scaling behavior. However, we do not see

clear deviation of scale invariance and universality within our measurement uncertainties

(Fig. 3.15b and 3b). We attribute this to the small variation of the non-scale invariant contri-

bution within our limited range of sample temperature. Further analysis on the correlations

and fluctuations is in progress and the result will be published elsewhere.

Determination of the BKT critical values from the fluctuation data. We use a hyper-

bolic function y(µ̃) = s(µ̃ − µ̃c) −
√
s2(µ̃− µ̃c)2 + w2 to empirically fit the crossover

feature of the density fluctuation near the transition region, assuming δñ2(µ̃) = Dey(µ̃),

where the critical chemical potential µ̃c, the fluctuation in the superfluid regime D, the

slope of the exponential rise s, and the width of the transition region w are fitting pa-

rameters. The critical phase space density is then determined from the density profile as

ñc = ñ(µ̃c). Other choices of fit functions give similar results, contributing only small

systematics from the choice of different models.

Obtaining the universal function H(x). We use the density profiles in the inset of

Fig. 3.16a to look for critical values ñc and µ̃c such that the equations of state at all values

of g collapse to a single universal curve H(x) = ñ(µ̃) − ñc, where x = (µ̃ − µ̃c)/g is the

rescaled chemical potential. To do this, we take the profile measured at g = 0.05 ≡ gr

as the reference, evaluate Hr(x) = ñ(grx + µ̃c,r)− ñc,r using the critical values ñc,r and

µ̃c,r determined from the fluctuation crossover feature, and smoothly interpolate the data
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to make a continuous reference curve Hr(x) in the range of |x| ≤ 1. Using this model, we

perform minimum chi-square fit to the profiles measured at all other values of g according

to ñ(µ̃) = ñc+Hr(
µ̃−µ̃c
g ), with only ñc and µ̃c as free parameters. This procedure success-

fully collapses all density profiles (see Fig. 3.16a), and is independent of any theoretical

model. The resulting critical values ñc and µ̃c are plotted in Fig. 3.16c-d.

3.4.7 Conclusion

In summary, based on in situ density measurements at different chemical potential, tem-

perature, and scattering length, we have explored and confirmed the global scale invariance

of a weakly-interacting 2D gas, as well as the universal behavior near the critical point.

Our results provide detailed description of critical thermodynamics near the BKT tran-

sition and offer new prospects to investigate other critical phenomena near classical or

quantum phase transitions. In particular, we present experimental evidence of the growing

correlations in the fluctuation region through the application of the fluctuation-dissipation

theorem. Further investigations into the correlations will provide new insights into the rich

critical phenomena near the transition point, for instance, critical opalescence and critical

slowing.

3.5 Extracting density-density correlations from in situ images of

atomic quantum gases

In this section, we present a complete recipe to extract the density-density correlations

and the static structure factor of a two-dimensional (2D) atomic quantum gas from in situ

imaging. Using images of non-interacting thermal gases, we characterize and remove the

systematic contributions of imaging aberrations to the measured density-density correla-

tions of atomic samples. We determine the static structure factor and report results on
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weakly interacting 2D Bose gases, as well as strongly interacting gases in a 2D optical

lattice. In the strongly interacting regime, we observe a strong suppression of the static

structure factor at long wavelengths.

This section is based on a published work (by C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung,

N. Gemelke, and C. Chin) in New J. Phys. 13, 075019 (2011).

3.5.1 Introduction

Fluctuations and correlations result from the transient dynamics of a many-body system

deviating away from its equilibrium state. Generally, fluctuations are stronger at higher

temperatures and when the system is more susceptible to the external forces (as governed

by the fluctuation-dissipation theorem, see [106, 113]). Local fluctuations and their correla-

tions can thus be a powerful tool to probe thermodynamics, and to identify phase transition

of a many-body system due to the sudden change of the susceptibility to the thermodynamic

forces.

Measurement of fluctuations and correlations on degenerate atomic gases can reveal

much information about their quantum nature [114]. Experiment examples include the

quantum statistics of the atoms [115, 58, 116, 117, 118], pairing correlations [119] and

quantum phases in reduced dimensions [120, 121]. In these experiments, images of the

sample are taken after the time-of-flight expansion in free space, from which the momentum-

space correlations are extracted.

In situ imaging provides a new and powerful tool to examine the density fluctuations

in real space [70, 30, 122, 123, 124, 125, 126, 127, 128], offering a complimentary de-

scription of the quantum state. This new tool has been used to resolve spatially sepa-

rated thermodynamic phases in inhomogeneous samples. From in situ measurements, both

Mott insulator density plateaus and a reduction of local density fluctuations were observed
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[30, 125, 126, 31]. Furthermore, a universal scaling behavior was observed in the density

fluctuations of 2D Bose gases [32].

Precise measurements of spatial correlations, however, present significant technical

challenges. In in situ imaging, one typically divides the density images into small unit

cells or pixels and then evaluates the statistical correlation of the signals in the cells. If

both the dimension of the cell and the imaging resolution are much smaller than the corre-

lation length of the sample, the interpretation of the result is straightforward. In practice,

because the correlation length of quantum gases is typically on the order of 1 µm, compa-

rable to the optical wavelength that limits the image resolution, interpreting experimental

data is often more difficult. Finite image resolution, due to either diffraction, aberrations

or both, contributes to systematic errors and uncertainties in the fluctuation and correlation

measurements.

In this section, we present a general method to determine density-density correlations

and static structure factors of quantum gases by carefully investigating and removing sys-

tematics due to imaging imperfections. In Section 2, we review the static structure factor

and its relation to the real space density fluctuations. In Section 3, we describe how the

density fluctuation power spectrum of a non-interacting thermal gas can be used to cali-

brate systematics in an imperfect imaging system, and show that the measurement can be

explained by aberration theory. In Section 4, we present measurements of density fluctu-

ations in weakly interacting 2D Bose gases and strongly interacting gases in a 2D optical

lattice, and extract their static structure factors from the density-density correlations.
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3.5.2 The density-density correlation function and the static structure

factor

We start by considering a 2D, homogeneous sample at a mean density n̄. The density-

density correlation depends on the separation r1 − r2 between two points, and the static

correlation function ν(r) is defined as [129]

ν(r1 − r2) = n̄−1〈δn(r1)δn(r2)〉

= δ(r1 − r2) + n̄−1〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r1)Ψ̂(r2)〉 − n̄ (3.20)

where 〈...〉 denotes the ensemble average, and δn(r) = n(r) − n̄ is the local density fluc-

tuation around its mean value n̄. The Dirac delta function δ(r1 − r2) represents the auto-

correlation of individual atoms, and 〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r1)Ψ̂(r2)〉 = G(2)(r1 − r2) is the

second-order correlation function [110]. When the sample is completely uncorrelated, only

atomic shot noise is present and ν(r1 − r2) = δ(r1 − r2). At sufficiently high phase space

density, when the inter-particle separation becomes comparable to the thermal de Broglie

wavelength λdB or the healing length, density-density correlation becomes non-zero near

this characteristic correlation length scale and ν(r) deviates from the simple shot noise

behavior.

The static structure factor is the Fourier transform of the static correlation function

[129, 130]

S(k) =

∫
ν(r)e−ik·rdr, (3.21)

where k is the spatial frequency wave vector. We can rewrite the static structure factor in
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terms of the density fluctuation in the reciprocal space as [130]

S(k) =
〈δn(k)δn(−k)〉

N
=
〈|δn(k)|2〉

N
, (3.22)

where δn(k) =
∫
δn(r)e−ik·rdr, and N is the total particle number. Here, δn(−k) =

δn∗(k) since the density fluctuation δn(r) is real. The static structure factor is therefore

equal to the density fluctuation power spectrum, normalized to the total particle number N .

A non-correlated gas possesses a structureless, flat spectrum S(k) = 1 while a correlated

gas shows a non-trivial S(k) for k near or smaller than inverse of the correlation length

ξ−1.

The static structure factor reveals essential information on the collective and the sta-

tistical behavior of thermodynamic phases [113, 130, 131, 132]. It has been shown that,

through the generalized fluctuation-dissipation theorem [107], the static structure factor of

a Bose condensate is directly related to the elementary excitation energy ε(k) as [130, 133]

S(k) =
~2k2

2mε(k)
coth

ε(k)

2kBT
, (3.23)

wherem is the atomic mass, T is the temperature, ~ is the Planck constant h divided by 2π,

and kB is the Boltzmann constant. See references [130, 131, 132] on the static structure

factor of a general system with complex dynamic density response in the frequency domain.

Previous experimental determinations of the static structure factor in the zero-temperature

limit, based on two-photon Bragg spectroscopy, have been reported for weakly interacting

Bose gases [134, 135] and strongly interacting Fermi gases [136]. Here, we show that

S(k) at finite temperatures can be directly determined from in situ density fluctuation and

correlation measurements.

Experimental determination of S(k) from density fluctuations is complicated by arti-
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Figure 3.18: A comparison between physical length scales and measurement length scales.
In (a), each atom is represented by a color circle with its diameter equal to the thermal de
Broglie wavelength, λdB . ξ is the correlation length. An ideal measurement detects atom
with perfect resolution. (b) shows the experimental condition where the image resolution
is larger than the other length scales. Here, the image of an atom forms a resolution limited
spot (dashed circles), and is large compared to the correlated area ξ2 and the CCD pixel
area. The grid lines represent the CCD pixel array.

ficial length scales introduced by the measurement, including, for example, finite image

resolution and size of the pixels in the charge-coupled device (CCD). Figure 3.18 shows

a comparison between the measurement length scales (the resolution limited spot size and

CCD pixel size), the correlation length ξ, and the thermal de Broglie wavelength λdB . Ide-

ally, a density measurement should count the atom number inside a detection cell (pixel)

with sufficiently high image resolution, and the dimension of the cell should be small com-

pared to the atomic correlation length. In our experiment, the image resolution is deter-

mined by the imaging beam wavelength λ = 852 nm, the numerical aperture N.A. = 0.28,

and the aberrations of the imaging system. The image of a single atom on the CCD chip

would form an Airy-disk like pattern with a radius comparable to or larger than λdB or ξ.

The imaging magnification was chosen such that the CCD pixel size
√
A = 0.66 µm in

the object plane is small compared to the diffraction limited spot radius ∼ 1.8 µm. The

atom number Nj recorded on the j-th CCD pixel is related to the atom number density∫
drn(r)P(rj − r), assuming the point spread function P(r) is approximately flat over the

100



length scale of a single pixel,

nexp(rj) ≡
Nj
A
≈
∫
drn(r)P(rj − r), (3.24)

where rj is the center position of the j-th pixel in the object plane, n(r) is the atom num-

ber density distribution, and the integration runs over the entire x − y coordinate space.

The atom number fluctuation measured at the j-th pixel is related to the density-density

correlation as

〈δN2
j 〉 ≈ A2

∫
dr

∫
dr′〈δn(r)δn(r′)〉P(rj − r)P(rj − r′), (3.25)

where δNj = Nj − 〈Nj〉 is the atom number fluctuation around its mean value 〈Nj〉.

