HOMEWORK 2 (Due: 10/16/2017)

1. Single channel scattering in square well

Given a square well potential in the spherical coordinate $V(r < r_0) = -\frac{\hbar^2 q^2}{2\mu} \equiv -D$ and

 $V(r > r_0) = 0$, the incoming spherical wave is e^{-ikr}/r and the outgoing wave is Se^{ikr}/r , where $S = e^{2i\delta}$ is the scattering matrix and δ is the s-wave scattering phase shift.

- A. show that the scattering phase shift is $\delta = -kr_0 + \tan^{-1}\frac{k\tan\sqrt{q^2+k^2}r_0}{\sqrt{q^2+k^2}}$.
- B. Determine scattering length a in the low scattering energy limit $k \to 0$.
- C. Plot the scattering phase shift and scattering length vs. the depth D.
- D. What is the value of scattering phase shift when the scattering length diverges?

2. Bound states and potential resonance

Continue 1 with the square potential. Here we will look into the connection between the scattering length and the bound state.

- A. When we increase D from zero, show that the condition for the potential to support one more bound state is the same as the condition you derived in 1 D.
- B. In particular, when the scattering length is very large and positive $a \gg r_0$, show that there is a weakly bound state near the dissociation threshold with energy

$$E = -\frac{\hbar^2}{2\mu(a-r_0)^2}.$$

C. According to molecular spectroscopy, there are 153 bound states of a diatomic cesium molecule Cs_2 in the singlet potential. What is the singlet scattering phase shift of two colliding cesium atoms in the low temperature limit?