Skip to main content

Physics 45200 - Quantum Optics and Quantum Gasses

Day/Time: MWF 02:30 PM - 03:20 PM
Location: KPTC 105

Lecturer: Cheng Chin
Office: RI 135
Email: cchin@uchicago.edu

Wk1  3/27 M (by email)       Introduction

QUANTUM OPTICS
Wk1  3/29 W 2:30~ 3:45pm Atom-photon interaction I: Classical models
Wk1  3/31 F 2:30~ 3:45pm Atom-photon interaction II: Rabi model             
Wk2  4/03 M 2:30~ 3:45pm Atom-photon interaction III: Density matrix and Bloch vector
Wk2  4/05 W 2:30~ 3:45pm EM Field quantization and photons
Wk3  4/12 W 2:30~ 3:45pm Selected Topic I: Optical dipole potential(Ref.[4])
Wk3  4/14 F 2:30~ 3:45pm Selected Topic II: Jaynes-Cummings Model                              
QUANTUM GASES
Wk4  4/19 W 2:30~ 3:45pm Fermionic superfluidity                      
Wk4  4/21 F 2:30~ 3:45pm BCS theory 
Wk5  4/26 W 2:30~ 3:45pm Gross-Pitaevskii Eq.
Wk5  4/28 F 2:30~ 3:45pm Bogoliubov transformation                         
Wk6  5/03 W 2:30~ 3:45pm Elementary excitation
Wk6  5/05 F 2:30~ 3:45pm Resonant scattering theory
Wk7  5/10 W 2:30~ 3:45pm Selected topic III: Matterwave interference 
Wk7  5/12 F 2:30~ 3:45pm Selected topic IV: Matterwave Josephen junction    

Wk8  5/15 M 9:00~10:30am Selected topic V: Master equation
Wk9  5/22 M 2:30~ 3:45pm Discussion I
Wk9  5/24 W 2:30~ 3:45pm Student presentation I 
Wk9  5/26 F 2:30~ 3:45pm Student presentation II 
Wk11 6/05 M 2:30~ 3:45pm Discussion II

Textbooks
(Recommended) The Quantum Theory of Light, Rodney Loudon
(Recommended) Bose-Einstein Condensation in Dilute Gases, C.J. Pethnick and H. Smith
Lasers, Milonni and Eberly
Lasers, Anthony Siegman
Optical Coherence and Quantum Optics, Mandel and Wolf
Quantum Theory of Many-Particle Systems, Alexander Fetter and John Walecka
 

Evaluation
Problem sets 1/2 
(Homework I with solution), 
(Homework II with solution), 
(Homework III with solution)
Presentation or term paper 1/2

Recommended papers
1. "Power spectrum of light scatterd by two-level systems", Phys. Rev. 188, 1969 (1969)
2. "Resonator-aided single-atom detection on a microfabricated chip", cond-mat/0603675
3. "Electromagnetically induced transparency", Physics Today, 37, July 1997
4. "Dressed-atom approach to atomic motion in laser light: the dipole force revisited", J.  Opt. Soc. Am. B 2, 1708 (1985)
5. "Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons", PRL 84, 1419 (2000)
6. "Atom-Molecule Dark States in a Bose-Einstein condensate", PRL 95, 063202 (2005)
7. "Quasi-electrostatic trap for neutral atoms", Opt. Comm. 114, 421 (1995)
8. "The relation between the Gross-Pitaevskii and Bogoliubov description of a dilute Bose gas", NJP 5, 103 (2003)
9. "Bose-Einstein condensation in the alkali gases: Some fundamental concepts", Rev. Mod. Phys. 73, 307 (2001)
10. "Experimental Observation of the Bogoliubov Transformation for a Bose-Einstein condensed gas", Phys. Rev. Lett. 88, 060402 (2002)