In the Fourier space, Eq. (3.24) can be written as

δnexp(kl) ≈ δn(kl)P(kl), (3.26)

where δnexp(kl) ≡
∑
j δNje

−ikl·rj is the discrete Fourier transform of δNj , approximat-

ing the continuous Fourier transform. Here, kl = 2π
L (lx, ly), L is the linear size of the

image, lx and ly are integer indices in k-space. From Eq. (3.22) and (3.26), the power

spectrum of the density fluctuation is related to the static structure factor as

〈|δnexp(kl)|2〉 ≈ NS(kl)M2(kl), (3.27)

where the modulation transfer functionM(k) = |P(k)| accounts for the imaging system’s

sensitivity at a given spatial frequency k, and is determined by the point spread function.

Also, from Eq. (3.25), the pixel-wise atom number fluctuation is related to the weighted
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static structure factor integrated over the k-space,

〈δN2
j 〉 ≈

〈Nj〉A
4π2

∫
dkS(k)M2(k). (3.28)

Generalization of the above calculations to arbitrary image resolution and detection

cell size is straightforward. In addition to convolving with the point spread function, the

measured atom number density must also be convolved with the detection cell geometry.

Equation (3.24) can therefore be written as Nj/A =
∫
dkn(k)P(k)H(k)eik·rj , where

H(k) =
∫
A e

ik·rdr/A and the integration goes over the area A of the detection cell. This

suggests simply replacingM2(k) byM2(k)H2(k) to generalize Eq. (3.27) and (3.28). Fi-

nally, in all cases, the discrete Fourier transform defined in Eq. (3.26) should well approx-

imate the continuous Fourier transform for spatial frequencies smaller than the sampling

frequency 1/
√
A.

We view the factor M2(k)H2(k) as the general imaging response function, describ-

ing how the imaging apparatus responds to density fluctuations occurring at various spatial

frequencies. To extract the static structure factor from in situ density correlation mea-

surements, one therefore needs to characterize the imaging response function at all spa-

tial frequencies to high precision. Since our pixel-size is much smaller than the diffrac-

tion and aberration limited spot size, we will from here forward assume H2(k) = 1;

H2(k) decays around k ∼ 4/
√
A = 6 µm−1 (1/e radius), which is much larger than

k = 2πN.A./λ = 2.1 µm−1, whereM2(k) terminates.

3.5.3 Measuring the imaging response functionM2(k)

In this section, we show how to use density fluctuations of thermal atomic gases to deter-

mine the imaging response functionM2(k). Other approaches based on imaging individ-

ual atoms can be found, for example, in Refs. [137, 138].
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Figure 3.19: Determination of the imaging response functionM2(k) from in situ images
of 2D thermal gases. (a) Image noise of a 2D thermal gas, obtained by subtracting the aver-
aged density image from a single-shot image. The dashed ellipse encircles the location of
thermal atoms. (b) Noise power spectrum evaluated from 60 images, using discrete Fourier
transform defined following Eq. (3.26). Zero spatial frequency is shifted to the image cen-
ter. (c) Fit to the image noise power spectrum using imaging response function defined in
Eq. (3.31) and aberration parameters defined in Eqs. (3.29) and (3.30). (d) Sample line-cuts
of experiment (circles) and fit (solid lines), with cutting angle θ indicated in the graph. The
profiles are plotted with offset for clarity. Image size: L2 = 256× 256 pixels.

Experimental setup and procedures

Measuring density fluctuations in low density thermal gases provides an easy way to pre-

cisely determine the imaging response function. An ideal thermal gas at low phase-space

density has an almost constant static structure factor up to k = λ−1
dB [110] which, in our

case, is larger than the sampling frequency 1/
√
A. Therefore, the density fluctuation power

spectrum derived from an ideal thermal gas reveals the square of the modulation transfer

function, as indicated by Eq. (3.27).

We prepare a 2D thermal gas by first loading a three-dimensional 133Cs Bose-Einstein

condensate with 2×104 atoms into a 2D pancake-like optical potential with trap frequencies
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ωz = 2π × 2000 Hz (vertical) and ωr = 2π × 10 Hz (horizontal) [31, 32]. We then heat

the sample by applying magnetic field pulses near a Feshbach resonance. After sufficient

thermalization time, we ramp the magnetic field to 17 G where the scattering length is

nearly zero. The resulting thermal gas is non-interacting at a temperature T = 90 nK and

its density distribution is then recorded through in situ absorption imaging [32].

We evaluate the density fluctuation power spectrumM2
exp(kl) = 〈|δnexp(kl)|2〉 using

60 thermal gas images (size: 256× 256 pixels). Figure 3.19(a) shows a sample of the noise

recorded in the images. Outside the cloud (whose boundary roughly follows the dashed

line), the noise is dominated by the optical shot noise, and is therefore uncorrelated and

independent of spatial frequency. In the presence of thermal atoms, we observe excess

noise due to fluctuations in the thermal atom density. The noise power spectrum is shown

as an image in Fig. 3.19(b), with line-cuts shown in Fig. 3.19(d). We note that the power

spectrum acquires a flat offset extending to the highest spatial frequency, due to the photon

shot noise in the imaging beam. Above the offset, the contribution from atomic density

fluctuations is non-uniform and has a hard edge corresponding to the finite range of the

imaging response function. Close to the edge, ripples in the noise power spectrum appears

because of aberrations of the imaging optics, discussed in later paragraphs. Finally, the

bright peak at the center corresponds to the large scale density variation due to the finite

extent of the trapped atoms, and is masked out in our following analysis.

To fully understand the imaging response function with imaging imperfections, we

compare our result with calculations based on Fraunhofer diffraction and aberration the-

ory [139] as described in the following paragraphs.
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Point spread function in absorption imaging

We consider a single atom illuminated by an imaging beam, the latter is assumed to be a

plane wave with a constant phase across both the object and the image planes. The atom,

driven by the imaging electric field, scatters a spherical wave (dark field) which interferes

destructively with the incident plane wave [140]. The dark field is clipped by the limiting

aperture of the imaging optics and is distorted by the imaging aberrations. An exit pupil

function p is used to describe the aberrated dark field at the exit of the imaging optics [139],

and its Fourier transform p(k) with k ∝ R describes the dark field distribution on the CCD

chip, where R is the position in the image plane. The image of a single atom is then an

absorptive feature formed by the interference between the dark field and the incident plane

wave in the image plane.

We extend this to absorption imaging of many atoms with density n(r) =
∑
i δ(r−ri),

where ri is the location of the i-th atom in the object plane. The total scattered field in the

image plane is4 ∆E =
∑
i εp(k−ki), with each atom contributing a dark field amplitude ε,

and k relates to the position r in the object plane through k = r/ad, where a is the radius of

the limiting aperture and d = λ/(2πN.A.). The dark field ε ∝ eiδsE0 is proportional to the

incident field E0, and carries with a phase shift δs associated with the laser beam detuning

from atomic resonance. For a thin sample illuminated by an incident beam with intensity I0,

the beam transmission is t2 = |E0+∆E|2/|E0|2 ≈ 1+2<[∆E/E0] and the atomic density

nexp ∝ − ln(t2)+(1−t2)I0/Isat [112, 32] leads to nexp ∝ −2(1+I0/Isat)<[∆E/E0] ∝∑
i<[eiδsp(k−ki)]. Here, <[.] refers to the real part and Isat is the saturation intensity for

the imaging transition. Comparing the above expression to Eq. (3.24), we derive the point

spread function as P(r) ∝ <[eiδsp(k)]|k=r/ad, in contrast to the form |p(k)|2 in the case

of fluorescence or incoherent imaging.

4. We consider the density n of the 2D gas in a range that the photon scattering cross section remains
density-independent [33].
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When the dark field passes through aberrated optics, neither the amplitude nor the phase

at the exit pupil is uniform, but is distorted by imperfections of the imaging system. To

account for attenuation and phase distortion, We can modify the exit pupil function as

p(rp, θp) = U(rp/a, θp)e
iΘ(rp/a,θp), (3.29)

where rp and θp are polar coordinates on the exit pupil, U(ρ, θ) is the transmittance func-

tion, and Θ(ρ, θ) is the wavefront aberration function. We assume U to be azimuthally

symmetric and model it as U(ρ) = H(1 − ρ)e−ρ
2/τ2

, where H(x) is the Heaviside step

function setting a sharp cutoff when rp reaches the radius a of the limiting aperture. The

factor e−ρ
2/τ2

, with 1/e radius rp = aτ , is used to model the weaker transmittance at large

incident angle due to, e.g., finite acceptance angle of optical coatings. For the commercial

objective used in the experiment, we need only to include a few terms in the wavefront

aberration function

Θ(ρ, θ) ≈ S0ρ
4 + αρ2 cos(2θ − 2φ) + βρ2, (3.30)

where the parameters used to quantify the aberrations are: S0 for spherical aberration,

α for astigmatism (with φ the azimuthal angle of the misaligned optical axis), and β for

defocusing due to atoms not in or leaving the focal plane during the imaging.

Using the exit pupil function in Eq. (3.29), we can evaluate the point spread function

via P(r) ∝ <[eiδsp(k)]|k=r/ad with proper normalization. We can also calculate the

modulation transfer functionM(k) = |P(k)| . In fact, determination of any one of p(rp),

P(r), or M(k) leads to a complete characterization of the imaging system including its

imperfections.
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Modeling the imaging response function

We fit the exit pupil function p in the form of Eq. (3.29), using a discrete Fourier transform,

by comparing

M2
fit = |FT (<[eiδsFT (p)])|2 (3.31)

to the thermal gas noise power spectrumM2
exp shown in Fig. 3.19(b). Here,FT (.) denotes

the discrete Fourier transform. Figure 3.19(c) shows the best fit to the measurement, which

captures most of the relevant features in the experiment data. Sample line-cuts with uni-

form angular spacing are shown in Fig. 3.19(d). This experimental method can in principle

be applied to general coherent imaging systems, provided the signal-to-noise ratio of the

power spectrum image is sufficiently good to resolve all features contributed by the aberra-

tions. Moreover, one can obtain analytic expressions for the point spread function and the

modulation transfer function once the exit pupil function is known (see Section 3.5.5).

Having determined the imaging response function, one can remove systematic contribu-

tions from imaging imperfections to the static structure factor as extracted from the power

spectrum of atomic density fluctuations, see Eq.(3.27).

3.5.4 Measuring density-density correlations and static structure factors

of interacting 2D Bose gases

We measure the density-density correlations of interacting 2D Bose gases based on the

method presented in the previous sections. This study is partially motivated by a finding

in our earlier work that the local density fluctuation of a 2D Bose gas is suppressed when

it enters the Berezinskii-Kosterlitz-Thouless (BKT) fluctuation and the superfluid regions

[32]. We attributed this phenomenon to the emergence of long density-density correlation

length exceeding the size of the imaging cell and the resolution. This results in a smaller
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Figure 3.20: Illustration of the patch selected for the static structure factor analysis. (a)
shows a typical cloud image of 200×200 pixels. The selected patch is located at the center
of the cloud, bounded by a box with an area of 32 × 32 pixels. (b) shows the density
fluctuations inside the patch.

pixel-wise fluctuation δN2/A than the simple product of the thermal energy kBT and the

compressibility κ, as is expected from the classical fluctuation-dissipation theorem (FDT)

[106]. Below, we present a careful analysis of the density-density correlations of interacting

2D Bose gases and discuss the role of correlations in the FDT.

