Skip to main content

Physics 23800 Atomic Physics

Day/Time: MWF 11:30 - 12:20 pm

Location: KPTC 103                   

Lecturer: Cheng Chin,

Office: GCIS  107

Office Hours: TuTh   10:30 - 11:30 am (except for 11/7 and 11/21)                             



Class outline:

Q1: New Physics at the 18th significant digit?

 Wk 1  09/30  M         Overview: How precise can a measurement be?

 Wk 1  10/02  W        Lecture 1: Atom-photon interactions (Foot: 7.1, 7.2)

 Wk 1  10/04  F          Lecture 2: Ramsey spectroscopy (Foot: 7.3, 7.4) HW1

 Wk 2  10/07  M         Discussion 1: Atom interferometry vs. photon interferometry

 Wk 2  10/09  W        P&A (Principle and applications): Atomic clock

 Wk 2  10/11  F          P&A: Ionic clock HW2

 Wk 3  10/14  M         Discussion 2: Precision of matterwave clocks

 Wk 3  10/16  W        Discussion 3: Why does a single ion work as well as many atoms?


Q2: How do you control atoms remotely?

 Wk 3  10/18  F          Lecture 3: Radiation force (Foot: 7.5, 7.6) HW1due HW3

 Wk 3  10/21  M         Lecture 4: Dipole force (Foot: 7.7,7.8, 9.5, 9.6)              

 Wk 3  10/23  W        Discussion 4: What is dipole force in the photon picture?

 Wk 4  10/25  F          Mid-Term1 HW2due HW4

 Wk 4  10/28  M         Lecture 5: Full QED treatment (Cohen-Tanouji)           

 Wk 4  10/30  W        Discussion 5: What exactly did we do?


Q3: Path from 300 Kelvin to 1 nano-Kelvin?

 Wk 5  11/01  F          Lecture 6: Doppler cooling (Foot: 9.1, 9.2, 9.3) HW3due HW5  

 Wk 5  11/04  M         Presentation 1: Magnetic traps and other cooling schemes

 Wk 5  11/06  W        P&A: Magneto-optical trap (1997 Prize)   (Foot: 9.4,9.7)

Wk 6   11/08  F          Discussion 6: Bose-Einstein condensation and (2001 Prize) (Foot: 10.3, 10.4) HW4due HW6

 Wk 6  11/11  M         Presentation 2: Experiments that distinguish Bose condendates from normal gas?


Q4: How and what can cold atoms simulate other particles?

 Wk 6  11/13  W        Lecture 8: Optical lattices and band structure

 Wk 7  11/15  F          Lecture 9: Superfluid-Mott insulator transition HW5due

 Wk 8  11/18  M         P&A: Superfluid to Mott insulator transition (I) (Prof. Simon)

 Wk 8  11/20  W        Overview: Quantum simulation vs. quantum computation

 Wk 8  11/22  F          Midterm 2  HW6due HW7


 Wk 9  11/25  M         Lecture 10: Quantum dynamics


 Wk 9   11/27  W        Discussion 7: How far can quantum simulation go?               

 Wk 1012/02  M         Lab tour (Dr. Colin Parker and Dr. Eric Hazlett)            

 Wk 1012/04  W        Special Topic: (Prof. Simon) HW7due


Textbook (Recommended) Atomic Physics by Christopher J. Foot, Oxford, 2005


Evaluation    Problem sets: 1/3   Midterms: 1/3  Discussions+Presentation: 1/3


Overview session  Presentation given by the lecturer to outline the fundamental concept and the progress of the field.


P&A session   Introduction and in depth discussion on the working principle and applications of one particular system.


Lecture   Introduction of theoretical concept, mathematical formalism, and technique of calculation.


Discussion session   Each student (and the lecturer) are expected to raise one or more questions related to the previous classes. One chair will be assigned and lead the session by either answering the question himself/herself or leading the discussion toward the answer.


Discussion session evaluation:

Chair: + 10~20 points

Ask a question: +5~10 points

Answer a question that satisfies everybody: +5~10 points

Upper limit for each discussion session is 30 points.


Presentations (11/04 and 11/11)

In the presentation sessions, please present idea or answer to the posted questions discussed in the class.  (You may ask Cheng for hints.) The presentation should provide a pedagogical overview of the topic for the whole class, and your own assessment on the relevance of your answer to the question. Each presentation is about 15 minutes plus Q&A.


Evaluation: 20~50 points/person.


Homeworks and midterms   Each homework contains 2~3 questions; late policy: -10% per day.  Midterms contain 2~3 questions (1 hour, open book, no discussion).