To extract local properties from a trapped sample, we limit our analysis to a small

central area of the sample where the density is nearly flat. In addition, the area is chosen to

be large enough to offer sufficient resolution in the Fourier space. We choose the patch size

to be 32×32 pixels. Figure 3.20 shows a typical image and the density fluctuations inside

the patch.

To ensure that we obtain an accurate static structure factor using the small patch, we

perform a measurement on a non-interacting 2D thermal gas at a phase space density

nλ2
dB = 0.5 and compare the measured static structure factor to the theory prediction [110].

We first calculate the imaging response functionM2(k) for a patch size of 32 × 32 pix-

els and divide the thermal gas noise power spectrum by M2(k). The resulting spectrum

should represent the static structure factor of an ideal 2D thermal gas. In Fig. 3.21, we plot

the azimuthally averaged static structure factor with data points uniformly spaced in k, up
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to the resolution limited spatial frequency k = 2πN.A./λ. The measured static structure

factor is flat and agrees with the expected value of S(k) ≈ 1.3 for k < λ−1
dB = 2 µm−15.

Applying the same analysis to interacting 2D Bose gases, we observe very different

strengths and length scales for the density fluctuations. In Fig. 3.21(a-c), we present the

single-shot image noise of samples prepared under three different conditions: weakly inter-

acting gases at the temperature T = 40 nK (below the BKT critical point), with dimension-

less interaction strength1 g = 0.05 and 0.26 (phase space density nλ2
dB = 9 and 7); and a

strongly interacting 2D gas at the temperature T = 8 nK, prepared in a 2D optical lattice

at a mean site occupancy number of 2.6, and a depth of 7 ER, where ER = h× 1.3 kHz is

the recoil energy. Due to the tight confinement, the sample in the optical lattice has a high

effective interaction strength1 geff = 1.0 [10]. Details on the preparation of the 2D gases

in the bulk and in an optical lattice can be found in Refs. [32] and [10], respectively.

The difference in the density fluctuations shown in Fig. 3.21(a-c) can be characterized

in their static structure factors shown in Fig. 3.21(d). We observe positive correlations

above the shot noise level S(k) = 1 in the two weakly interacting samples. The one at

g = 0.05 shows stronger density correlations at small k than does the sample at g =

0.26. The enhanced density correlations S(k) > 1 at low momenta are expected since the

thermally induced phonon excitations can populate states with length scale 1/k longer than

the healing length ξ = 1/
√
ng. For gases with stronger interactions, excitations cost more

energy and the excited states are less populated. At smaller g, the correlation length is

longer and, therefore, the static structure factor decays at a smaller k.

5. Following the calculation in Ref. [110], we find the static correlation function of an ideal 2D thermal
gas is ν(r) = δ(r)+|g1(z, e−πr

2/λ2
dB )|2/g1(z, 1)λ2

dB , where z = eµ/kBT is the local fugacity and gγ(x, y) =∑∞
k=1 x

ky1/k/kγ is the generalized Bose function. Fourier transforming ν(r) to obtain the static structure
factor S(k), we find S(k) ≈ 1.3 remains flat for kλdB < 1.

1. The dimensionless interaction strength of a weakly interacting 2D Bose gas is g =
√

8πas/lz , where
as is the atomic scattering length and lz =

√
~/mωz is the vertical harmonic oscillator length. For a 2D

gas in a 2D optical lattice, the effective interaction strength is geff = mUl2/~2 [10], where U is the on-site
interaction and l is the lattice constant.
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Figure 3.21: Density fluctuations and the static structure factors of 2D Bose gases. (a) and
(b) Image noise of weakly interacting 2D Bose gases in the superfluid phase at dimension-
less interaction strength g = 0.05 and 0.26. (c) Image noise of a strongly interacting 2D
Bose gas at geff = 1.0 prepared in a 2D optical lattice at a depth of 7 ER. (d) shows the
static structure factors extracted from the noise power spectra of interacting 2D gases as
shown in (a) (black circles), (b) (red squares), and (c) (blue triangles). The static structure
factor of an ideal thermal gas at phase space density nλ2

dB = 0.5 (open circles) and the
expected value of S(k) ≈ 1.3 (gray dashed line) are plotted for comparison. Solid lines are
the guides to the eye. Vertical dashed line indicates the resolution limited spatial frequency
k = 2πN.A./λ = 2.1 µm−1.
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The most intriguing observation is the negative correlations S(k) < 1 in the strongly

interacting gas with geff = 1.0. We observe a below-shot-noise spectrum at low momentum

k, showing that long wave-length excitations are strongly suppressed due to a stronger

interaction energy n~2geff/m = kB × 34 nK compared to the thermal energy kB × 8 nK.

As the momentum k increases, the excitation populations gradually return to the shot noise

level. Our observation is consistent with the prediction in Ref. [133] that when the thermal

energy drops below the interaction energy, global density fluctuations in a superfluid are

suppressed.

Finally, we discuss the contribution of finite density-density correlations in the FDT. In-

cluding correlations, we can write the FDT as kBTκ(r) =
∫
〈δn(r)δn(r′)〉dr′ = n(r)S(0)

[133]. We compare the measured static structure factor, extrapolated to zero-k, to the value

of kBTκ/n, where κ = ∂n/∂µ is the experimentally determined compressibility [32],

and indeed find that nS(0) equals to kBTκ to within our experimental uncertainties of

10 ∼ 20% for all three interacting samples. This agreement shows that the measured cor-

relations and thus the static structure factor can be linked to the thermodynamic quantities

via the FDT. Our ability to determine S(0) and κ from in situ images also suggests a new

scheme to determine temperature of the sample from local observables as kBT = nS(0)/κ.

3.5.5 Full analysis of the point spread function and the modulation

transfer function

Point spread function

Here, we describe our approach to characterize imaging imperfections using extended

Nijboer-Zernike diffraction theory [141]. To obtain the point spread function from the exit

pupil function p(rp, θp), it is convenient to first decompose the exit pupil function using a
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Figure 3.22: Analysis of the imaging aberrations and the point spread function. (a) shows
the wavefront aberration (the phase of the exit pupil function) determined from the fit to the
experiment. (b) shows the expansion coefficients |βmn | determined from Eq. (3.34), using
the exit pupil function in (a). (c) shows a line-cut of the derived point spread function (solid
line). The unaberrated point spread function is plotted for comparison (dashed line). Inset
shows the 2D distribution of the aberrated point spread function and red line indicates the
direction of the line-cut. Image size is (33 µm)2.

complete set of orthogonal functions on the unit disk in the polar coordinates

p(rp, θp) =
∞∑
n=0

n∑
m=−n

βmn Z
m
n (

rp
a
, θp), (3.32)

where Zmn (ρ, θ) = R
|m|
n (ρ)eimθ is a Zernike polynomial, the radial function

Rmn (ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)!

k![(n+m)/2− k]![(n−m)/2− k]!
ρn−2k (3.33)

terminates at ρ = 1, and Rmn = 0 when n − m is odd. The expansion coefficient βmn is

given by

βmn =
n+ 1

πa2

∫ a

0

∫ 2π

0
p(rp, θp)Z

−m
n (rp/a, θp)rpdrpdθp. (3.34)

If we then apply the expansion Eq. (3.32) to the Fourier transform of the exit pupil function

p(k, θ) =
∫ a

0

∫ 2π
0 p(rp, θp)e

−ikrp cos(θ−θp)rpdrpdθp and carry out the integration using the

Zernike-Bessel relation
∫ 1

0 R
m
n (ρ)Jm(ξρ)ρdρ = (−1)(n−m)/2Jn+1(ξ)/ξ, we arrive at the
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following formula

p(k, θ) = 2πa2
∞∑
n=0

n∑
m=−n

inβmn e
im(θ+π)Jn+1(ka)

ka
, (3.35)

where Jn(z) is the n-th order Bessel function of the first kind. The point spread function

P(r, θ) is the real part of eiδsp(k, θ)|k=r/ad with proper normalization

P(r, θ) =
1

N

∞∑
n=0

n∑
m=−n

<[inβmn e
im(θ+π)+iδs ]

Jn+1(r/d)

r/d
, (3.36)

where N = 2πd2<[eiδsp(rp)]|rp=0 = 2πd2 cos δs is the normalizing factor such that∫
P(r)d2r = 1. For a non-aberrated system, only β0

0 is non-zero and the above equation

reduces to the form J1(z)/z, as expected.

Using the above equations, we can derive the point spread function from the fitted

exit pupil function shown in Fig. 3.22(a). We calculate the expansion coefficients βmn and

evaluate the corresponding point spread function, see Fig. 3.22(b-c).

Modulation transfer function

It is straightforward to evaluate the modulation transfer function M(k) = |P(k)| and

the imaging response function M2(k) = |P(k)|2 directly from the exit pupil function

p(rp, θp). Since the point spread function can be written as

P(r) = [eiδsp(k) + e−iδsp∗(k)]/4πa2N|k=r/ad, (3.37)

its Fourier transform is

P(k) =
πd2

N
[eiδsp(rp, θ + π) + e−iδsp∗(rp, θ)]|rp=kad, (3.38)
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where k = |k| is the spatial frequency and θ is the polar angle of k in the image plane. From

Eq. (3.38), the imaging response function isM2(k) ∝ |p(kad, θ+π)+e−2iδsp∗(kad, θ)|2.

This result shows that the phase shift δs is important sinceM2(k) depends on the interfer-

ence between p(kad, θ + π) and p∗(kad, θ). The transmittance U , defined in the exit pupil

function Eq. (3.29), accounts for the radial envelope inM2(k), leading to the sharp edge

at k = d−1 = 2πN.A./λ. Either the continuous function Eq. (3.38) or the discrete Fourier

model Eq. (3.31) can be used to calculate the imaging response function.

3.5.6 Conclusion

In this section, we demonstrated the extraction of density-density correlations and static

structure factors from in situ images of 2D Bose gases. Careful analysis and modeling of

the imaging response function allow us to fully eliminate the systematic effect of imaging

imperfections on our measurements of density-density correlations. For thermal gases,

our measurement of the static structure factor agrees well with theory. For interacting

2D gases below the BKT critical temperature, intriguingly, we observe positive density-

density correlations in weakly interacting samples (g � 1) and negative correlations in the

strong interaction regime (geff = 1.0). For all interacting gases, our static structure factor

measurements agree with the prediction of the FDT as S(0) = kBTκ/n. Extension of

our 2D measurement can further test the prediction of anomalous density fluctuations in

a condensate [129, 142, 143, 144] and strong correlations in the quantum critical region

[145, 146]. Finally, our analysis can be applied to perform precise local thermometry [109]

and can potentially be used to extract the local excitation energy spectrum through the

application of the generalized fluctuation-dissipation theorem [130, 107].
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CHAPTER 4

OBSERVATION OF QUANTUM CRITICALITY WITH

ULTRACOLD ATOMS IN OPTICAL LATTICES

Quantum criticality emerges when a many-body system is in the proximity of a continuous

phase transition that is driven by quantum fluctuations. In the quantum critical regime,

exotic, yet universal properties are anticipated and discussed across a broad spectrum of

physics disciplines. Ultracold atoms provide a clean system to test these predictions. Here

we report the observation of quantum criticality with two-dimensional Bose gases in op-

tical lattices. Based on in situ density measurements, we observe scaling behavior of the

equation of state at low temperatures, locate the quantum critical point, and constrain the

critical exponents. Furthermore, we observe a finite critical entropy per particle which

carries a weak dependence on the atomic interaction strength. Our experiment provides a

prototypical method to study quantum criticality with ultracold atoms.

This chapter is based on our work by X. Zhang, C.-L. Hung, S.-K. Tung, and C. Chin

(arXiv:1109.0344, accepted by Science).

4.1 Proposal: probe quantum criticality with 2D Bose gases in optical

lattices

4.1.1 Probing quantum criticality with ultracold atoms

In the vicinity of a continuous quantum phase transition, quantum fluctuations lead to non-

classical universal behavior of a many-body system [1, 11]. Quantum criticality not only

provides novel routes to new material design and discovery [1, 6, 5, 4, 147], but also raises

possible links between condensed matter systems and those studied in nuclear physics [148,

149] or in cosmology [1, 9]. Understanding quantum criticality and its general role in
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strongly correlated systems has hence attracted significant studies such as those on heavy-

fermion materials [4], Ising ferromagnets [150], and chromium at high pressure [151].

Ultracold atoms offer a clean system for a quantitative and precise study of quantum

phase transitions [55, 152, 153, 154] and critical phenomena [111]. As an example, the

superfluid-to-Mott insulator quantum phase transition is realized by loading atomic Bose-

Einstein condenstates into optical lattices [55]. In recent experiments, scaling behavior was

observed in interacting Bose gases in three [111] and two dimensions [32], and in Rydberg

gases [155]. Suppression of the superfluid critical temperature near the Mott transition was

observed in 3D optical lattices [73]. Studying quantum criticality in cold atoms based on

finite-temperature thermodynamic measurements, however, remains challenging and has

attracted increasing theoretical interest in recent years [156, 157, 158, 159].

4.1.2 The Superfluid-to-Mott insulator transition

In a system of bosonic atoms confined in optical lattices, the superfluid-to-Mott insulator

quantum phase transition can be described by the Bose-Hubbard model [62]. This transition

is driven by the competition between two quantum energy scales: the tunneling energy t

and the on-site interaction U . At zero temperature, two phases are predicted: the superfluid

(SF) and Mott insulator (MI) phases. In the tunneling-dominated regime (g ≡ t/U � 1),

the system forms a superfluid at low temperatures; in the interaction-dominated regime

(g � 1), the system assumes a Mott insulator phase in the ground state. When g equals the

critical value gc, the ground state of the system is neither a superfluid nor a Mott insulator.

At finite temperatures, the critical point expands into a V-shaped regime where universal

scaling behaviors are expected [11, 147, 160].

In addition to the optical lattice, atoms are typically confined by an external harmonic

potential, which adds new perspectives for experimental observations. Because of this
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Figure 4.1: Illustrations of phase diagrams of the Bose-Hubbard model. (a) Zero-
temperature phase diagram in the µ/U–t/U plane. Here MI denotes the Mott insulator
state, SF denotes the superfluid state, and vacuum denotes the state with no atoms oc-
cupying the lattice sites. Density profiles of trapped gases probe lines in the phase dia-
gram along the chemical potential µ direction (with fixed t/U ), shown by the dashed lines.
Points A, B, and C are the specific critical points on the phase boundaries referred to in the
text. At finite temperatures, these critical points expand to quantum critical regions. (b)
Finite-temperature phase diagram along the fixed-t/U line going through the vacuum-to-
superfluid transition point A at zero temperature. Here vac. denotes the vacuum state and
QC denotes the quantum critical region. (c) Finite-temperature phase diagram along the
fixed-t/U line going through the vacuum-to-superfluid transition point B and the tip of the
occupation number N = 1 Mott insulator lobe (point C) at zero temperature.

117



potential, the system has a higher density as one moves toward the trap center [62, 30].

This density profile can reveal the phase diagram of a homogeneous system with different

chemical potentials at a fixed coupling constant g, as shown in Fig. 4.1(a). A system

with a large and negative chemical potential is in a vacuum state. As one increases the

chemical potential, the system evolves into the superfluid state. For small enough g and

larger chemical potential, the system can enter the Mott insulator state with unit occupation

number. Typically, the harmonic potential is slowly varying compared to the optical lattice

potential, and the density distribution is expected to be slowly varying over the length scale

of the lattice constant. With a weak harmonic confinement, the local density approximation

applies, and every point in the system can be viewed as a homogeneous sub-system with a

local chemical potential. Therefore, a measured density profile probes a line in the phase

diagram along the chemical potential direction. Near the phase boundary, the line crosses

the quantum critical regime of our research interest, as shown in Fig. 4.1.

4.1.3 Critical exponents and universality classes

Near a continuous quantum phase transition, characteristic physical quantities can show

singular behaviors. For example, when the system approaches the superfluid-to-Mott in-

sulator transition from the MI side, the gap energy to particle-hole excitations will vanish;

similarly, when the system approaches the transition from the superfluid side, the character-

istic energy scale related to the phonon excitations will vanish. If we denote this vanishing

energy scale as ∆, we can write

∆ ∝ (g − gc)zν , (4.1)
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where z and ν are generic exponents [11]. Similarly, a characteristic length scale ξ diverges

at the transition point:

ξ ∼ (g − gc)−ν . (4.2)

Here z and ν are called the dynamical critical exponent and the correlation length exponent,

respectively. Here we see that for a continuous quantum phase transition, the characteristic

time scale (T ) and the characteristic length scale ξ are intrinsically linked together:

T ∝ 1

∆
∝ ξz, (4.3)

which is in clear contrast to a classical phase transition where time and length scales are

separated.

Exponents z and ν are two of the characteristic critical exponents that classifies a con-

tinuous phase transition. If two different phase transitions belong to the same universality

class, they will share the same critical exponents and show universal behavior indepen-

dent of the microscopic details. In the phase diagram shown in Fig. 4.1a, critical points

at different location on the phase boundary line have different universality classes. Here

we limit our discussion to two-dimensional systems. Point A and B are predicted to obey

the generic dilute Bose gas universality class with z = 2 and ν = 1/2 [11, 157, 61]. By

comparison, point C on the tip of the MI lobe is a multi-critical point where the particle-

and hole-excitations become equally possible, and has more complex critical behaviors: it

belongs to the O(2) universality class with z = 1 and ν = 1 [11, 157, 61] when the tran-

sition is driven by the chemical potential µ along the vertical axis, and belongs to another

set of exponents (z = 1 and ν = 0.67) when driven by t/U along the horizontal axis [85].

In our experiment, we study the critical behavior near point A on the vacuum-to-superfluid

phase boundary.
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Figure 4.2: The vacuum-to-superfluid quantum phase transition in 2D optical lattices.
At zero temperature, a quantum phase transition from vacuum (horizontal thick blue line) to
superfluid occurs when the chemical potential µ reaches the critical value µ0. Sufficiently
close to the transition point µ0, quantum criticality prevails (red shaded area), and the
normal-to-superfluid transition temperature Tc (measurements shown as empty circles; see
section 4.2.3 for determination of the normal-to-superfluid transition point) is expected to
vanish as Tc ∼ (µ − µ0)zν ; the blue line is a guide to the eye. From the prediction zν =
1 [61, 157, 158], the linearly extrapolated critical chemical potential is µ0 = −3.6(6)t,
consistent with the theoretical value−4t [10]. Here both the thermal energy scale kBT and
chemical potential µ are normalized by the tunneling t.

4.1.4 The vacuum-to-superfluid quantum phase transition and the

predicted critical scaling laws

The vacuum-to-superfluid transition (point A in Figure 4.1) can be viewed as a transition

between Mott insulator with zero occupation number and superfluid, and can be described

by the Bose-Hubbard model [61]. Our measurement is based on atomic samples near

a normal-to-superfluid transition, which connects to the vacuum-to-superfluid quantum

phase transition in the zero-temperature limit. The phase transition and quantum critical

regime in this study are illustrated in Fig. 4.2. The zero-temperature vacuum-to-superfluid
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transition occurs when the chemical potential µ approaches the quantum critical point µ0.

Sufficiently close to the quantum critical point, the critical temperature Tc for the normal-

to-superfluid transition is expected to decrease according to the following scaling [61]:

kBTc

t
= c

(
µ− µ0

t

)zν
, (4.4)

where kB is the Boltzmann constant, t is the tunneling energy, z is the dynamical critical

exponent, ν is the correlation length exponent, and c is a constant. In the quantum critical

regime (shaded area in Fig. 4.2), the temperature T provides the sole energy scale, and all

thermodynamic observables are expected to scale with T [61]. Thus the equation of state

is predicted to obey the following scaling [156]

Ñ = F (µ̃), (4.5)

in which F (x) is a generic function, and

Ñ =
N −Nr

(kBT
t )

D
z +1− 1

zν

and µ̃ =
µ−µ0
t

(kBT
t )

1
zν

(4.6)

are the scaled occupation number and scaled chemical potential, respectively. Here N is

the occupation number, D is the dimensionality, and Nr is the non-universal part of the

occupation number. For the vacuum-to-superfluid transition in the two-dimensional Bose-

Hubbard model, we haveNr = 0 andD = 2, and the predicted critical exponents are z = 2

and ν = 1/2, characteristics of the dilute Bose gas universality class [11, 157, 61]. We note

that in an infinite 2D system, there can be logarithmic corrections to the scaling functions

near the quantum critical point [11]. In real experiments with finite sample size and tem-

perature range, however, deviations from the scaling laws due to logarithmic corrections

are expected to be small [161] and are, in this work, below our measurement uncertainties.
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4.2 Experimental setup, procedures, and analyses

4.2.1 Preparation of cesium 2D Bose gases in optical lattices

Our experiment is based on 2D atomic gases of cesium-133 in 2D square optical lat-

tices [30, 31]. The 2D trap geometry is provided by the weak horizontal (r-) confine-

ment and strong vertical (z-) confinement, with envelope trap frequencies fr = 9.6 Hz

and fz = 1940 Hz, respectively. Details of the system and the sample preparation are

described in a previous work [31]. Typically 4, 000 to 20, 000 atoms are loaded into the

lattice. The lattice constant is d = λ/2 = 0.532 µm and the depth is VL = 6.8 ER, where

ER = kB × 63.6 nK is the recoil energy, λ = 1064 nm is the lattice laser wavelength, and

h is the Planck constant. In the lattice, the tunneling energy is t = kB× 2.7 nK, the on-site

interaction is U = kB × 17 nK, and the scattering length is a = 15.9 nm. The sample

temperature is controlled in the range of T = 5.8∼31 nK.

We adjust the atomic temperature by applying magnetic field pulses near a magnetic

Feshbach resonance [19] to excite the atoms [32]. After the pulse, we tune the scattering

length to a = 15.9 nm, wait for 200 ms, and ramp on the optical lattice to 6.8 ER in 270

ms. These parameters are chosen to allow the sample to reach thermal equilibrium after

the ramp [31]. The final lattice depth is sufficiently deep to validate single band Bose-

Hubbard description. After preparing the sample, we perform in situ absorption imaging

using a strong resonant laser beam [32, 34]. The atomic density is independently calibrated

in similar methods as in a previous work [32].

We determine the equation of state n(µ, T ) of the sample from the measured in situ

density distribution n(x, y) [32, 30]. The chemical potential µ(x, y) and the temperature

T are obtained by fitting the low-density tail of the sample where the atoms are normal.

The fit is based on the mean-field model, Eq. 4.8, which accounts for interaction [10, 162].

Equation of state measured near the quantum critical point can reveal essential information
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on quantum criticality, as proposed in a previous paper [10].

4.2.2 Achieving low atomic temperatures

In our experiment, we prepare a cold 2D Bose gas and then heat it up to various tempera-

tures. The real challenge is to reach low enough temperatures. We started by producing an

almost pure 3D BEC which should have very low temperature due to effective evaporative

cooling. However, when the BEC is compressed into a single site of the vertical lattice

with full strength, the evaporation will be turned off and the atoms cannot be cooled any

more. To reach as low a temperature as possible, we introduce a two-step ramping up of the

vertical lattice as follow. First of all, the vertical lattice is ramped to an intermediate depth

which is high enough to provide substantially larger vertical confinement than the light

sheet, and yet low enough such that the most energetic atoms can still escape from the trap

and the rest of atoms are cooled. We finish all other changes in the dipole trapping beam

intensities and in the magnetic field, and then perform the second step to ramp the vertical

lattice to its full strength. This procedure maximizes the time of evaporative cooling and

helps to reach lower atomic temperatures.

A second strategy is to start with a BEC with smaller atom number. In fact, if the system

is in the critical regime, we only need relatively small atomic densities at low temperatures

in order to reach a certain scaled occupation number. Thus we can substantially reduce the

total atomic number by cutting down the final trap depth in the evaporation, which corre-

sponds to a lower atomic temperature. In addition, we can neglect the previous step [30] of

ramping to zero interaction in the vertical lattice loading, because the vertical sample size

is already small enough. A smaller sample can also require less horizontal transport when

atoms are compressed vertically. Based on these considerations, we significantly reduce the

atom number and achieve lower temperatures (5.8 nK compared to the previous 11 nK).
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4.2.3 Determination of the normal-to-superfluid transition point µc

Figure 4.3: The critical chemical potential for normal-to-superfluid transition at Tref =
4.0t/kB. (a) Fit the crossover behavior to obtain Nc: data (black circles), fit (red line), Nc

position (blue dashed line). (b) Use Nc to determine µc based on the measured N(µ/t)
function. Here we determine Nc = 0.77 and µc = −2.1t

To determine the normal-to-superfluid transition points (open circles in Fig. 4.2), we

use a procedure similar to that in a previous work [32]. At a reference temperature Tref , we

obtain the critical chemical potential µc,ref for the normal-to-superfluid transition by fitting

the crossover of the compressibility κ = dn
dµ (as a function of density n) near the transition

region, as illustrated in Fig. 4.3. The fit is based on an empirical formula κ = kn −
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√
k2(n− nc)2 + w2 +

√
k2n2

c + w2, where the slope k, critical density nc = n(µc, Tref),

and the width w of the transition region are fitting parameters. At a different temperature T ,

we obtain the transition point by comparing the equation of state at the two temperatures T

and Tref and collapsing the scaled equation of state near the transition points into a single

curve [32], as illustrated in Fig. 4.4:

n− nc

kBT
= H(

µ− µc

kBT
). (4.7)

The resulting critical points are shown in Fig. 4.2.

4.2.4 Determination of the peak chemical potential and the temperature

We determine the peak chemical potential µm (chemical potential at the trap center r = 0)

and the temperature T of a 2D Bose gas in 2D optical lattices by fitting the low-density tail

of the azimuthally averaged density profile using the following formula [10]:

n(r) = d−2
∞∑
l=1

[I0(2lβt)]2elβ[µm−2Ueffnd
2−V (r)], (4.8)

This formula is based on local density approximation and a mean-field model that takes

interaction into account. Here n(r) is the 2D atomic density at radius r from the cloud cen-

ter, d = 0.532 µm is the lattice spacing, I0(x) =
∫ π
−π

dθ
2πe

x cos θ is the zeroth-order Bessel

function with purely imaginary argument, β = 1/kBT , kB is the Boltzmann constant, t is

the tunneling, V (r) is the envelope trapping potential, and Ueff is the effective interaction.

Here the calculation of Ueff involves the Bose-Hubbard on-site interaction parameter U and

terms for a modified two-particle propagator [162]:

Ueff =
U

1 + U
2tΠ

, (4.9)
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Figure 4.4: Compare the scaled equation of state near the normal-to-superfluid transition
points. (a) The unscaled equation of state, occupation number N as a function of the
normalized chemical potential µ/t at two temperatures, Tref = 4.0t/kB (black circles) and
T = 7.3t/kB (red triangles). The black arrow indicates the normal-to-superfluid transition
point µc,ref = −2.1t for Tref = 4.0t/kB, as shown in Fig. 4.3; the three red arrows indicate
the trial values for µc at T = 7.3t/kB used in the following three panels (b ∼ d). (b) to (d)
comparing the scaled equation of state (N−Nc)t/kBT as a function of (µ−µc)/kBT using
µc,ref = −2.1t at temperature Tref = 4.0t/kB and trial µc = −3.4t in (b), −1.4t in (c),
and 0.6t in (d), at temperature T = 7.3t/kB. Orange dashed lines show that the transition
point always corresponds to (0,0) after the shifting and scaling. Here we see that in (c) the
scaled equation of state has a better collapsing. A refined optimization gives µc = −1.4t
as the normal-to-superfluid transtion point at T = 7.3t/kB.
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where

Π =

(
d

2π

)2 x dkxdky
kBT
t + 2

[
2− cos(kxd)− cos(kyd)

] ,
and the integration ranges of kx and ky are both from −π/d to π/d, which covers the

first Brillouin zone of the 2D square lattice. We test this formula on quantum Monte

Carlo (QMC) data [158]. Within our experimental temperature range, the fitted T agrees

with QMC value within 3%, and the fitted µm agrees with QMC value within 0.6t.

4.2.5 Effective interaction strength of a 2D gas

We define the dimensionless effective interaction strength g for our Bose gas in optical

lattices:

g = Ueff
m∗d2

~2
(4.10)

and for that without lattices [32]:

g =

√
8πa

lz
(4.11)

where the effective interaction Ueff is calculated using Eq. 4.9, ~ is the reduced Planck

constant, m∗ = ~2/E′′(k)|k=0 is the single-particle effective mass in a 2D optical lattice

and can be calculated from the ground-band dispersion relation E(k), a is the scattering

length which is tunable via a magnetic Feshbach resonance [19], and lz is the vertical

harmonic oscillator length.

4.3 Experimental observation of quantum criticality

In this section, we report the observation of quantum critical behavior of ultracold cesium

atoms in a two-dimensional (2D) optical lattice across the vacuum-to-superfluid transition.

At progressively lower temperatures, quantum criticality is revealed in the emergence of
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critical scaling of the equation of state. From the equation of state, we extract the quantum

critical point and the critical exponents, and compare them with theoretical predictions.

Furthermore, we observe the breakdown of quantum criticality at high temperatures and

estimate an upper thermal energy scale for the quantum critical behavior. The derived

scaling laws permit a complete determination of the thermodynamics of the critical gas.

In particular, we observe a non-zero critical entropy per particle which carries a weak

dependence on the atomic interaction.

4.3.1 Locating the quantum critical point µ0

We locate the quantum critical point by noting that at the critical chemical potential µ = µ0,

the scaled occupation number Ñ = Nt/kBT = nd2t/kBT is temperature-independent, as

indicated by Eq. 4.5. Here we have applied a predicted exponent ν = 1/2. We plot Ñ as

a function of µ in the low temperature range of 5.8∼15 nK, and indeed observe a crossing

point, shown in the inset of Fig. 4.5A. We quantitatively determine µ0 as follows.

For a given chemical potential µ, we calculate the reduced chi-squared of the scaled

occupation numbers Ñ = Nt/kBT using measurements at M different temperatures, as

shown in the following formula:

χ2(µ) =
1

M − 1

M∑
i=1

[
Ñi(µ)− Ñav(µ)

σi(µ)

]2

(4.12)

where Ñav(µ) =
∑M
i=1 Ñi(µ)/M , and σi(µ) is the statistical uncertainty of Ñi(µ). The

quantum critical point µ = µ0, which corresponds to the crossing point, is determined by

finding the minimum of χ2(µ). We identify this point as the critical point for the vacuum-

to-superfluid transition, and our result, µ0 = −4.5(6)t, agrees with the prediction−4t [10].
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Figure 4.5: Evidence of a quantum critical regime. (A) Scaled occupation number Ñ =
Nt/kBT as a function of the scaled chemical potential µ̃ = (µ − µ0)/kBT , measured
at seven temperatures: T =5.8 nK (black circles), 6.7 nK (red triangles), 11 nK (green
triangles), 13 nK (blue diamonds), 15 nK (magenta squares), 24 nK (orange circles), and
31 nK (dark yellow triangles), with the blue solid line showing the average curve for the
lowest four temperatures. Inset shows the low-temperature data in the range of T = 5.8 ∼
15 nK, and the critical chemical potential µ0 is identified as the crossing point; see text.
The result, µ0 = −4.5(6)t, agrees with the prediction µ0 = −4t [10]. (B) Determination
of the dynamical critical exponent z and the correlation length exponent ν based on µ0 =
−4.5t. The color represents the reduced chi-squared, χ2, and indicates how well the scaled
equation of state can collapse into one single curve. The exponents are determined as
z = 2.2+1.0

−0.5 and ν = 0.52+0.09
−0.10, where the uncertainties correspond to 95% confidence

level. The predicted values are z = 2 and ν = 1/2.
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4.3.2 Testing the critical scaling law

To test the critical scaling law, we compare the equation of state at different temperatures.

Based on the expected exponents z = 2 and ν = 1/2, we plot the scaled occupation number

Ñ as a function of the scaled chemical potential µ̃ = (µ− µ0)/kBT ; see Fig. 4.5A. Below

15 nK, all the measurements collapse into a single curve, which confirms the emergence of

the quantum critical scaling law (Eq. 4.5) at low temperatures. Deviations become obvious

at higher temperatures.

4.3.3 Constraining the critical exponents z and ν

We examine the range of critical exponents z and ν that allow the scaled equation of state

at low temperatures to overlap within experimental uncertainties. Taking µ0 = −4.5t and

various values of z and ν in the range of 0 < z < 4 and 0 < ν < 1, we compute the corre-

sponding scaled occupation numbers Ñ and scaled chemical potentials µ̃ based on Eq. 4.6.

We then evaluate how well the scaled equation of state in the range of T = 5.8 ∼ 15 nK

can collapse to a single curve by computing the reduced chi-squared (described later). As

shown in Fig. 4.5B, the exponents are determined as z = 2.2+1.0
−0.5 and ν = 0.52+0.09

−0.10,

where the uncertainties correspond to 95% confidence level. Based on the theoretical value

of µ0 = −4t, we find the exponents to be z = 2.6+1.2
−0.6 and ν = 0.44(8). In the following

analyses, we adopt z = 2, ν = 1/2, and µ0 = −4.5t.

Using a given critical chemical potential µ0 and trial values of z and ν, we compute the

scaled occupation number Ñ and the scaled chemical potential µ̃ according to Eq. 4.6. We

then compute the reduced chi-squared, χ2, based on the deviations of Ñ from the average

value at the same µ̃. By minimizing χ2 in the range of −1.5 kBT < µ − µ0 < 1.5 kBT ,

the possible values of z and ν are constrained according to the chosen confidence level.
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Figure 4.6: Finite-temperature effect on quantum critical scaling. Scaled occupation
number Ñc = Nct/kBT at the critical chemical potential µ = µ0 as a function of the
normalized temperature kBT/t. The blue dashed line is an empirical fit, giving a temper-
ature scale T ∗ ≈ 8t/kB. For T < T ∗, Ñc ≈ 0.097 is independent of the temperature; for
T > T ∗, Ñc deviates from the low-temperature value.

4.3.4 Finite-temperature effect on quantum critical scaling

Our measurements at different temperatures allow us to investigate the breakdown of quan-

tum criticality at high temperatures. To quantify the deviations, we focus on the tem-

perature dependence of the scaled occupation number Ñ at the critical chemical potential

µ = µ0, as shown in Fig. 4.6. Deviations from the low-temperature value are clear when the

temperature exceeds T ∗ = 22 nK≈ 8t/kB. From this, we conclude that at µ = µ0, the up-

per bound of thermal energy for the quantum critical behavior in our system is kBT
∗ ≈ 8t.

Our result is in fair agreement with the prediction of 6t based on quantum Monte Carlo

calculations [158].

4.3.5 Thermodynamics in the quantum critical regime

From the equation of state, one can derive other thermodynamic quantities in the critical

regime. Based on the Gibbs-Duham equation [20], we derive the pressure P (µ, T ) from
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Figure 4.7: Scaling of pressure P at low temperatures. The symbol and color scheme
is the same as that in Fig. 4.5A of the main text: black circles (5.8 nK), red triangles
(6.7 nK), green triangles (11 nK), blue diamonds (13 nK), and magenta squares (15 nK).
The collapse of the scaled measurements shows that the pressure scales according to Eq. 12
at low temperatures.

the in situ density measurements:

P (µ, T ) =

∫ µ

−∞
n(µ′, T )dµ′ (4.13)

The entropy density s(µ, T ) is related to the pressure via differentiation with respect to

temperature:

s(µ, T ) =

(
∂P

∂T

)
µ

(4.14)

We determine the pressure P using Eq. 4.13, and find that in the quantum critical regime

near the vacuum-to-superfluid transition, it follows the scaling law of Eq. 4.15, see Fig. 4.7.

P (µ, T ) =

(
kBT

t

)D
z +1

KP (µ̃) , (4.15)
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Thus the entropy density s follows the scaling law given by Eq. 4.16.

s(µ, T ) =

(
kBT

t

)D
z

Ks (µ̃) , (4.16)

where KP and Ks are generic functions of µ̃. Combining Eq. 4.5 and Eq. 4.16, we obtain

the entropy per particle S/N in unit of kB

S

NkB
=

(
kBT

t

)−1+ 1
zν

W (µ̃) (4.17)

where W is a generic function.

For z = 2, ν = 1/2, S/NkB = W (µ̃) = 2KP /KP
′ − µ̃ is a temperature-independent

function of the scaled chemical potential µ̃ = (µ−µ0)/kBT . In particular, near the critical

point µ̃ = 0, S/NkB varies approximately as a linear function of µ̃: W (µ̃) = a−bµ̃. Using

W (µ̃) = 2KP /KP
′ − µ̃, we can solve the pressure P and express it in terms of density n

and temperature T :

P = Cnx(kBT )y, (4.18)

where x = 2
1+b , y = 2b

1+b , and the proportionality constant C = (a2)
2

1+b (
KP (0)
t2

)
−1+b
1+b .

A similar technique was applied to obtain the entropy per particle for a bulk 2D gas of

rubidium-87 atoms [34].

Here we derive the entropy per particle S/N based on measurements in the tempera-

ture range of T = 5.8 ∼ 15 nK. The measured entropy per particle only depends on the

scaled chemical potential µ̃ and monotonically decreases (Fig. 4.8A), indicating a positive

specific heat. Near the critical point µ̃ = 0, the entropy per particle has an approximate

linear dependence on the scaled chemical potential: S/NkB = a − bµ̃, with a = 1.8(1),

b = 1.1(1). From this linear dependence, we derive an empirical thermodynamic relation
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Figure 4.8: Entropy per particle in the critical regime. (A) Entropy per particle S/N
as a function of the scaled chemical potential µ̃, measured in the temperature range of
5.8 ∼ 15 nK (same symbol and color scheme as in Fig. 4.5A). (B) Critical entropy per
particle Sc/N as a function of the effective interaction strengths g: measurements for Bose
gases with 2D optical lattices (black circle) and without lattice (black triangles, extracted
from data in a previous work [32]), mean-field calculations (blue line), and a power-law fit
to the measurements, Sc/NkB = 1.6(1)g0.18(2)(red line).
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analogous to the ideal gas law:

P = Cnx (kBT )y , (4.19)

where P is the pressure of the 2D gas, x = 2
1+b = 0.95(5), y = 2b

1+b = 1.05(5), C =

0.8(2)(td2)w is a constant, and w = 1−b
1+b = −0.05(5).

4.3.6 The dependence of thermodynamic observables on inter-atomic

interaction strength

We observe a weak dependence of the critical entropy per particle on the atomic inter-

action. Noting that a weakly-interacting 2D Bose gas follows similar scaling laws near

µ = 0 [32] due to the same underlying dilute Bose gas universality class [11, 146], we

apply similar analysis and extract the critical entropy per particle Sc/N at four interaction

strengths g ≈ 0.05, 0.13, 0.19, 0.26, as shown together with the lattice data (g ≈ 2.4) in

Fig. 4.8B. We observe a slow growing of Sc/N with g, and compare the measurements with

mean-field calculations. The measured Sc/N is systematically lower than the mean-field

predictions, potentially due to quantum critical physics. The weak dependence on the inter-

action strength can be captured by a power-law fit to the data as Sc/NkB = 1.6(1)g0.18(2).

Mean-field calculation on the entropy per particle

Here in Fig. 4.8B, we calculate the entropy per particle S/N based on Eq. 4.8. At low

temperatures T , the Bessel function takes its asymptotic form I0(x) ≈ ex/
√

2πx when

x = 2lt/(kBT ) is large, and Eq. 4.8 reduces to

F (µ̃) = − 1

4π
ln

[
1− exp

(
µ̃− 2Ueff

t
F (µ̃)

)]
.
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One can calculate F (µ̃) by solving this equation self-consistently, and then derive KP (µ̃)

and S/NkB = 2KP /KP
′ − µ̃ from F (µ̃). In this calculation, the effective mass takes the

valuem∗ = ~2

2td2 (under the tight-binding approximation); the effective interaction strength

is thus given by g = Ueff
2t based on Eq. 4.10.

4.4 Conclusion

In summary, based on in situ density measurements of Bose gases in 2D optical lattices,

we confirm the quantum criticality near the vacuum-to-superfluid quantum phase transi-

tion. We show the suppression of the superfluid critical temperature, observe the scaling of

equation of state, and extract the quantum critical point and critical exponents. In addition,

we find that the entropy per particle is temperature-independent in the critical regime and

has a weak dependence on the atomic interaction. Our experimental methods hold promise

for identifying general quantum phase transitions, and prepare the tools for investigating

quantum critical dynamics.
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CHAPTER 5

OUTLOOK

We describe possible future directions of the cesium experiment. On the top of our list

is quantum critical dynamics, an important topic in condensed matter physics which is

challenging to study and remains largely unexplored. Our experiment based on cold atoms

in optical lattices provides an excellent tool to investigate this topic, as described in the

first section. A second direction lies in the improved measurements and analyses of local

correlations in quantum gases, as described in the second section.

5.1 Quantum critical dynamics

We discuss some prospects of studying quantum critical dynamics using cold atoms in opti-

cal lattices. Prominent dynamic phenomena include quantum critical transport of mass and

entropy, and dynamics of defect generation across the quantum critical point as described

by the Kibble-Zurek mechanism [163, 82].

This section is based on part of our proposal (by X. Zhang, C.-L. Hung, S.-K. Tung, N.

Gemelke, and C. Chin) published in New J. Phys. 13, 045011 (2011).

5.1.1 Quantum critical transport

Mass and heat transport across the quantum critical regime provide important tests for

quantum critical theory [11]. Sufficiently close to the critical point, one expects that

transport coefficients obey universal scaling relations independent of microscopic physics

[11, 164]. In two dimensions, in particular, we expect that the static mass transport exhibits

a universal behavior, in analogous to the prediction on the electrical conductivity [165, 9],
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and the static mass conductivity at the critical point is given by

σ =
m

~
Φσ, (5.1)

which only depends on the fundamental constants m/~ and a dimensionless, universal

number Φσ determined from the universality class of the underlying phase transition. Here

~ is the reduced Planck constant, and m is the atomic mass. Analytic predictions on the

transport coefficients in the quantum critical regime were recently reported on the basis of

the anti-de Sitter/conformal field theory duality [9, 14]. Measurements of transport coef-

ficients in general can be of fundamental interest in quantum field theory [9]; the relation

between mass and thermal conductivities is in close analogy to the Wiedemann-Franz re-

lation between charge and thermal transport coefficients in electronic systems, which is

shown to break down near the quantum critical point in a recent experiment [166].

Mass and heat transport are induced by generalized forces such as chemical potential

gradient and temperature gradient. A natural approach to study dynamics of atoms in op-

tical lattices is to first create non-equilibrium density distributions in the sample and then

measure the subsequent evolution of density profiles.

Non-equilibrium density distributions can be induced in various ways. For example,

one can create a controlled perturbation in the local chemical potential and induce trans-

port by dynamically changing the envelope trapping potential in an equilibrated system or

changing the on-site interaction U near a Feshbach resonance [19]. On the other hand, ap-

plying lattice ramps slow compared to local microscopic time scales can still violate global

adiabaticity and induce macroscopic mass and heat flow [31]. This is aggravated by the

pronounced difference in the equilibrium density and entropy profiles between superfluid

and Mott insulator phases, as shown in Fig. 5.1. In a non-equilibrated system, we expect

quantum critical dynamics to take place near integer site occupation numbers.
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While measuring the evolution of the density profile is straightforward using our in situ

imaging technique [30, 31], heat or entropy measurement in the quantum critical regime

remains a challenging task. Nevertheless, the entropy profile is readily measurable deeply

in the Mott-insulating regime by counting occupancy statistics using single-site resolved

florescence imaging in combination with on-site number filtering [126, 125], or can be

extracted from counting average site occupancies before and after on-site number filtering

processes [31]. Since the local equilibration time scale (on the order of ~/U [125]) is

sufficiently decoupled from the global dynamics [167], a locally isentropic projection from

the quantum critical regime deeply into the MI regime can be achieved and the local entropy

profile measured.

From the density and entropy profile measurements, we can determine their current

densities through the application of a generic continuity equation ∂ρ
∂τ +∇· ~Jρ = Γρ. Here

ρ(~x, τ) represents experimentally measured mass or entropy density, ~Jρ is the correspond-

ing current density, and Γρ is a source term which characterizes, for example, particle loss

(Γρ < 0) or entropy generation (Γρ > 0).

Mass conductivity σ and thermal conductivity κ can be determined by relating the mass

and entropy current densities, ~Jn and ~Js, as functions of position ~x and time τ , to the

generalized forces: the local chemical potential gradient ~∇µ, the potential energy gradient

~∇V , and the temperature gradient ~∇T . They obey the following transport equations [168]

~Jn(~x, τ) = −σ~∇[µ(~x, τ) + V (~x, τ)]−
mLnq
kB

~∇T (~x, τ) (5.2)

~Js(~x, τ) = −
Lqn
kB

~∇[µ(~x, τ) + V (~x, τ)]− κ

T
~∇T (~x, τ). (5.3)

Here Lnq and Lqn are phenomenological coefficients similar to the Seebeck and Peltier co-

efficients in the thermoelectric effect and can be related via the Onsager reciprocity relation

[169].
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Figure 5.1: Sketch of density and entropy profiles of a trapped, finite-temperature gas in
the tunneling-dominated regime where the center of the cloud is a superfluid (SF), and in
the interaction-dominated regime where the cloud shows a Mott-insulating domain (MI)
with unit occupation number. The calculation is done with the same particle number and
total entropy for the two regimes. The gray shaded area marks an extended region near
unit site occupation number (nd2 = 1) where quantum critical transport can take place
when global adiabaticity breaks down during the lattice loading process. d = 532 nm is the
lattice constant.

Finally, to obtain precise information of spatially resolved chemical potential gradient

and temperature gradient, we resort to the equilibrium properties of the sample which can

be determined from measurements of the equilibrium density and density fluctuation. The

complementary knowledge of the equation of state n(µ, T ) and its fluctuation δn2(µ, T )

in equilibrium can be inverted to obtain µ(n, δn2) and T (n, δn2). We propose that, in a

sample driven out of equilibrium globally but remaining locally equilibrated, local density

and fluctuation measurements can still be used to extract its local chemical potential and

temperature. This assumption can be further examined by comparing local compressibil-

ity to density fluctuation and extracting local temperature through the application of the

fluctuation-dissipation theorem [109].
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5.1.2 Progress on transport measurements

Our recent experiment studied global mass transport and statistical evolution in a 2D sam-

ple across the SF-MI phase boundary [31]. We discovered slow equilibration dynamics

with time scales more than 100 times longer than the microscopic time scales for the on-

site interaction and tunneling energy. This suggests that transport can limit the global

equilibration process inside a sample traversing a quantum critical point.

In Fig. 5.2 (a-c), we plot the evolution of density profiles of a 2D gas containing N =

2× 104 atoms after a short 50 ms ramp from zero to a final lattice depth of 10 ER. At this

lattice depth, U/t = 11 is below the critical point U/t = 17 for the Mott insulator state with

unit occupation number [85]. We record density profiles after holding the sample at the final

lattice depth for various hold times τ . With an equilibration time scale around 180 ms, the

cloud gently expands and the peak density slowly decreases due to the increase of repulsive

atomic interaction during the lattice ramp. This equilibration time scale can depend on the

sample size and the local properties of the coexisting phases in an inhomogeneous sample.

We further extract the evolution of local mass current density, leading to detailed local

transport properties beyond a single equilibration time scale. We compute the mass current

density ~Jn by comparing density profiles taken at adjacent hold times (∆τ = 10 ∼ 50 ms)

and applying the continuity equation, m∆n
∆τ +∇· ~Jn(r, τ) = 0, to evaluate ~Jn(r, τ). Here,

we assume no atom loss in the analyses for short hold times τ < 500 ms. Assuming that

mass flow only occurs in the radial direction (r̂) due to azimuthal symmetry of the sample,

we write the mass current density as ~Jn(r, τ) = mj(r, τ)r̂. The number current density

j(r, τ) is computed according to

j(r, τ) =
1

2πr

N(r, τ + ∆τ)−N(r, τ)

∆τ
, (5.4)

whereN(r, τ) =
∫ r

0 n(r′, τ)2πr′dr′ is the number of atoms located inside a circle of radius
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r at hold time τ . Positive j means a current flowing toward larger radius r, and vice versa.

Figure 5.2: Evolution of the density profile and the atom number current density after a
short 50 ms lattice ramp from zero depth to a final depth of 10 ER (U/t = 11). Upper
figure shows the density profile after holding the sample at a constant final depth for hold
times τ =(a) 10, (b) 150, and (c) 350 ms (black circles). In each figure (a-c), the near-
equilibrated density profile measured at long hold time τ = 500 ms (gray triangles) is
plotted for comparison. Each profile is based on an average of 20 to 30 in situ images.
(d) shows the atom number current density at hold time τ = 10 (black squares), 150 (red
circles), and 350 (blue triangles) ms, derived from the density profiles measured near hold
times shown in (a-c) using Eq. (5.2).

In Fig. 5.2(d), we show j(r, τ) computed from density profiles measured near hold

times shown in Fig. 5.2 (a-c). We observe overall positive mass flow, which is consistent

with the picture of an expanding sample inside the optical lattice. The mass current density

varies across the sample. Shortly after the lattice ramp at τ = 10 ms, mass transport is most

apparent inside a radius r = 40d, where the occupation number nd2 > 1 and the atoms

respond to the increase of on-site repulsion. The current density peaks around an annular
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area 20d < r < 30d when the occupation number is in the range 2 < nd2 < 3; outside this

annular area, the current density is suppressed when the occupation number is in the range

nd2 > 3 or nd2 < 2. At a larger hold time τ = 150 ms, similar transport continues to

take place but with smaller amplitude. At a long hold time τ = 350 ms when the sample is

closer to equilibration, the current density j becomes smaller than our measurement noise.

In sum, we have shown that spatially resolved mass current density is readily measur-

able using our in situ imaging technique. We expect that local transport coefficients can

be extracted using Eq. (5.2), from further measurements of local temperature gradients and

chemical potential gradients. Our interest lies in mass transport in the quantum critical

regimes near integer occupation numbers, where the static mass conductivity is predicted

to be universal (Eq. (5.1)). Measurements of local entropy density are under future investi-

gations, with details outlined in previous paragraphs.

5.1.3 Qualitative estimate of the mass conductivity

According to Eq. 5.2, the mass flow depends on both the chemical potential gradient and

the temperature gradient in the sample. In the following analysis, we qualitatively estimate

the mass conductivity by making two approximations: (1) we totally ignore the temperature

gradient; (2) we assume the sample temperature during the profile evolution is the same as

the final temperature after 500 ms holding time. Under these two assumptions, the mass

flow is solely caused by the chemical potential gradient which can be estimate as follows.

In the sample after 500 ms hold time, the mass flow is negligible, and the “global

chemical potential” F ≡ µ + V in Eq. 5.2 is a constant. Note that the “local chemical

potential” µ depends primarily on the atomic interaction energy, and is a function of the

local density n and temperature T . Since in our assumptions, the temperature stays the

same for different times, µ should be solely determined by n. Thus we can compare the
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chemical potential at the same local density n for samples at different hold times. For the

sample after a short time τ , we write

µ(n(r, τ)) + V (r) = F (r, τ). (5.5)

For the sample after τm = 500 ms hold time, we write

µ(n(r′, τm)) + V (r′) = constant. (5.6)

Here we define the potential energy offset such that V = 0 at the trap center (with r = 0),

and write the constant as µm which represents the chemical potential at the trap center (or

“the global chemical potential”) for the sample after τm =500 ms hold time. We also define

r′ as the radii where the density n(r′, τm) in the sample after hold time τm equals to the

density n(r, τ) in the sample after hold time τ , as illustrated in Fig. 5.3, and we see that r′

is a function of r.

Since µ(n(r, τ)) = µ(n(r′, τm)) (by definition of r′), we obtain

F (r, τ) = constant + V (r)− V (r′)

= µm +
1

2
mω2(r2 − r′2) (5.7)

where we applied V (r) = mω2r2/2.

Using Eq. 5.2 (taking only the chemical potential gradient part on the right hand side),
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Figure 5.3: Illustration of n(r, τ) = n(r′, τm). The Black line shows the density n(r, τ) as
a function of radius r for the sample after hold time τ . Gray triangles show n(r′, τm) as a
function of r (since r′ is a function of r) based on the sample after hold time τm and the
determined r′. The overlapping of the two profiles checks our determination of r′ at each r
value.

we have

mj = ~Jn · r̂

= −σ[~∇(µ+ V )] · r̂

≡ −σ[~∇F ] · r̂

= σ
∂(−F )

∂r

= σ
1

2
mω2d

∂[(r′/d)
2 − (r/d)2]

∂(r/d)

= σ
Ed(ω)

d
D(r; d), (5.8)
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Figure 5.4: Estimate the chemical potential gradient.

where Ed(ω) ≡ 1
2mω

2d2 is a characteristic energy scale for a system with lattice spacing

d and envelope frequency ω
2π , and D(r; d) ≡ ∂[(r′/d)2−(r/d)2]

∂(r/d)
is a partial derivative. Thus

σ =
mjd

Ed(ω)D(r; d)
(5.9)

Fig. 5.4 shows the derived D(r; d) =
∂[(r′/d)2−(r/d)2]

∂(r/d)
from Fig. 5.2a for τ = 10 ms.

We indeed see a maximum derivative of 60 at r = 33d. At the same time, from Fig. 5.2d,

the current density for τ = 10 ms does have a near-maximum value j ≈ 0.09d−1ms−1

at r = 33d. Here the envelope trapping frequency is ω ≈ 2π × (1 + 10/82) × 12 Hz =
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2π × 13.5 Hz [31]. Putting these numbers into Eq. 5.9, we get

σ ≈ m
0.09 ms−1

kB × 16.3 picoKelvin

1

60

≈ m

~
× 0.7 (5.10)

Here we have several remarks about this analysis:

• This analysis should be viewed as a practice calculation because we use a model that

totally neglects the temperature gradient effect, which might be an over-simplification.

At the same time, the analysis here does serve as an order of magnitude estimation

of the mass transport conductivity.

• The discrepancy between the radii for the maximum current density and for the max-

imum derivative D(r; d) =
∂[(r′/d)2−(r/d)2]

∂(r/d)
can be caused by possible temperature

gradients in the sample (not considered in this analysis) or the limited signal to noise

ratio in our measurements (which can affect the derivative calculation).

• The experimental procedure needs to be improved such that the mass transport is

solely induced by chemical potential gradient, and that the two assumptions at the

beginning of this analysis are either validated or not needed anymore. One possible

approach is to keep the lattice depth the same and change only the envelope trap

frequency, such that there is no temperature gradient in the cloud, and the chemical

potential gradient is cleanly calibrated (that is, there is no need to compare samples

after different hold times anymore).

• It is conjectured [11, 170] that the relaxation time (τr) of a system in the quantum

147



critical regime only depends on temperature T , the reduced Planck constant ~, and a

universal proportionality constant C (dependent only upon the universality class)

τr = C
~

kBT
, (5.11)

and that τr takes larger values in the non-quantum-critical regime than in the quan-

tum critical regime. Thus under this conjecture, Eq. 5.11 provides a generic lower

bound for relaxation time in interacting quantum systems; correspondingly, Eq. 5.1

provides a generic lower bound for the DC mass conductivity.

• If we assume the conjecture cited above is correct, it would be worth comparing our

order of magnitude estimation, Eq. 5.10, with the theoretical formula, Eq. 5.1 (where

the universal constant Φσ is expected to be of order unity). We see the measured

proportionality constant 0.7 is of order unity and is comparable to the theoretically

expected lower bound Φσ, which means our experiment is likely free of those restrict-

ing microscopic details (such as too slow a tunneling rate) that can prevent the study

of universal transport – our measurement is not “orders of magnitude off-scale” at

all. This is very encouraging for our future study on quantum critical transport.

5.1.4 The Kibble-Zurek mechanism (KZM)

Based on general critical scaling arguments, the KZM predicts the formation of topolog-

ical defects after a system dynamically crosses through a second-order thermodynamic

[171, 172] or quantum phase transition [163, 82]. For optical lattice experiments, the KZM

applies when the system is quenched from a gapped Mott insulator state to a gapless super-

fluid phase, and predicts that the density of defects scales with the ramp rate of the coupling
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strength g [82].

The scaling behavior can reveal critical exponents of the underlying quantum phase

transition [82, 173, 174]. When the coupling strength g is adiabatically ramped close to

gc, the many-body gap ∆ scales as ∆ ∝ |g − gc|zν = |λ(τ)|zν , where λ(τ) = g(τ) − gc

characterizes the time dependence of the ramp. The adiabaticity criterion breaks down at a

time τ = τa when the gap ∆ becomes small enough and the ramp rate violates d∆
dτ

~
∆ ≤ ∆,

yielding excitations with a characteristic energy scale ∆a ∝ |λ′(τa)|zν/(zν+1) or length

scale ξa ∝ ∆
−1/z
a . The density of defects nex should therefore scale universally as [82,

173]

nex ∝ ξ−Da ∝ γ
Dν/(zν+1)
a , (5.12)

where γa = |λ′(τa)| is the magnitude of the ramp rate at which adiabaticity fails.

In a two-dimensional superfluid, topological defects are vortices. Observing vortices

in an optical lattice using in situ imaging is challenging, largely due to the smallness of a

typical vortex core size (< 1 µm) compared to the imaging resolution (≥ 5 µm) available in

most experiments. While the latter can be technically improved, increasing the vortex core

size by reducing the atomic interaction can also be achieved experimentally either through

tuning a magnetic Feshbach resonance [19] or releasing atoms for a short time-of-flight

time [175, 176].

Further extensions of the KZM consider finite-temperature and finite-size effects [174].

In general, the scaling of excitations also depends on the pathway of quenching [82, 174,

177], and the system can enter the Landau-Zener regime in nearly defect-free processes

[163]. Detailed experiments could reveal the wealth in the dynamics of quantum critical

phenomena as well as the intriguing connection between quantum mechanics and thermo-

dynamics in genuine quantum systems [178, 179].
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5.2 Spatially resolved density-density correlation measurements

Correlations have fundamental importance in the study of many-body physics. In our previ-

ous work (section 3.5), we presented a scheme to extract density-density correlations from

in situ images of atomic gases. There our analysis is based on either a large square image

of thermal gases which is uncorrelated or the center 32 × 32 pixels which is of a certain

phase. In a general trapped gas, different quantum phases coexist and it is worth extending

the previous method to analyzing an arbitrary shape of region in the cloud. We outline

the generalized method and show a sample result with comparable performance compared

with previous result.

Our previous analysis (section 3.5) uses 2D discrete Fourier transform (DFT) to calcu-

late the noise power spectrum of each image, and then average over multiple experimental

shots. In an actual trapped atomic sample, the local quantum phase depends on the chem-

ical potential whose equal-value lines are often elliptical contours. Therefore, except for

the phase at the trap center, other phases lie in elliptical ring regions with different radii. If

we want to analyze the correlation inside a ring region (as illustrated in Fig. 5.6b), a direct

discrete Fourier transform doesn’t work and a different method is required.

5.2.1 From atomic density of a general-shape cloud to density correlation

function defined on a regular square grid

The key idea is to separate the calculation into two steps. To calculate the static structure

factor S(k) as a function of spatial frequency k, we can first calculate the correlation func-

tion ν(r) as a function of the spatial coordinate difference r and second, perform DFT only

then to derive S(k).

We have a portion of atomic cloud, with arbitrary shape and Q pixels in it. From the

average number per pixel Ni at position ri (1 ≤ i ≤ Q), we can calculate the number
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Figure 5.5: The two-point coordinate difference vector of an elliptical ring region. The
sample image is represented as a 2D array of pixels. The white dots are possible coordinate
difference vectors between two points in the ring region. White lines are the selected range
in the ∆x-∆y space for later analysis.

correlation between pixel i and j:

νi,j = ν(ri − rj) =
1

A

1
S

∑S
q=1 ∆Ni,q∆Nj,q√

NiNj
(5.13)

where ∆r is the linear pixel size, A is the pixel area, q = 1, 2, ..., S corresponds to S

repetitions of experiment, Ni = 1
S

∑S
i=1Ni,q is the average number at the ith pixel,

∆Ni,q = Ni,q − Ni is the single-shot fluctuation. For any possible coordinate difference

r = (∆x,∆y), we evaluate the correlation function ν(r) on each point by averaging over

all the two-point correlators νi,j with the same coordinate difference r.

As illustrated in Fig. 5.5, although a ring area can contain rather limited number of

pixels, the possible coordinate differences r = (∆x,∆y) can be many, and we can choose
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a fairly large square range in (∆x,∆y) space for subsequent calculations. For example,

one can count from (0,0) along the 45 degree and 135 degree lines and find the maxi-

mum traveling distance, and define L as the maximum even integer that do not exceed

min{max{abs(∆x+∆y)},max{abs(∆x−∆y)}} andM = L/2+1, where ∆x = xi−xj

and ∆y = yi − yj runs through all the possible pairs for points i,j. In this definition, L is

the linear size of the selected square region, and −(M − 1) ≤ ∆x,∆y ≤M − 1.

5.2.2 Properly weighted discrete Fourier transform for calculating the

static structure factor

The second step is to perform properly weighted discrete Fourier transform of ν(r) to obtain

the static structure factor S(k). Defining

νM (r, r′) =
(M − |i− i′|)(M − |j − j′|)

M2

〈
δn(r)δn(r′)

n̄

〉
=

(M − |i− i′|)(M − |j − j′|)
M2

ν(r− r′) (5.14)

We calculate the static structure factor by discrete Fourier transform:

S(k) =
∑
r−r′

∆2
rνM (r, r′)e−ik·(r−r′) (5.15)

where (r − r′)/∆r = (i − i′, j − j′) is a vector of integers in the range of −(M − 1) ≤

i− i′, j − j′ ≤M − 1.

We note that the correlation function is modified due to the finite grid size; m∆i,∆j =

(M−|∆i|)(M−|∆j|)
M2 is the total number of point pairs for which i−i′ = ∆i and j−j′ = ∆j;

this number summed over all possible ∆x and ∆y gives M4, the total number of points for
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calculating the square of a 2D Fourier transform on a M by M grid:

∑
−(M−1)≤∆i,∆j≤M−1

m∆i,∆j = M4,

consistent with our previous method using a 2D grid from the beginning, and applicable to

a much broader range of general cloud shapes.

This weight factor, however, requires the physical correlation length to be much smaller

than the linear size M ×∆r of the analysis region. Indeed, because we are assuming peri-

odic boundary condition in performing DFT, if the physical correlation length is compara-

ble to M ×∆r, the assumption does not produce an accurate picture of the actual system

any more. Thus we always need to choose a large enough region inside the cloud com-

pared to the expected correlation length in that region. For most ring regions, the linear

size M ×∆r is more than 10 µm, which far exceeds the typical correlation length, and our

analysis scheme is safety applicable.

Besides, we note that the actual measurements are always convoluted with finite imag-

ing resolution. So the analysis provides not the static structure factor S(k), but S(k)M2(k),

where M(k) is the modulation transfer function of the imaging system [71].

To end this section, we show that as a calibration, the new method can produce a known

answer with as good a signal-to-noise ratio as that of the previous method. In Fig. 5.6, we

show results on static structure factor (S(k)) of thermal gases: in Fig. 5.6b, we select part

of the low-density wing (marked by the gray region and the arrow) of a thermal gas; in

Fig. 5.6c, we select the central 32 × 32 pixels (marked by the white square box and the

arrow, with phase space density of 0.5) of a thermal gas. Here the two images in Fig. 5.6b

and c are only for illustrating the selected regions. We see that both results in Fig. 5.6a

(black circles for (b) and red triangles for (c)) show the expected almost constant (and

near unity) behavior of S(k) with comparable signal-to-noise. This result serves as a test
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and calibration of our new scheme based on general-shaped regions in atomic samples,

and shows that the new scheme is readily applicable to further experiments on various

quantum phases of interacting atomic gases.
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Figure 5.6: Illustration of static structure factor S(k) extracted from different-shaped
atomic clouds. (a) Static structure factor as a function of spatial frequency k, extracted
from thermal gases based on an elliptical ring region shown in b (black circles) and based
on the central 32 × 32 pixels shown in c (red triangles, extracted from the open circles in
Fig. 3.21). The blue dashed line shows the resolution-limited spatial frequency of about
2 µm−1. Here we have performed azimuthal averaging of S(k) to reduce it to a 1D curve
S(k). (b) Illustration of the elliptical ring region (in gray, marked by the blue arrow) from
which we extract S(k) (see also black circles in a). (c) Illustration of the central 32×32 pix-
els (inside the white box and marked by the blue arrow) from which we extract S(k) (red
triangles in a); this picture originally appears in Fig. 3.20a. Here the only purpose of (b)
and (c) is to illustrate the shape of selected regions
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APPENDIX A

LIST OF PUBLICATIONS

1. Fast, runaway evaporative cooling to Bose-Einstein condensation in optical traps.

C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys. Rev. A 78, 011604 (2008)(Rapid

communication).

2. Exploring universality of few-body physics based on ultracold atoms near Feshbach

resonances.

N. Gemelke, C.-L. Hung, X. Zhang, and C. Chin, Proceeding of 2008 ICAP.

3. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases.

N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature 460, 995 (2009).

4. Slow mass transport and statistical evolution of an atomic gas across the superfluid-Mott

insulator transition.

C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys. Rev. Lett. 104, 160403 (2010).

5. Observation of scale invariance and universality in two-dimensional Bose gases.

C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Nature 470, 236-239 (2011).

6. Exploring quantum criticality based on ultracold atoms in optical lattices.

X. Zhang, C.-L. Hung, S.-K. Tung, N. Gemelke, and C. Chin, New Journal of Physics 13,

045011 (2011).

7. Extracting density-density correlations from in situ images of atomic quantum gases.

C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke, and C. Chin, New Journal of

Physics 13, 075019 (2011).

8. Quantum critical behavior of ultracold atoms in two-dimensional optical lattices.
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K. Pilch, A. Jaakkola, H.-C. Näerl, and R. Grimm. Evidence for Efimov quantum
states in an ultracold gas of caesium atoms. Nature, 440(7082):315–318, 2006.
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